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The Path-Connectivity of Wavelets and Frame
Wavelets

Xingde Dai and Yuanan Diao

_ABSTRACT. In this paper, we discuss a special topological property of the various sets
of wavelets frame wavelets, namely the path-connectivity of these sets. We review and
outline some recent results in this area and post many open questions.

1. Introduction

The topological property of various familics of wavelcts is an interesting topic in the
study of wavelet theory. The question concerning the path-connectedness of the sct of all
orthonormal wavelets was first raised in [7]. Similar questions were raised and studicd in
[15, 16, 17] about the sets of all MRA-wavelets, tight frame wavelets and MRA tight
framec wavelets. These questions are hard questions and many of them remain unsolved
at this time. In this paper, we will tcll some successful stories in this area, post some
un-solved problems, discuss the difficulties onc faces in attacking these problems. We
hope the discussions here will shed some lights for future studies.

A set S C L*(R) is said to be path-connected under the norm topology of L*(R) if
for any two clements f, g € S, there cxists a mapping v : [0,1] — S such that (t) is
continuous in the norm of L#(R), v(0) = f and (1) = g¢.

Let 7 and D be the translation and dilation unitary operators acting on L(R) defined
by
(T = f(t=1) and (Df)(t) = V2f(21),¥f € L*(R)
and let F be the (unitary) Fourier-Plancherel transform which is uniquely defined by the
following formula for each function f in the dense (in L*(R)) set L*(R) N L'(R)

. 1 —1st
(ff)(5)=7§ - f(t)dt.

F(f) is sometimes written as f as well. Notice that

FTAE) = o= e
— e (FRs).
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So }'Taf"lg’\ = e~*%g. For any bounded linear operator 4 acting on L*(R), denote
FAF ' by A For any h € L®(R), let Mp be the multiplication operator defined by
My(f) = hf for any f € L(R). Thus T, = M, ias. Similarly,

(FD"f)(s) = TEV2)" F (20t

1
Var /R ‘
_ -n L =127 st
= (V2 T /R e Flt)dt
= (VTUFNH2Ts) = (DTFS)(s).
So D" = D™ = D*"_ In particular, D = D! = D*.

DEFINITION 1.1. An orthogonal wavelet of L?(R) is a function #(¢) in L*(R) with
unit norm such that {23¢(2" — ¢) : n,£ € Z} = {D"T% : n,¢ € Z} constitutes an
orthonormal basis for L*(R).

The following open problem concerns the path-connectivity of the set of all orthonor-
mal wavelets of L2(R).

PROBLEM 1.2. Let W be the set of all orthonormal wavelets of L*(R). Prove or
disprove that W is path-connected.

Although not much can be said about the sct W itself, there are many subclasses of
orthonormal wavelets that arc of interest, both for the theoretical study and application
recasons. Much effort has been devoted to the study of these subclasses and some very
nice results have been obtained.

2. The MR A Wavelets

The most important subclass of orthonormal wavelets in practical applications is prob-
ably the MRA wavelets and it turns out that this subclass is indeed path-connected, a very
nice property. In this section, we will introduce the concept of Multi-Resolution Analysis
(MRA), state the path-connectivity theorem of MRA wavelets and outlinc a proof of it.

DEFINITION 2.1. A multi-resolution analysis (MRA) of L*(R) is a sequence {V; : j €
Z} of closed subspaces of L*(R) satisfying the following conditions.
(2) NjezV; = {0}, UjezVj = L*(R);
(3) Vf € L*(R), f € V; if and only if f(2s) € Vjy1, J € Z;
(4) there exists ¢ € V; such that {¢(- — £) : £ € Z} is an orthonormal basis for Vo.

The function ¢ in the above condition (4) is called a scaling function for the multi-
resolution analysis. A function 1 € V; © V; is called an  MRA wavelet if it is a wavelet
of L*(R). By [14], every MRA produces an MRA wavelet so the set of MRA wavelets for

any given MRA is non-empty. We will write W¥ for the set of all MRA wavelets. We
have the following theorem.

THEOREM 2.2. The set WY of all MRA-wavelets is path-connected.
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2.1. Filters, Multipliers and Phases. This subsection concerns three important
concepts needed for the proof of the connectivity of WH. For any MRA wavelet ¢ and
its corresponding scaling function ¢, there exists a 27 periodic function m(s) (called the
filter function) satisfying the following conditions [8]

$(s) = m(s/2)¢(s/2),
Im(s)? + |m(s + m)? =1,
(s) = &/ *m(s/2 + m)g(s/2),
where the equalities in the above are all in the a.c. sense.

DEFINITION 2.3. A measurable function v is called a functional wavelet multiplier if
the Fourier inverse transform of v+ is an orthonormal wavelet whenever 9 is an orthonor-
mal wavelet.

The functional wavelet multipliers can be characterized by the following theorem.

THEOREM 2.4. A measurable function v is a functional wavelet multiplier if and only
if it is unimodular and v(2t)/v(t) is a 27 periodic function a.e..

Let v be as in Theorem 2.4 and let M, be the multiplicative operator on L*(R),
i.c., M,g(s) = vg(s) for any g € L*(R). So if ¢ is an orthonormal wavelet, then by
theorem 2.4, F ' M,F7 is also an orthonormal wavelet. Let us write M, for F~1M,F.
Then M, is a unitary operator and it maps W into itself. Since v~! is also a functional
wavelet multiplier, it follows that ZT/Z, is mapping YV one-to-one and onto itself. In other
word, v induces an one-to-one and onto mapping M, from W to W. Of course there
are other mappings with such a property. For cxample, let M, be the (unitary) operator
defined by M,g(s) = g(—s) (for any g € L*(R)) and let M, be the unitary operator
F-1M,F. Then it is obvious that M, is also ah onc-to-one and onto mapping from W to
W. Notice however that the operator M, is not a functional multiplier. In general, we
will call a unitary operator an operator wavelet multiplier if it is an one-to-one and onto
mapping from W to W. Thus the set of all wavelet multipliers is a subset of the sct of
all operator wavelet multiplicrs. A natural question is how to characterize an operator
wavelet multiplier. However this question remains open up to date. We list it as the
following (open) problem.

PROBLEM 2.5. Characterize the operator wavelet multipliers.

DEFINITION 2.6. Let 9(t) be a wavelet. Then zj;\(s) = em(s)@(s)] for some real valued
function a(s). a(s) is called the phase function (or just the phase) of 9. If o is a linear
function then we say that 4 has a linear phase.

It is an interesting (and important) question whether a wavelet ¢ has linear phase [2],
as such information would lead us to a better understanding of the structure of W. The
following theorem [13] gives a nice answer to this question and provided a key step in
proving the path-connectivity of W,

THEOREM 2.7. [13] Let ¢ be an MRA wavelet, then there exists a functional wavelet
maultiplier v such that

D(s) = e*u(s)(s)]-



XINGDE DAI AND YUANAN DIAO

2.2. An Outline of the Proof of the Path-Connectivity of WY. Now, we will
gutline a prog\f of Theorem 2.2. Let ¥ be a given MRA-wavelet. Let 9y be defined by
Po(s) = €/2|1h(s)|. It can be shown that tp is alsc an MRA wavelet with the same MRA
as that of ¢. Let ¢y and mep(s) be its corresponding scaling function and filter function.
On the other hand, let 9, be the well known Payley-Littlewood wavelet defined by

b (5) = gisl? ,
Pi(s) o

where yg is the characteristic function of the set £ = [~2x, —7) U [, 27). It is known

that 1 is an MRA wavelet. Let ¢;(s) and mi(s) be its corresponding scaling function
and filter function. We have

1
pi(s) = \/——QFXi-m): ma(s) = Xi-3.3):

We wish to construct a path connecting 9 to 1 and a path connecting 1 to 1. This
is done by constructing paths connecting their Fourier transforms first, then taking the
inverse Fourier transform of these paths.

Step 1. By Theorem 2.7 and the definition of o, P(s) = v(s)to(s) for some functional
wavelet multiplier #(s). In general, it can be shown that a function v(s) is a functional
wavelet multiplier if and only it can be written as e**¢) for some real valued function a(s)
such that a(2s) — a(s) is 2r-periodic. Therefore, for any A € [0, 1], e} is also a wavelet
multiplier, thus

Ba(s) = 2O o(s), X € [0,1]
defines a path connecting qZ to 1,/0\0.

Step 2. Notice that the filter function for t is xg(s) where E' = [-7, Z). Let mo be
the filter function for ¥, For any A € [0,1], define a new function mx(s) on [—m,m) as
follows.

ma(s) = (1—Nml(s), s €[5 5\ - N[-mm)
my(s) = 1, s€(1—=N[-mm)

ma(s) = J1-mi(s+m), s&[~m—F)

mals) = /1-mi(s—m), s€lf,7).

Extending ma(s) to a 27 periodic function on R yields a filter function, Whi(}E will in turn
define a scaling function ¢x(s) by the rclation cquation ¢i(s) = ma(s/2)gx(s/2). The
corresponding wavelet function 9x(s) will then define the path connecting 9o t0 1.

Interested readers can find detailed proofs of Theorems 2.2, 2.4 and 2.7 in [13], as well
as some related discussions. A proof to Theorem 2.2 was obtained by D. Han and S. Lu,
and by R. Liang and X. Dai independently at about the same time. Theorem 2.4 was
first obtained by Q. Gu [10]. These results were collected in [17].
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3. The -FMRA Wavelets

It is known that there exist orthonormal wavelets which are not MRA wavelets. Natu-
rally, we would like to extend the results of last section to more general cases. One way to
do so is to generalize the MRA wavelets to a larger set in a natural way so that some ear-
licr results and methods may be applied. The Frame Multi-Resolution Analysis (FMRA)
is one of such choices. More specifically, an FMRA of L2(R) is a sequence {V; : j € Z}
of closed subspaces of L?(R) satisfying the following conditions.

(1) V; C Vi, Vi € Z;

(2) NyezV; = {0}, UsezV; = LA (R);

(3) Vf € L*(R), f € V; if and only if f(2s) € V41, j € Z;

(4') there exists ¢ € Vg such that for every function f in Vy we have

S (T )T

ez,
converges to f in norm.
Notice that the first three conditions above are identical to those defining an MRA.

The function ¢ in (4') is called a frame scaling function for the frame multi-resolution
analysis. If ¥ € V; ©V; is a wavelet, then ¢ will be called an FMRA wavelet.

It is clear from the definition that MRA wavelets arc also FMRA wavelets, but not
vice versa. In fact, it is known that there exist FMRA wavelets which are not an MRA
wavelets [5]. Let W be the set of all FMRA wavelets and we would like to know whether
WP is path-connected. Unfortunately, even though the structure of an FMRA seems very
close to that of an MRA, results such as Theorems 2.2, 2.4 and 2.7 simply do not exist in
the case of FMRA. Thus the following remains a challenging open question.

PRrROBLEM 3.1. Prove or disprove that W¥ is path-connected.

4. The s-elementary Wavelets

We will now consider a different set of wavelets other than the MRA wavelets. In a
sensc this is the sct of simplest wavclets since the Fourier transforms of the wavelets in
this set are simple set theoretic functions.

DEFINITION 4.1. Let £ C R be a measurable set of finite measure. If ‘7:_1(\7127)(5) =

g is an orthonormal wavelet, then ¥g is called an s-elementary wavelet and F is called
a wavelet set. Furthermore, the set of all s-elementary wavelets is denoted by W°.

Notice that there are s-elementary wavelets that are not MRA wavelets [7]. Therefore,
W* is not a subsct of WM.

Let E be a (Lebesgue) measurable set. We say that z,y € E are ,-‘1 equivalent if
x = 2™y for some integer n. The d-index of a point z in E is the number of elements in
its < equivalent class and is dencted by 0p(z). Let E(§,k) = {z € E: ég(z) = k}. Then
E is the disjoint union of the sets E(§, k) and cach E(4, %) is also measurable. Similarly,
we say that z,y € E are < equivalent if z = y 4 2nn for some integer n. The 7-indez of a
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point z in E is the number of clements in its < equivalent class and is denoted by 75(z).
Let E(1,k) = {z € E: 15(z) =k}. Then E is the disjoint union of the sets F{r, k) and
each E(7, k) is measurable. Each F(d, k) (resp. E(r,k)) can be further decomposed into
k disjoint copies B (8,k) (resp. EY(r,k)) such that each EV(5 k) (resp. EW(r,k)) is
measurable and BU)(8, k) = (ED(5,k))(5,1) (resp. EW(1,k) = (EW (7, k))(6,1)), though
these decompositions are not unique in general. The following theorem characterizes a
wavelet set.

THEOREM 4.2. [7] A measurable set £ C R 1s a wavelet set if and only if E =
E((S, 1) = E(T) 1), Ukez2kE =R and UkeZ(E + 2]67(') = R.

Based on the above characterization, D. Speegle [16] was able to prove the following
theorem.

THEOREM 4.3. The set of s-elementary wavelets is path-connected.

Theorem 4.3 is proved through direct construction of the path. The proof is quite
technical and complicated. Interested reader please refer to [16]. One may wonder if
Theorem 4.3 may be used as a tool in proving the path-connectivity of W, since a wavelet
set is not only the support set of the Fourier transform of an s-elementary wavelet, but it
is a “minimum” support sct in the sense that any cssential smaller subset of it cannot be
the support of the Fourier transform of any orthonormal wavelet [12]. However, it is not
clear that wavelet sets are really “minimum” in the sense that the support of the Fourier
transform of any orthonormal wavelet must contain a wavelet set. Because of its apparent
importance, we list this as the following open question.

PROBLEM 4.4. Let ¢ be any orthonormal wavelet. Does the support of 12)\ have to
contain a wavelet set?

Notice that the set WM M W* is not cmpty. We also propose the following problem.
PrROBLEM 4.5. Is the st WM N W* path-connected?

Similarly, following the definition of FMRA wavelets, one may definc the s-clementary
FMRA wavelets. The set of all such wavelets is simply the set WENW?. In [5], it is shown
that there exist s-clementary FMRA wavelcts, i.e., WE N W? £ §. Thus the following is
a valid question.

PROBLEM 4.6. Is the set W¥ N W?* path-connectod?

Let E, F be two wavelet sets and let ¥p, ¢r be their corresponding s-clementary
wavelets. We will say that ¢g, 1r are connected by a direct path if there exists a path
connecting g, ¥r such that each point on the path is an s-elementary wavelet g for
some wavelet set S ¢ EU F. The following is still an open question.

PROBLEM 4.7. Given any two s-clementary wavelets, is there always a direct path
connecting them?

Interested readers may refer to [1] for more general discussions on this issue.
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5. The s-elementary Frame Wavelets

A function ¢ € L*(R) is called a frame wavelet for L*(R) if there exist two positive
constants 0 < e < b such that for any f € L*(R),

(5.1) ol £II* < Y 1A DT < bl

n,0€ZL

A number @ with this property is called a lower frame bound of 1) and a number b with
this property is called an upper frame bound of ¢. The supremum of all such numbers a
is called the optimal lower frame bound of ¢ and is denoted by ag. Similarly, the infimum
of of all such numbers b is called the optimal upper frame bound of ¢ and is denoted
by bo. If ag = bg, then o is called a tight frame wavelet. Furthermore, if ap = by = 1,
then 4 is called a normalized tight frame wavelet. Let E be a Lebesgue measurable set
of finite measure and xg /b\e the corresponding characteristic function. If the function
Y € L*R) defined by 5 = \/%;XE is a frame wavelet, a tight frame wavelet or a

normalized tight frame wavelet for L*(R), then the set E is called a frame wavelet set,
a tight frame wavelet set or a normalized tight frame wavelet set for L*(IR) respectively.
The corresponding function ¥ is called an s-elementary, a tight s-elementary or a
normalized tight s-elementary frame wavelet. The set of all frame wavelets is denoted by
Wy and the set of all s-elementary frame wavelets is denoted by W;. Furthermore, the
set of all s-elementary tight frame wavelets with optimal frame bound & is denoted by
Wi(k). By a result from 3], the optimal frame bound of an s-clementary tight frame
wavelet is an integer, i.e., k € N for each W(k). In particular, W$(1) is the set of all
s-elementary normalized tight frame wavelets. The following problem is still open at this
time.

ProBLEM 5.1. Is the set Wy path-connected?

Again, as a first step, we will look into the simple cases of the s-clementary frame
wavelets.

5.1. The Characterization of Frame Wavelet Sets. Before we consider the path-
connectivity of the sets Wi or Wi(k), let us take a look at the characterization of the
frame wavelet sets and tight frame wavelet sets, since this will determine the properties of
the corresponding frame wavelets and tight frame wavelets. Also, it is intuitive to expect
that such characterization would play an cssential role in proving the path-connectivity
of W3 or Wi(k). The following theorem is quoted from 3], which characterizes the tight
frame wavelet, sets (hence the s-elementary tight frame wavelets).

THEOREM 5.2. Let E be a Lebesque measurable set with finite measure. Then E is
a tight frame wavelet set if and only if E = E(r,1) = E(d,k) for some k > 1 and
Unez2"E = R. In particular, E is a normalized tight frame wavelet set if and only if
E=E(r,1)=E(,1) and U,z2"E = R.

However, the characterization of frame wavelet sets is still an open question. Only
some partial results are known about the frame wavelet sets.

5.2. The Normalized Tight s-elementary Frame Wavelets. The following the-
orem is proved in [6].



XINGDE DAI AND YUANAN DIAO

THEOREM 5.3. The set W3(1) is path-connected.

As expected, the proof of this theorem is indeed bascd on the characterization of
normalized tight frame wavelet sets. In fact, this result also holds in the higher dimensions.
Please refer to [6] for its proof.

5.3. The Tight s-elementary Frame Wavelets. The path-connectivity of tight
s-elementary framc wavclets at this time remains an open question, despite Theorem 5.2.
However we do strongly feel that this is true. We state it as the following conjecture.

CONJECTURE 5.4. The sct Wj(k) of all tight s-clementary frame wavelets with optimal
frame bound k is path-connected.

5.4. The s-elementary Frame Wavelets. As the characterization of frame wavelet
. sets remains an open question, onc probably would not have expected to sec the following
result concerning the path-connectivity of the set Wi, since a proof to it would scem to
have to heavily depend on the characterization.

THEOREM 5.5. [4] The set W} is path-connected.

The proof of Theorem 5.5 involves some basic techniques the authors developed in
dealing with the frame wavelet problems. We will provide a rather detailed proof here to
help our reader to gain some feeling about the nature and the difficultics of this problem.
The basic idca is that for a given frame wavelet sct E/, we prove that there is a continuous
path of the form xw, connecting xg to xr, where cach W, is a frame wavelet set and
F is a normalized tight frame set. This implies that each s-elementary frame wavelet is
connected by a continuous path (of s-elementary frame waveclets) to a normalized tight
s-clementary frame wavelet. This then leads to our result by Theorem 5.3. We will first
need some new concepts and a fcw lemmas.

For a measurable set E with finitc measure and for any f € L*(R), define:
PP o~ 1
5.2 Hef)(s) = DM ——x ) D" T —=xx(s).

A set E is called a Bessel setif Hgf converges in norm unconditionally for each f € L*(R)
and (Hgf, f) < BJ|f]|? for some constant B > 0. On the other hand, E is called a basic
set if there exists M > 0 such that u(E(6,m)) = p(E(r,m)) = 0 for all m > M (where p
is the Lebesgue measure). Theorem 1 of [3] implics the following lemma.

LEMMA 5.6. A set E is Bessel if and only if it is a basic set. Moreover, if u(E(5,m)) =
wW(E(r,m)) = 0 for all m > M (where i is the Lebesgue measure), then (Hgf, f) <
MB2||fI|? for any f € L*(R).

The following lemma can also be obtained using similar arguments in the proof of
Theorem 2 in [3].

LEMMA 5.7. Let E be a basic set. Assume that Q = Upeg2¥B(T,1) = Urez2®E. Then
(Hgf, f) 2 IfI*Vf € L*(Q).

Lemma 3 below is obtained by combining Lemma 5.6 and Lemma 5.7.
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LEMMA 5.8. Let E be a basic set and E(r,m) = E(6,m) = 0,Ym > M. Let F be a
measurable set such that E C Ugeg2®F and F = F(1,1). Then

For any E C R, let 7(E) = |J,(E + 2k). Be careful not to confuse 7(£) with 7z(z),
the translation index of z in E. We say that two sets E and F are 2r-translation disjoint
if 7(E) N 7(F) = §. The following lemma is obtained from Lemma 5 of [3].

LEMMA 5.9. If E and F are 2w-translation disjoint basic sets, then

Hporf = Hpf+HpfVf € L*(R).

It is well-known that if {O\E = ¢—1§";XE1 then 9g is a frame wavelet with frame bounds
0 < a <bif and only if

1
5.3 all fII2 < (f, D"TE——x )2 < b 1%
(5.3) I1f1l 1§ZE VTS B)" < bl f|
Thus, ¥g is a frame wavelet with frame bounds 0 < ¢ < b if and only if
(5.4) allfII* < (Hef, f) <OfI?, Ve LP(R)

Now let £ be a frame wavelet set and ¥g be its corresponding s-elementary frame
wavelet. E is a Bessel set hence a basic set by Lemma 5.6. So there is a number M > 0
such that E(r,m) = E(6,m) = #,¥m > M. Thus B = M?? is an upper frame bound of
¥p. Let a > 0 be a lower frame bound of 5. So we have al|f]|? < (Hgef, f) < M5/2||f|12
for all f € L*(R). Let myg be a positive integer large enough so that M/2™ < %. Let

2 T s 27

F =1 9mo+1’ —2m0+1) U [2m0+1’ 2m0+1)‘

By Theorem 5.2, F is a normalized tight frame wavelet set. It is easy to see that F U F
is a basic set and every measurable subset of £ U F is a basic set.

For any s € E, there is a unique integer k(s) such that s/25%) € F. Thus h(s) = s/2%
defines a mapping from F to F'. One can prove that the image of each mecasurable subset
in E under h is measurable. Furthermore, if E' is a subset of £ N R\|-m, 7], then
u(h(E")) < msp(E'). Define :

27 2—-tm T (147
0 _
Fo= [~2m0+1’_ 9mo+1 ] [2m0+1’ 9mo+1 ]
Fi o= W(r(F))N(E\F)),

F} = h(r(F))N(B\E})),
Fy = h{r(F7) N (BE\F]TY),

F, = | JFhtet
E>0
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Notice that the set F, is a measurable subset of F, hence it is a basic set. Lot By, =
7{F,) N E. It is clear that any point in 7(F;) must be in 7(F;) hence cannot be in
7(E\E,). So the sets E; and E\E; are 2n-translation disjoint. By Lemma 5.9 we have

Hgf = Hpf+Hpgf

Hence

Similarly,

Heumeyf = Hpf+Hegf

since F; and E\F; are also 27-translation disjoint. It follows that
(5.6) (Hrueenf, ) = Hrf [ +{Hegf, f)

Notice that F, = Fy(r,1) since F; C F and F = F(r,1). Let z € B, = EN7(f). I
z ¢ F,, then = € 7(F) U (BE\FP) for some n > 0. So h(z) € F*** C F;. Hence we have

(5.7) E,c | 2R,

k€Z

By Lemma 3.8 we have

(5.8) (Hrf,f) > M™% {Hgf f).

Now define W; = Fy U (E\E;). Since W; C F U E, it is a basic sct. By Lemma 5.6, there
is a positive number B (independent of ¢) such that

(5.9) (Hw,f, f) < BIfI?, Vf e L*(R).

On the other hand, (5.5), (5.6) and (5.8) imply that

(Hw,f, fy = (Hef )+ {Hezslf [
M~3(Hg,f,f) + (Ha\g.f, f)
M3 ((Hpf,f) + Hegf )
aM || f]I2.

Therefore, W; is a frame wavelet set for each ¢ € [0,1]. It is easy to verify that Wo = £
(since Fy = Ey = §)) and W, = F U (E\7(F")). Notice that F, E\7(F) are 2r-translation
disjoint. Thus, by Lemma 5.7, for any measurable subsct G of E\7(F), FUG is a frame
set since Ugcz2F F = R. In particular, if we let Gy = (~— tan(3t), tan(§t)) N (E\7(F)), then
FUG, is a frame set. We lcave it to our reader to verify that the mapping ¢ — Xrua, is
continuous in norm. Since Gy = § and Gy = E\7(F), this defines a continuous path from
xr t0 Xw,. Therefore, to complete the proof of Theorem 5.5, it suffices to show that the
mapping t — Xw, is continuous in norm. We will achieve this in a few steps.

v

AVARY)

Step 1: We first show that the mapping t — xr, is continuous in norm. For0<t<1, we
have u(F?) < m/2™. By the property of E, for a point s € FY, the set {s+2k7 : k € ZINE
has at most M points. This implies that

(5.10) p(r(FO) O (B\FD)) < Mu(F).



46

THE PATH-CONNECTIVITY OF WAVELETS AND FRAME WAVELETS
Since T(EF?) N (E\F?) C R\[—m, 7], it follows from (5.10) that

WED < sorlr(FO) N (E\FY)

A

< smrhFD) < %M(Ff)v
By induction, we have
(G11) WFP) < sl E7) < (R,
— 9mo+l t = 4n ¢

Thercfore, the convergence of x,_, . s+ t0 Xr; Is uniform with respect to ¢ € [0,1]. Ve >0,
choose N > 0 large enough such that 7/4" < ¢/4, then for any t € [0,1], we have

1
EXUOS?»SNF,?” - Xle < E E/u‘(ﬁ,to)
k>N

wE) T €

4N 4N Ty’
since u(F?) < & for any ¢. If the mapping t — xpp is continuous in norm for each n,
then x,.,.ry is uniformly continuous on [0,1]. Thus, there exists 8(e) > 0 such that
|XU0S’“SNFJ\; - XUogkng!‘;i < €/2 whenever |ty — t1] < 8(¢). It follows that

IA

IXF, — XFelt < IXUOSkSNP’j; - XuoékSNFfll

+ IXUOS,,SNFgg — XF,| + ‘XUOSkSNFt’“I — XF,, |

< £ ¢ ¢ _

= 3 + 1 + 1=°¢
That is, xg is also uniformly continuous on [0,1]. Therefore, it suffices for us to prove
that the mapping ¢ — Xp» is continuous in norm for each n. We will prove this by
induction. Clearly, the mapping ¢ — xpo is continuous. Assume that it is true for n. We
will show that it is true for n -+ 1. For this purpose, we writc KAL = (K\L) U (L\K)
for any sets K and L, and let DI = 7(F) 0 (E\F}"). For any ¢,t’ € [0,1], we claim that
DYADE C T(FFAFP) NE. Let s € DPADE. We can assume that s € DP\D}. Then
there is an integer k such that s + 2km € F. However s ¢ F*. It follows that k # 0.
Thus s ¢ F}}, for otherwise we would have both s and s+ 2kr € FJUF C F C [-m, )
which is impossible since k # 0. Therefore s € E\Fp. Since s ¢ Di = 7(F7) N (E\F}),
it follows that s & 7(F7). Hence s + 2kr € FPAF} and therefore s € T(FPPAFF)NE, as
expected.

We now have
(5.12) EFAFPYY € h(DFADE) C h(r(FPAFD) N E).
Therefore,
WEPTAFY) < p(h((EPAFR)T N E))

M
(5.13) < i

EJAFY).
(5.13) implies that the mapping t — Xpr+1 18 continuous since the mapping ¢ — xrp
is. This completes the proof that the mapping ¢ — xg» is continuous in norm for all n.

Hence the mapping ¢ — X, is continuous, as claimed.
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Step 2: We now show that the mapping t — xg, is also continuous. In fact, this follows
from the inclusion E,AEy C 7{FAFy) N E, which implies that

Step 3: Finally, the continuity of ¢ — xw, follows from the continuity of the mappings
t — xp, and t — xm\ g, and the fact that Fy N (E\E;) = (. This completes our proof of
Theorem 5.5.

PROBLEM 5.10. Are any two s-elementary frame wavelets directly path-connected?

5.5. Connectivity with Direct Path. Notice that the proof of Theorem 5.5 de-
pends on Theorem 5.3. Thus for any two given s-elementary frame wavelets g, and ¢g,,
the connccting path constructed using the approach outlined in the proof of Theorem 5.5
will use sets outside Fy U Ey. In other word, it cannot be determined from the above
section whether any two elements in W} are connected by a direct path. This remains an
open question.

PROBLEM 5.11. Given any two s-clementary frame wavelcts ¢g, and 1g,, is there
always a direct path connecting them?

In fact, therc arc a fow more questions onc can ask here.

PROBLEM 5.12. Given any two s-elementary tight frame wavelets ¢g, and g, (of
the same optimal frame bound k), is there always a dircct path within the set Wi(k)
connecting them?

PROBLEM 5.13. Given any two s-clementary tight frame wavelets ¢m, and g, (pos-
sibly with different optimal frame bounds), is therc always a direct path within the set
W} connecting them?

5.6. Uniform Connectivity. Let ¢ be a fixed orthonormal wavelet. The local
commutant [7] at 1 is the set:

Cy(D,T) = {A € B(L*(R)) : AD"T™) = D*T™ A}

For each frame wavelet 7, there is a unique operator U, € Cy(D,T') such that Uy = 7,
Uy is injective and has closed range. Moreover, 7 is an orthonormal wavelet if and only if
U, is unitary, while 7 is a normalized tight frame wavelet if and only if U} is an isomctry
[11].

Two frame wavelets 1 and 7, are said to be uniformly path-connected it there is a path
of frame wavelets {n; : t € [0,1]} such that Up, is a continuous path in the operator norm
(and hence {n; : t € [0,1]} is a continuous path in L?-norm). The uniform connectivity
for cortain classes of wavelets is related to the interpolation theory of wavelets and was
investigated in several papers [7, 9]. We may ask whether the path-connectedness of
s-elementary frame wavelets can be strengthened to uniform path-connectedness. The
answer to this question is no. In fact, the following theorem has more to say on this issue
[4].

THEOREM 5.14. None of the following sets is uniformly path-connected:

(i) The set Wy of all frame wavelets;

(i) The set We(1) of all normalized tight frame wavelets;

(i) The set W} of all s-elementary frame wavelets.
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Given that all the answers above are negative, we wonder if there is any subset of Wy
that is uniformly path-connected. And if there is, what structure such a set may have.
‘We post this as the following question. :

PrROBLEM 5.15. Prove or disprovel the existence of a uniformly path-connected subset
of VV?.
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