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The Path-Connectivity of Wavelets and Frame
Wavelets

Xingde Dai and Yuanan Diao

ABSTRACT. In this paper, we discuss a special topological property of the various sets
of wavelets frame wavelets, namely the path-connectivity of these sets. We review and
outline some recent results in this area and post many open questions.

1. Introduction

The topological property of various families of wavelets is an interesting topic in the
study of wavelet theory. The question concerning the path-connectedness of the sct of all
orthonormal wavelets was first raised in [7]. Similar questions were raised and studied in
[15, 16, 17] about the sets of all MRA-wavelets, tight frame wavelets and MRA tight
frame wavelets. These questions are hard questions and many of them remain unsolved
at this time. In this paper, we will tell some successful stories in this area, post some
un-solved problcm $\mathrm{s}$ , discuss the difficulties one faces in attacking these problems. We
hope the discussions here will shed some lights for future studies.

A set $S\subset L^{2}(\mathbb{R})$ is said to be path-connected under the norm topology of $L^{2}(\mathbb{R})$ if
for any two elements $f.$ , $g\in S$ , there exists a mapping $\gamma$ : $[0, 1]arrow S$ such that $\gamma(t)$ is
continuous in the norm of $L^{2}(\mathbb{R})$ , $\gamma(0)=f$ and $\gamma(1)=g$ .

Let $T$ and $D$ be the translation and dilation unitary operators acting on $L^{2}(\mathbb{R})$ defined
by

$(Tf)(t_{J})=f(t-1)$ and $(Df)(t)=\sqrt{2}f(2t)\backslash ’\forall f\in L^{2}(\mathbb{R})$

and lct $T$ be the (unitary) Fourier-Plancherel transform which is uniquely defined by the
following formula for each function $f$ in the dense (in $L^{2}(\mathbb{R})$ ) set $L^{2}(\mathbb{R})$ $\cap L^{1}(\mathbb{R})$

$( \mathcal{F}f\cdot)(s)=\frac{1}{\sqrt{2\pi}}\oint_{\mathrm{R}}e^{-xst}f(t)dt$ .

$\mathcal{F}(f)$ is sometimes written as $\hat{f}$ as well. Notice that

$(\mathcal{F}T_{\alpha}f)(s)$ $=$ $\frac{1}{\sqrt{2\pi}}\int_{\mathbb{R}}e^{-ist}f.(t-\alpha)dt$

$=$ $e^{-is\alpha}(\mathcal{F}f)(s)$ .
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So $\mathcal{F}T_{\alpha}\mathcal{F}^{-1}g=e^{-is\alpha}g$ . For any bounded linear operator $A$ acting on $L^{2}(\mathbb{R})$ , denote
$\mathcal{F}A\mathcal{F}^{-1}$ by $\hat{A}$. For any $h\in L^{\infty}(\mathbb{R})$ , let $M_{h}$ be the multiplication operator defined by
$M_{h}(f)=hf$ for any $f\in L^{2}(\mathbb{R})$ . Thus $\hat{T}_{\alpha}=M_{e^{-i\alpha s}}$ . Similarly,

$(\mathcal{F}D^{n}f)(s)$ $=$ $\frac{1}{\sqrt{2\pi}}\oint_{\mathbb{R}}e^{-ist}(\sqrt{2})^{n}f(2^{n}t)dt$

$=$ $(\sqrt{2})^{-n}$ . $\frac{1}{\sqrt{2\pi}}\int_{\mathbb{R}}e^{-\iota 2^{-n}st}f(t)dt$

$=$ $(\sqrt{2})^{-n}(\mathcal{F}f)(2^{-n}s)=(D^{-n}\mathcal{F}f)(s)$ .

So $\hat{D}^{n}=D^{-n}=D^{*n}$ . In particular, $\hat{D}=D^{-1}=D^{*}$ .

DEFINITION 1.1. An orthogonal wavelet of $L^{2}(\mathbb{R})$ is a function $\psi(t)$ in $L^{2}(\mathbb{R})$ with
unit norm such that $\{2^{\frac{7\mathrm{L}}{2}}\psi(2^{n}t-\mathrm{f}) : n, \ell\in \mathbb{Z}\}=\{D^{n}T^{l}\psi : n_{7}\ell\in \mathbb{Z}\}$ constitutes an
orthonormal basis for $L^{2}(\mathbb{R})$ .

The following open problem concerns the path-connectivity of the set of all orthonor-
mal wavelets of $L^{2}(\mathbb{R})$ .

PROBLEM 1.2. Let $\mathcal{W}$ be thc set of all orthonormal wavelets of $L^{2}(\mathbb{R})$ . Prove or
disprove that 1? is path-connected.

Although not much can be said about the set $\mathcal{W}$ itself, there are many subclasses of
orthonormal wavelets that are of interest, both for the theoretical study and application
reasons. Much effort has been devoted to the study of these subclasses and some very
nice results have been obtained.

2. The MRA Wavelets

The most important subclass of orthonormal wavelets in practical applications is prob-
ably the MRA wavelets and it turns out that this subclass is indeed path-connected, a very
nice property. In this section, we will introduce the concept of Multi-Resolution Analysis
(MRA), state the path-connectivity theorem of MRA wavelets and outline a proof of it.

DEFINITION 1.1. A multi-resolution analysis (MRA) of $L^{2}(\mathbb{R})$ is a sequence { $V_{j}$ : $j\in$

$\mathbb{Z}\}$ of closed subspaces of $L^{2}(\mathbb{R})$ satisfying the following conditions.
(1) $V_{j}\subset V_{j+1},\forall j\in \mathbb{Z}$ ;

(2) $\bigcap_{j\in \mathrm{Z}}V_{j}=\{0\}$ , $\overline{\bigcup_{j\in \mathrm{Z}}V_{j}}=L^{2}(\mathbb{R})\cdot$,

(3) $\forall f$

.
$\in L^{2}(\mathbb{R})$ , $f\in V_{j}$ if and only if $f(2s)\in V_{j+1}$ , $j\in \mathbb{Z}$ ;

(4) there exists $\phi\in V_{0}$ such that $\{\phi(\cdot-\mathrm{f}) : p\in \mathbb{Z}\}$ is an orthonormal basis for Vo.

The function $\phi$ in the above condition (4) is called a scaling function for the multi-
rcsolution analysis. A function $\psi\in V_{1}\ominus V_{0}$ is called an $MRA$ wavelet if it is a wavelet
of $L^{2}(\mathbb{R})$ . By [14], every MRA produces an MRA wavelet so the set of MRA wavelets for
any given MRA is non-empty. We will write $\mathcal{W}^{\Lambda\prime I}$ for the set of all MRA wavelets. We
have the following theorem.

THEOREM 2.2. The set $\mathcal{W}^{M}$ of all $MRA$ -wavelets is path-connected.
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2.1. Filters, Multipliers and Phases. This subsection concerns three important
concepts needed for the proof of the connectivity of $\mathcal{W}^{M}$ . For any MRA wavelet $\psi$ and
its corresponding scaling function $\phi$ , there exists a $2\pi$ periodic function $m(s)$ (called the
filter function) satisfying the following conditions [8]

$\hat{\phi}(s)=m(s/2)\hat{\phi}(s/2)$ ,
$|m(s)|^{2}+|m(s+\pi)|^{2}=1$ ,

$\hat{\psi}(s)=e^{l\mathit{8}/2}\overline{m(s/2+\pi)}\hat{\phi}(s/2)$ ,

where the equalities in the above are all in the a.e. sense.

DEFINITION 2.3. A measurable function $l/$ is called a functional wavelet multiplier if
the Fourier inverse transform of $f/\hat{\psi}$ is an orthonormal wavelet whenever $\psi$ is an orthonor-
mal wavelet.

The functional wavelet multipliers can be characterized by the following theorem.

THEOREM 2.4. A measurable function $l/$ is a functional wavelet multiplier if and only
if it is unimodular and $\nu(2t)/\nu(t)\iota s$ a $2\pi$ perzodic function $a.e.$ .

Let $lJ$ be as in Theorem 2.4 and let $IVI_{\iota/}$ be the multiplicative operator on $L^{2}(\mathbb{R})$ ,
i.e., $I\swarrow I_{7/}g(s)=\nu g(s)$ for any $g\in L^{2}(\mathbb{R})$ . So if $\psi$ is an orthonormal wavelet, then by
theorem 2.4, $\mathcal{F}^{-1}l1/I_{\nu}\mathcal{F}\psi$ is also an orthonormal wavelet. Let us write $\overline{\mathrm{A}\mathrm{f}_{f/}}$ for $\mathcal{F}^{-1}M_{/},\mathcal{F}$.

Then $\overline{M_{l/}}$ is a unitary operator and it maps $\mathcal{W}$ into itself. Since $\iota/-1$ is also a functional
wavelet $\mathrm{m}\mathrm{u}1\mathrm{t}\mathrm{i}\mathrm{p}1\mathrm{i}\mathrm{e}\mathrm{r}_{\}}$ it follows that $\overline{M}_{\nu}$ is mapping $\mathcal{W}$ one-to-one and onto itself. In other
word, $\nu$ induces an one-to-one and onto mapping $\mathrm{A}’I_{\iota/}$ from $\mathcal{W}$ to $\mathcal{W}$ . Of course there
are other mappings with such a property. For example, let $M_{*}$ be the (unitary) operator
defined by $\lambda I_{*}g(s)=g(-s)$ (for $\underline{\mathrm{a}\mathrm{n}}\mathrm{y}$

$g\in L^{2}(\mathbb{R})$ ) and let $M_{*}$ be the unitary operator
$\mathcal{F}^{-1}M_{*}\mathcal{F}$ . Then it is obvious that $M_{*}$ is also an one-to-one and onto mapping from $\mathcal{W}$ to
$\mathcal{W}$ . Notice however that the operator $NI_{*}$ is not a functional multiplier. In general, we
will call a unitary operator an operator wavelet $\mathit{7}\mathit{7}lulttip$lier if it is an one-to-one and onto
mapping from $\mathcal{W}$ to $\mathcal{W}$ . Thus the set of all wavelet multipliers is a subset of the set of
all operator wavelet multipliers. A natural question is how to characterize an operator
wavclct multiplier. However this question remains open up to date. We list it as the
following (open) problem.

PROBLEM 2.5. Characterize the operator wavelet multipliers.

DEFINITION 2.6. Let $\psi(t)$ bc a wavelet. Then $\hat{\psi}(s)=e^{x\alpha(\epsilon)}|\hat{\psi}(s)|$ for some real valued
function $\alpha(s)$ . $\alpha(s)$ is called the phase function (or just the phase) of $\psi$ . If a is a linear
function then we say that $\psi$ has a linear phase.

It is an interesting (and important) question whether a wavelet $’\psi$ has linear phase [2],
as such information would lead us to a better understanding of the structure of $\mathcal{W}$ . The
following theorem [13] gives a nice answer to this question and provided a key step in
proving the path-connectivity of $\mathcal{W}^{M}$ .

THEOREM 2.7. [13] Let $\psi$ be an $MRA$ wavelet, then ththere exists a functzonal wavelet
multiplier $lJ$ such that

$\hat{\psi}(s)=e^{is/2}\iota/(s)|\hat{\psi}(s)|$ .
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2.2. An Outline of the Proof of the Path-Connectivity of $\mathcal{W}^{M}$ . Now we will
outline a proof of Theorem 2.2. Let $\psi$ bc a given MRA-wavelet. Lct $\psi_{0}$ be defined by
$\hat{\psi}_{0}(s)=e^{is/2}|\hat{\psi}(s)|$ . It can be shown that $\psi_{0}$ is also an MRA wavelet with the same MRA
as that of $\psi$ . Let $\phi_{0}$ and $m_{0}(s)$ be its corresponding scaling function and filter function.
On the other hand, let $\psi_{1}$ be the well known Payley-Littlewood wavelet defined by

$\hat{\psi}_{1}(s)=e^{is/2}\frac{1}{\sqrt{2\pi}}\chi_{E}$,

where $\chi_{E}$ is the characteristic function of the set $E=[-2\pi, -\pi)\cup[\pi, 2\pi)$ . It is known
that $\psi_{1}$ is an MRA wavelet. Let $\phi_{1}(s)$ and $m_{1}(s)$ be its corresponding scaling function
and filter function. We have

$\phi_{1}(s)=\frac{1}{\sqrt{2\pi}}\chi_{[-\pi,\pi)}$ , $m_{1}(s)=\chi_{[-\frac{\pi}{2},\frac{\pi}{2})}$ .

We wish to construct a path connecting $\psi$ to $\psi_{0}$ and a path connecting $\psi_{0}$ to $\psi_{1}$ . This
is done by constructing paths connecting their Fourier transforms first, then taking the
inverse Fourier transform of these paths.

Step 1. By Theorem 2.7 and the definition of $\psi_{0},\hat{\psi}(s)=l/(s)\hat{\psi}_{0}(s)$ for some functional
wavelet multiplier $\iota/(s)$ . In general, it can be show $\mathrm{n}$ that a function $\iota/(s)$ is a functional
wavelet multiplier if and only it can be written as $e^{i\alpha(\mathrm{b})}$ for some real valued function $\alpha(s)$

such that $\alpha(2s)-\alpha(s)$ is $2\pi$-periodic. Therefore, for any A $\in[0,1]$ , $e^{\mathrm{z}\lambda\alpha(s)}$ is also a wavelet
multiplier, thus

Cx (s) $=e^{i\lambda\alpha(s)}\hat{\psi}_{0}(s)$ , $\lambda\in[0,1]$

dcfincs a path connecting $\hat{\psi}$ to $\hat{\psi}_{0}$ .

Step 2. Notice that the filter function for $\psi_{1}$ is $\chi_{E}(s)$ where $E=$ $[- \frac{\pi}{2}, \frac{\pi}{2})$ . Let $m_{0}$ bc

the filter function for $\psi_{0}$ . For any $\lambda\in[0,1]$ , define a new function $m_{\lambda}(s)$ on $[-\pi, \pi)$ as
follow $\mathrm{s}$ .

$\{$

$m_{\lambda}(s)$ $=$ $(1-\lambda)m(s)$ , $s$ $\in[-\frac{\pi}{2},\overline{\frac{1}{2}})\backslash (1-\lambda)[-\pi, \pi)$

$m_{\lambda}(s)$ $=$ 1, $s\in(1-\lambda)[-\pi, \pi)$

$m_{\lambda}(s)$ $=$ $\sqrt{1-m_{\lambda}^{2}(s+\pi)})$ $s \in[-\pi, -\frac{\pi}{2})$

$m_{\lambda}(s)$ $=$ $\sqrt{1-m_{\lambda}^{2}(s-\pi)})$ $s \in[\frac{\pi}{2}, \pi)$ .

Extending $m_{\lambda}(s)$ to a $2\pi$ periodic function on $\mathbb{R}$ yields a filter function, which will in turn

define a scaling function $\phi_{\lambda}(s)$ by the relation equation $\hat{\phi}_{\lambda}(s)=m_{\lambda}(s/2)\hat{\phi}_{\lambda}(s/2)$ . The

corresponding wavclct function $\psi_{\lambda}(s)$ will then define the path connecting $\psi 0$ to $\psi_{1}$ .

Interested readers can find detailed proofs of Theorems 2.2, 2.4 and 2.7 in [13], as well

as some related discussions. A proof to Theorem 2.2 was obtained by D. Han and S. Lu,

and by R. Liang and X. Dai independently at about the same time. Theorem 2.4 was
first obtained by Q. Gu [10]. These results were collected in [17]
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3. The FMRA Wavelets

It is known that there exist orthonormal wavelets which are not MRA wavelets. Natu-
rally, we would like to extend the results of last section to more general cases. One way to
do so is to generalize the MRA wavelets to a larger set in a natural way so that some ear-
licr results and methods may be applied. The Frame Multi-Resolution Analysis (FMRA)
is one of such choices. More specifically, an FMRA of $L^{2}(\mathbb{R})$ is a sequence $\{V_{j} : j\in \mathbb{Z}\}$

of closed subspaces of $L^{2}(\mathbb{R})$ satisfying the following conditions.
(1) $V_{j}\subset V_{j+1},\forall j\in \mathbb{Z}$ ;

(2) $\bigcap_{j\in \mathrm{Z}}V_{j}=\{0\}$ , $\overline{\bigcup_{j\in \mathrm{Z}}V_{j}}=L^{2}(\mathbb{R}))$
.

(3) $\forall f\in L^{2}(\mathbb{R}))f\in V_{j}$ if and only if $f(2s)\in V_{+1},$ , $j\in \mathbb{Z}$ ;
$(4’)$ there exists $\phi\in V_{0}$ such that for every function $f$ in $V_{0}$ we have

$\sum_{f\in \mathrm{Z}}\langle f, T^{\ell}\phi\rangle T^{\ell}\phi$

converges to $f$ in norm.
Notice that the first three conditions above are identical to those defining an MRA.

The function $\phi$ in $(4’)$ is called a frame scaling function for the frame multi-resolution
analysis. If $\psi\in V_{1}\ominus V_{0}$ is a wavelet, then $\psi$ will be called an FMRA wavelet

It is clear from the definition that MRA wavelets arc also FMRA wavelets, but not
vice versa. In fact, it is known that there exist FM RA wavelets which are not an MRA
wavelets [5]. Let $\mathcal{W}^{F}$ bc the set of all FM RA wavelets and we would like to know whether
$\mathcal{W}^{F}$ is path-connected. Unfortunately, even though the structure of an FMRA seems very
close to that of an MRA, results such as Theorems 2,2, 2.4 and 2.7 simply do not exist in
the case of FMR A. Thus the following remains a challenging open question.

PROBLEM 3.1. Prove or disprove that $\mathcal{W}^{F}$ is path-connected.

4. The $s$-elementary Wavelets

We will now consider a different set of wavelets other than the MRA wavelets. In a
sense this is the set of simplest wavelets since the Fourier transforms of the wavelets in
this set are simple set theoretic functions.

DEFINITION 4.1. Let $E\subseteq \mathbb{R}$ be a measurable set of finite measure. If $\mathcal{F}^{-1}(\frac{1}{\sqrt{2\pi}}\chi_{E})=$

$\psi_{E}$ is an orthonormal wavelet, then $\psi_{E}$ is called an $s$-elem entary wavelet and $E$ is called
a wavelet set Furthermore, the set of all $s$-elementary wavelets is denoted by $\mathcal{W}^{s}$ .

Notice that therc are $s$-elementary wavelets that are not MRA wavelets [7]. Therefore,
$\mathcal{W}^{s}$ is not a subset of $\mathcal{W}^{M}$ .

Let $E$ be a (Lebesgue) measurable set. We say that $x$ , $y\in E$
$\mathrm{a}\mathrm{r}\mathrm{e}\sim\delta$ equivalent if

$x=2ny$ for some integer $n$ . The $\delta$ -index of a point $x$ in $E$ is the number of elements in
its $\sim\delta$ equivalent class and is denoted by $\delta_{E}(x)$ . Let $E(\delta, k)=\{x\in E : \delta_{E}(x)=k\}$ . Then
$E$ is the disjoint union of the sets $E(\delta, k)$ and each $E(\delta, k)$ is also measurable. Similarly,
we say that $x$ , $y\in E$ are $\sim\tau$ equivalent if $x=y+2\mathrm{n}\mathrm{y}$ for some integer $n$ . The $\tau$ -zndex of a
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point $x$ in $E$ is the number of elements in $\mathrm{i}\mathrm{t}\mathrm{s}\sim\tau$ equivalent class and is denoted by $\tau_{E}(x)$ .
Let $E(\tau, k)=\{x\in E:\tau_{E}(x)=k\}$ . Then $E$ is the disjoint union of the sets $E(\tau, k)$ and
each $E(\tau, k)$ is measurable. Each $E(\delta, k)$ (resp. $E$ ($\tau$ , $k$ )) can be further decomposed into
$k$ disjoint copies $E^{(j)}(\delta, k)$ (resp. $E^{(j)}$ ( $\tau$ , $k$ )) such that each $E^{(j)}(\delta, k)$ (resp. $E^{(g)}(\tau,$ $k)$ ) is
measurable and $E^{(j)}(\delta, k)=(E^{(j)}(\delta, k))(\delta, 1)$ (resp. $E^{(j)}(\tau,$ $k)$ $=(E^{(j)}$ ($\tau$ , $k$ ) $)(\delta$ , 1)), though
these decompositions are not unique in general. The following theorem characterizes a
wavelet set.

THEOREM 4.2. [7] A measurable set $E\subset \mathbb{R}\iota s$ a wavelet set if and only if $E=$
$E(\delta, 1)=E(\tau, 1)$ , $\bigcup_{k\in \mathrm{Z}}2^{k}E=\mathbb{R}$ and $\bigcup_{k\in \mathrm{Z}}(E+2k\pi)=$ R.

Based on the above characterization, D. Speegle [16] was able to prove the following
theorem.

THEOREM 4.3. The set of $s$ -elementary wavelets is path-connected.

Theorem 4.3 is proved through direct construction of the path. The proof is quite
technical and complicated. Interested reader please refer to [16]. One may wonder if
Theorem 4.3 may be used as a tool in proving the path-connectivity of $\mathcal{W}$ , since a wavelet
set is not only the support set of the Fourier transform of an $s$-elementary wavelet, but it
is a “minimum” support set in the sense that any essential sm able $\mathrm{r}$ subset of it cannot bc
the support of the Fourier transform of any orthonormal wavelet [12], However, it is not
clear that wavelet sets are really “minimum” in the sense that the support of the Fourier
transform of any orthonormal wavelet must contain a wavelet set. Because of its apparent
importance, we list this as the following open question.

PROBLEM 4.4. Let $\psi$ be any orthonormal wavelet. Does the support of $\hat{\psi}$ have to
contain a wavelet set?

Notice that the set $\mathcal{W}^{M}\cap \mathcal{W}^{s}$ is not empty, We also propose the following problem.

PROBLEM 4.5. Is the set $\mathcal{W}^{M}\cap \mathcal{W}^{s}$ path-connected?

Similarly, following the definition of FM RA wavelets, one may define the s-elementary
FMRA wavelets. The set of all such wavelets is simply the set $\mathcal{W}^{F}\cap \mathcal{W}^{s}$ . In [5], it is shown
that there exist $s$-elementary FMRA wavelets, i.e., $\mathcal{W}^{F}\cap$ $\mathcal{W}^{5}\neq\emptyset$ . Thus the following is
a valid question.

PROBLEM 4.6. Is the set $\mathcal{W}^{F}\cap \mathcal{W}^{s}\mathrm{p}\mathrm{a}\mathrm{t}\mathrm{h}- \mathrm{c}\mathrm{o}\mathrm{n}\mathrm{n}\mathrm{e}\mathrm{c}\mathrm{t}\mathrm{e}\mathrm{d}^{7}$

Let $E$ , $F$ be two wavelet sets and let $\psi_{E}$ , $\psi_{F}$ be their corresponding s-elementary

wavelets. We will say that $\psi_{E}$ , $\psi_{F}$ are connected by a direct path if there exists a path
connecting $\psi_{E}$ , $\psi_{F}$ such that each point on the path is an $s$ -elementary wavelet $\psi_{S}$ for
some wavelet set $S\subset E\cup F$. The following is still an open question.

PROBLEM 4.7. Given any two $s$-elementary wavelets, is there always a direct path
connecting them?

Interested readers may refer to [1] for more general discussions on this issue
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5. The $s$-elementary Frame Wavelets

A function $\psi\in L^{2}(\mathbb{R})$ is called a frame wavelet for $L^{2}(\mathbb{R})$ if there exist two positive
constants $0<a\leq b$ such that for any $f\in L^{2}(\mathbb{R})$ ,

(5.1) $a||f||^{2} \leq\sum_{n\ell\in \mathrm{Z}}|\langle f, D^{n}T^{l}\psi\rangle|^{2}\leq b||f||^{2}$
.

A number $a$ with this property is called a lower frame bound of $\psi$ and a number $b$ with
this property is called an upper frame bound of $\psi$ . The supremum of all such numbers $a$

is called the optzrnal lower frame$\iota c$ bound of $\psi$ and is denoted by $a_{0}$ . Similarly, the infimum
of of all such numbers $b$ is called the optimal upper frame bound of $\psi$ and is denoted
by $b_{0}$ . If $a_{0}=b_{0}$ , then $\psi$ is called a tight frame wavelet. Furthermore, if $a_{0}=b_{0}=1$ ,
then $\psi$ is called a norrnalized tight frame wavelet. Let $E$ be a Lebesgue measurable set
of finite measure and $\chi_{E}\underline{\mathrm{b}}\mathrm{e}$ the corresponding characteristic function. If the function
$\psi_{E}\in L^{2}(\mathbb{R})$ defined by $\psi_{E}=\frac{1}{\sqrt{2\pi}}\chi_{E}$ is a frame wavelet, a tight frame wavelet or a
normalized tight frame wavelet for $L^{2}(\mathbb{R})$ , then the set $E$ is called a frame $wa\uparrow fe$ let set,
a tight frame wavelet set or a normalized tight frame wavelet set for $L^{2}(\mathbb{R})$ respectively.
The corresponding function $\psi_{E}$ is called an $s$ -elementary, a tight $s$ -elernentary or a
normalized tight $s$-elernentary fram $\mathrm{e}$ wavelet. The set of all frame wavelets is denoted by

$\mathcal{W}_{f}$ and the set of all $s$-elementary frame wavelets is denoted by $\mathcal{W}_{[}^{s}$ . Furthermore, thc
set of all $s$-elementary tight frame wavelets with optimal frame bound $k$ is denoted by
$\mathcal{W}_{f}^{s}(k)$ . By a result from [3], the optimal frame bound of an $s$-elementary tight frame
wavelet is an integer, i.e., $k\in \mathrm{N}$ for each $\mathcal{W}_{f}^{5}(k)$ In particular, $\mathcal{W}_{f}^{s}(1)$ is the set of all
$s$-elementary normalized tight frame wavelets. The following problem is still open at this
time.

PROBLEM 5.1. Is the set $\mathcal{W}_{f}$ path-conncctcd?

Again, as a first step, we will look into the simple cases of the $s$-elementary frame
wavelets.

5.1. The Characterization of Frame Wavelet Sets. Before we consider the path-
connectivity of the sets $\mathcal{W}_{f}^{s}$ or $\mathcal{W}_{f}^{s}(k)$ , let us take a look at the characterization of the
frame wavelet sets and tight frame wavelet sets, since this will determine the properties of
the corresponding frame wavelets and tight frame wavelets. Also, it is intuitive to expect
that such characterization would play an essential role in proving the path-connectivity
of $\mathcal{W}_{f}^{\mathit{8}}$ or $\mathcal{W}_{f}^{s}(k)$ . The following theorem is quoted from [3], which characterizes the tight
frame wavelet sets (hence the $s$-elementary tight frame wavelets).

THEOREM 5,2. Let $E$ be a Lebesgue measurable set with finite measure. Then $E$ is

a tight frame wavelet set if and only if $E=E(\tau, 1)=E(\delta, k)$ for some $k\geq 1$ and
$\bigcup_{n\in \mathrm{Z}}2^{n}E=$ R. In particular, $E$ is a $normal\iota zed$ tight frame wavelet set if and only $\iota f$

$E=E(\tau, 1)=E(\delta, 1)$ and $\bigcup_{n\in \mathrm{Z}}2^{n}E=\mathbb{R}$ .

However, the characterization of frame wavelet sets is still an open question. Only
some partial results are known about the frame wavelet sets.

5.2. The Normalized Tight $s$-elementary Frame Wavelets. The following the-
orem is proved in [6]



43

XINGDE DAI AND YUANAN DIAO

THEOREM 5.3. The set $\mathcal{W}_{f}^{s}(1)$ is path-connected.

As expected, the proof of this theorem is indeed based on the characterization of
normalized tight frame wavelet sets. In fact, this result also holds in the higher dimensions.
Please refer to [6] for its proof,

5.3. The Tight $s$-elementary Frame Wavelets. The path-connectivity of tight
$s$-elcmentary frame wavelets at this time remains an open question, despite Theorem 5.2.
However we do strongly feel that this is true. We state it as the following conjecture.

CONJECTURE 5.4. Thc set $\mathcal{W}_{f}^{s}(k)$ of all tight $s$-clcmcntary frame wavelets with optimal
frame bound $k$. is path-connected.

5.4. The $s$-elementary Frame Wavelets. As the characterization of frame wavelet
sets remains an open question, one probably would not have expected to $\sec$ the following
result concerning the path-connectivity of the set $\mathcal{W}_{f}^{s}$ , since a proof to it would seem to
have to heavily depend on the characterization.

THEOREM 5.5. [4] The set $\mathcal{W}_{f}^{s}$ is path-connected.

The proof of Theorem 5.5 involves some basic techniques the authors developed in
dealing with the frame wavelet problems. We will provid $\mathrm{e}$ a rather detailed proof here to
help our reader to gain some feeling about the nature and the difficulties of this problem.
The basic idea is that for a given frame wavelet set $E$ , we prove that there is a continuous
path of the form $xwt$ connecting $\chi_{E}$ to $\chi_{F}$ , where each $W_{t}$ is a frame wavelet set and
$F$ is a normalized tight frame set. This implies that each $s$-elementary frame wavelet is
connected by a continuous path (of $s$ -elementary frame wavelets) to a normalized tight
$s$-elementary frame wavelet, This then leads to our result by Theorem 5.3. We will first
need some new concepts and a few lemmas.

For a measurable set $E$ with finite measure and for any $f\in L^{2}(\mathbb{R})$ , define:

(5.2) $(H_{E}f)(s)= \sum_{n,\ell\in \mathrm{Z}}(f,\hat{D}^{n}\hat{T}^{\ell}\frac{1}{\sqrt{2\pi}}\chi_{E}\rangle\hat{D}^{\mathcal{T}b}\hat{T}^{\ell}\frac{1}{\sqrt{2\pi}}\chi_{E}(s)$
.

A set $E$ is called a Bessel set if $H_{g}f$ converges in norm unconditionally for each $f\in L^{2}(\mathbb{R})$

and $\langle H_{E}f, f\rangle\leq B||f||^{2}$ for some constant $B>0$ . On the other hand, $E$ is called a basic

set if there exists $M>0$ such that $\mu(E(\delta,m))=\mu(E(\tau, m))=0$ for all $m>M$ (where $\mu$

is the Lebesgue measure). Theorem 1 of [3] implies the following lemma.

LEMMA 5.6. A set $E$ is Bessel if and only if it is a basic set Moreover, if $\mu(E(\delta,m))=$

$\mu(E(\tau, m))$ $=0$ for all $m>M$ (where $\mu$ is the Lebesgue rneasure), then $\langle H_{E}f, f\rangle\leq$

$M^{5/2}||f||^{2}f_{\mathit{0}7}$ any $f\in L^{2}(\mathbb{R})$ .

The following lemma can also be obtained using similar arguments in the proof of

Theorem 2 in [3].

LEMMA 5.7. Let $E$ be a basic set. Assume that $\Omega=\bigcup_{k\in \mathrm{Z}}2^{k}E(\tau, 1)=\bigcup_{k\in \mathrm{Z}}2^{k}E$ . Then

$\langle H_{E}f, f\rangle\geq||f||^{2}$ , $\forall f\in L^{2}(\Omega)$ .

Lemma 3 below is obtained by combining Lemma 5.6 and Lem ma 5.7.
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LEMMA 5.8. Let $E$ be a basic set and $E(\tau, m)=E(\delta, m)=\emptyset,\forall m>M$. Let $F$ be $a$

measurable set such th at $E \subset\bigcup_{k\in \mathrm{Z}}2^{k}F$ and $F=F(\tau, 1)$ . Then
$\langle H_{E}f$ , $f.)$ $\leq M^{5/2}\langle H_{F}f, f\rangle$ , $\forall f\in L^{2}(\mathbb{R})$ .

For any $E\subseteq \mathbb{R}$ , let $\tau(E)=\bigcup_{\mathrm{Z}}(E+2k\pi)$ . Be careful not to confuse $\tau(E)$ with $\tau_{E}(x)$ ,
the translation index of $x$ in $E$ . Wc say that two sets $E$ and $F$ are $2\pi$-translation disjoint
if $\tau(E)\cap\tau(F)$ $=\emptyset$ . The following lemma is obtained from Lemma 5 of [3].

LEMMA 5.9. If E and F are $2\pi$ -translation disjoint basic sets, then

$H_{E\cup F}f$ $=$ $H_{E}f+H_{F}f$ , $\forall f\in L^{2}(\mathbb{R})$ .

It is well-known that if $\hat{\psi}_{E}=\frac{1}{\sqrt{2\pi}}\chi_{E}$ , then $\psi_{E}$ is a frame wavelet with frame bounds
$0<a\leq b$ if and only if

(5.3) $a||f||^{2} \leq\sum_{n,\ell\in \mathrm{Z}}|\langle f)\hat{D}^{n}\hat{T}^{\ell}\frac{1}{\sqrt{2\pi}}\chi_{E}\rangle|^{2}\leq b||f||^{2}$ .

Thus, $\psi_{E}$ is a frame wavelet with frame bounds $0<a\leq b$ if and only if

(5.4) $a||f||^{2}\leq\langle H_{E}f, f\rangle\leq b||f||^{2}$ , $\forall f\in L^{2}(\mathbb{R})$ .

Now lct $E$ bc a frame wavelet set and $\psi_{E}$ be its corresponding $s$-elementary frame
wavelet. $E$ is a Bessel set hence a basic set by Lemma 5.6. So there is a number $M>0$

such that $E(\tau, m)=E(\delta, m)=\emptyset,\forall m>M$. Thus $B=M^{5/2}$ is an upper frame bound of
$\psi_{E}$ . Let $a>0$ bc alower frame bound of $\psi_{E}$ . So we have $a||f||^{2}\leq\langle H_{E}f, f\rangle\leq M^{5/2}||f||^{2}$

for all $f\in L^{2}(\mathbb{R})$ . Let $m_{0}$ be apositive integer large enough so that $M/2^{m_{0}}< \frac{1}{4}$ . Lct

$F=$ $[- \frac{2\pi}{2^{m\mathrm{o}+1}}, -\frac{\pi}{2^{m\mathrm{o}+1}})\cup[\frac{\pi}{2^{m\mathrm{o}+1}}, \frac{2\pi}{2^{m_{0}+1}})$.

By Theorem 5.2, $F$ is a normalized tight frame wavelet set. It is easy to see that $E\cup F$

is a basic set and every measurable subset of $E\cup F$ is a basic set.

For any $s\in E$ , there is a unique integer $k(s)$ such that $s/2^{k(s)}\in F$ . Thus $h(s)=s/2^{k(s)}$

defines a mapping from $E$ to $F$ . One can prove that the image of each measurable subset
in $E$ under $h$ is measurable. Furthermore, if $E’$ is a subset of $E\cap \mathbb{R}\backslash [-\pi, \pi]$ , then
$\mu(h(E’))<\frac{1}{2^{7\mathrm{n}_{0}+1}}\mu(E’)$ . Define

$F_{t}^{0}$ $=$ $[- \frac{2\pi}{2^{m\mathrm{o}+1}}, -\frac{(2-t)\pi}{2^{m\mathrm{o}+1}}]$ LJ $[ \frac{\pi}{2^{m\mathrm{o}+1}}, \frac{(1+t)\pi}{2^{m_{0}+1}}]$

$F_{t}^{1}$ $=$ $h(\tau(F_{t}^{0})\cap(E\backslash F_{t}^{0}))$ ,
$F_{t}^{2}$ $=$ $h(\tau(F_{t}^{1})\cap(E\backslash F_{t}^{1}))$ ,

$F_{t}^{n}$ $=$ $h(\tau(F_{t}^{n-1})\cap(E\backslash F_{t}^{n-1}))$ ,

$F_{t}$ $=$
$k\geq 0\cup F_{t}^{k}$

, $t\in[0,1]$ .
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Notice that the set $F_{t}$ is a measurable subset of $F$, hence it is a basic set. Let $E_{t}=$

$\tau(F_{t})\cap E$ . It is clear that any point in $\tau(E_{t})$ must be in $\tau(F_{t})$ hence cannot be in
$\tau(E\backslash E_{t})$ . So the sets $E_{t}$ and $E\backslash E_{i}$ are $2\pi$-translation disjoint. By Lemma 5.9 we have

$H_{E}f$ $=$ $H_{E\mathrm{e}}f+H_{E\backslash E_{t}}f$ .

Hence

(5.5) $\langle H_{E}f, f\rangle$ $=$ $\langle H_{E_{t}}f, f\rangle+\langle H_{E\backslash E_{\mathrm{t}}}f, f\rangle\geq a||f||^{2}$ .

Similarly,
$H_{F_{t}\cup(E\backslash E_{t})}f^{l}$ $=$ $fI_{F_{f}}f+H_{E\backslash E_{t}}f$

since $F_{t}$ and $E\backslash E_{t}$ are also $2\pi$-translation disjoint. It follows that

(5.6) $\{H_{F,\cup(E\backslash E_{t})}f$ , $f\rangle$ $=$ $\langle H_{F_{t}}f, f\rangle+\langle H_{E\backslash E},f, f\rangle$ .

Notice that $F_{t}=F_{t}(\tau, 1)$ since $F_{t}\subset F$ and $F=F(\tau, 1)$ . Let $x\in E_{t}=E\cap\tau(F_{t})$ . If
$x\not\in F_{t}$ , then $x\in\tau(F_{t}^{n})$ $\cup(E\backslash F_{t}^{n})$ for some $n\geq 0$ . So $h(x)\in F_{t}^{n+1}\subseteq F_{t}$ . Hence we have

(5.7) $E_{t}\subseteq\cup 2^{k}F_{t}k\in \mathrm{Z}^{\cdot}$

By Lemma 5.8 we have

(5.8) $\langle H_{F_{\mathrm{t}}}f, f\rangle$ $\geq$
$M^{-\frac{5}{2}}\langle H_{E_{t}}f, f\rangle$ .

Now define $W_{f}=F_{t}\cup(E\backslash E_{t})$ . Since $W_{t}\subset F\cup E$ , it is a basic set. By Lemma 5.6 there
is a positive number $B$ (independent of $t$ ) such that

(5.9) $\langle H_{W_{l}}f, f\rangle\leq B||f||^{2}$ , $\forall f\in L^{2}(\mathbb{R})$ .

On the other hand, (5.5), (5.6) and (5.8) imply that

$\langle H_{W_{t}}f, f\rangle$ $=$ $\langle H_{F_{t}}f, f\rangle+\langle H_{E\backslash E_{\mathrm{t}}}f, f\rangle$

$\geq$ $M^{-\frac{5}{2}}\langle H_{E_{t}}f, f\rangle+\langle H_{E\backslash E_{t}}f, f\rangle$

$>$ $M^{-\underline{\frac{5}{9}}}(\langle H_{E_{f}}f)f’\rangle+\langle H_{E\backslash E_{\mathrm{t}}}f, f\rangle)$

$\geq$
$aM^{-\frac{5}{2}}||f||^{2}$ .

Therefore, $W_{t}$ is a frame wavelet set for each $t\in[0,1]$ . It is easy to verify that $W_{0}=E$

(since $F_{0}=E_{0}=\emptyset$ ) and $W_{1}=F\cup(E\backslash \tau(F))$ . Notice that $F$ , $E\backslash \tau(F)$ are $2\pi$-translation
disjoint. Thus, by Lemma 5.7 for any measurable subset $G$ of $E\backslash \tau(F)$ , $F\cup G$ is a frame
set since $\bigcup_{k\in \mathrm{Z}}2^{k}F=$ R. In particular, if we let $G_{t}=$ ( $-$ tan( $\frac{\pi}{2}t$ ), tan( $\frac{\pi}{2}t)$ ) $\cap(E\backslash \tau(F))$ , then
$F\cup G_{t}$ is a frame set. We leave it to our reader to verify that the mapping $tarrow$ FUGt is
continuous in norm. Since $G_{0}=\emptyset$ and $G_{1}=E\backslash \tau(F)$ , this defines a continuous path from
$\chi_{F}$ to $\chi_{W_{1}}$ . Therefore, to complete the proof of Theorem 5.5 it suffices to show that the
mapping $tarrow$ xwt is continuous in norm. We will achieve this in a few steps.

Step 1: We first show that the mapping $tarrow\chi_{F_{t}}$ is continuous in norm. Foi $0\leq t\leq 1$ , we
have $\mu(F_{t}^{0})\leq\pi/2^{m\mathrm{o}}$ . By the property of $E$ , for a point $s\in F_{t}^{0}$ , the set $\{s+2k\pi : k\in \mathbb{Z}\}\cap E$

has at most $\mathrm{M}$ points. This implies that

(5.10) $\mu(\tau(F_{t}^{0})\cap(E\backslash F_{t}^{0}))$ $\leq$ $M\mu(F_{t}^{0})$ .
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Since $\tau(F_{t}^{0})$ $\cap(E\backslash F_{t}^{0})\subseteq \mathbb{R}\backslash [-\pi, \pi]$ , it follows from (5.10) that

$\mu(F_{t}^{1})$ $\leq$ $\frac{1}{2^{m_{0}+1}}\mu(\tau(F_{t}^{0})\cap(E\backslash F_{t}^{0}))$

$\leq$ $\frac{M}{2^{m\mathrm{o}+1}}\mu(F_{t}^{0})\leq\frac{1}{4}\mu(F_{t}^{0})$ .

By induction, we have

(5.11) $\mu(F_{t}^{n})\leq\frac{M}{2^{m_{0}+1}}\mu(F_{t}^{n-1})\leq\frac{1}{4^{n}}\mu(F_{t}^{0})$ .

Therefore, the convergence of $\chi_{\bigcup_{0\leq k\leq n}F_{t}^{k}}$ to $XFt$ is uniform with respect to $t\in[0,1]$ . $\forall\epsilon>0$ ,

choose $N>0$ large enough such that $\pi/4^{N}<\epsilon/4$ , then for any $t\in[0,1]$ , we have

$| \chi_{\bigcup_{0\leq L\leq N}F_{t’}^{k}}-\chi_{F},|\leq\sum_{k>N}\frac{1}{4^{k}}\mu(F_{t}^{0})$

$\leq$
$\frac{\mu(F_{t}^{0})}{4^{N}}<\frac{\pi}{4^{N}}<\frac{\epsilon}{4}$ ,

since $\mu(F_{f}^{0})\leq\pi$ for any $t$ . If the mapping $tarrow\chi_{F_{t}^{7L}}$ is continuous in norm for each $n$ ,
then $\chi_{\bigcup_{0\leq k\leq N}F_{\mathrm{t}}^{\lambda}}$ is uniformly continuous on $[0, 1]$ . Thus, there exists $\delta(\epsilon)>0$ such that
$|\chi_{\bigcup_{0\leq k\leq N}F_{t_{2}}^{L}}-\chi_{\bigcup_{0\leq k\leq N}F_{\iota_{1}^{k}}}\cdot|<\epsilon/2$ whenever $|t_{2}-t_{1}|<\delta(\epsilon)$ . It follows that

$|\chi_{F_{t_{2}}}-\chi_{F_{t_{1}}}|\leq|\chi_{\bigcup_{0\leq k\leq N}F_{t_{\underline{9}}}^{\lambda}}-\chi_{\bigcup_{0\leq\lambda\leq N}F_{t_{1}}^{k}}|$

$+$ $|\chi_{\bigcup_{0\leq \mathrm{t}\leq N}F_{t_{9}}^{\mathrm{t}}}\sim-\chi_{F_{\mathrm{t}_{2}}}|+|\chi_{\bigcup_{0\leq k\leq N}F_{t_{1}}^{k}}-\chi_{F_{t_{1}}}|$

$\leq$ $\frac{\epsilon}{2}+\frac{\epsilon}{4}+\frac{\in}{4}=\epsilon$ .

That is, $XFt$ is also uniformly continuous on $[0, 1]$ . Therefore, it suffices for us to prove
that the mapping $t$

$arrow\chi_{F_{\mathrm{t}}^{\tau\iota}}$ is continuous in norm for each $n$ . We will prove this by
induction Clcarly, the mapping $tarrow\chi_{F_{t}^{0}}$ is continuous. Assume that it is true for $n$ . We
will show that it is true for $n+1$ . For this purpose, we write $K\triangle L=(K\backslash L)$ $\cup(L\backslash K)$

for any sets $K$ and $L$ , and let $D_{t}^{n}=\tau(F_{t}^{n})\cap(E\backslash F_{t}^{n})$ . For any $t$ , $t’\in[0,1]$ , we claim that
$D_{t}^{n}\triangle D_{t}^{n},$ $\subseteq\tau(F_{f}^{n}\triangle F_{t}^{n}, )\cap E$ . Let $s$ $\in D_{t}^{n}\triangle D_{t}^{n},$ . Wc can assume that $s\in D_{t}^{n}\backslash D;$ . Then
there is an integer $k$ such that $s+2k\pi\in F_{t}^{n}$ . However $s\not\in F_{t}^{n}$ . It follows that $k\neq 0$ .
Thus $s\not\in F_{t}^{n}$,

’ for otherwise we would have both $s$ and $s+2k\pi\in F_{t}^{n}$, $\cup F_{t}^{n}\subseteq F\subset[-\pi, \pi)$

which is impossible since $k\neq 0$ . Therefore $s$ $\in E\backslash F_{t}^{n}$, . Since $s\not\in D_{t’}^{n}=\tau(F_{t}^{n}, )\cap(E\backslash F_{t}^{n}, )$ ,
it follows that $s\not\in\tau(F_{t’}^{n})$ . Hence $s+2k\pi\in F_{t}^{n}\triangle F_{t}^{n}$, and therefore $s\in\tau(F_{t}^{n}\triangle F_{t}^{n}, )$ $\cap E$ , as
expected.

We now have
(5.12) $F_{t}^{n+1}\triangle F_{t}^{n+1},\subseteq h(D_{t}^{n}\triangle D_{t}^{n},)\subseteq h(\tau(F_{t}^{n}\triangle F_{t}^{n}, )\cap E)$ .

Therefore,
$\mu(F_{t}^{n+1}\triangle F_{t}^{n+1},)$ $\leq$ $\mu(h((F_{t}^{n}\triangle F_{t}^{n}, )^{+}\cap E))$

(5.13) $\leq$ $\frac{M}{2^{m_{0}+1}}\mu(F_{t}^{n}\triangle F_{t}^{n}, )$ .

(5.13) implies that the mapping $tarrow\chi_{F_{t}^{n+1}}$ is continuous since the mapping $tarrow\chi_{F_{t}^{n}}$

is. This completes the proof that the mapping $tarrow\chi_{F_{t}^{n}}$ is continuous in norm for all $n$ .
Hence the mapping $tarrow\chi_{F_{t}}$ is continuous, as claimed
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Step 2: We now show that the mapping $tarrow XEt$ is also continuous. In fact, this follows
from the inclusion $E_{t}\triangle E_{t’}\subset\tau(F_{t}\triangle F_{t^{\mathit{1}}})\cap E$ , which implies that

$\mu(E_{t}\triangle E_{t’})\leq\mu(\tau(F_{t}\triangle F_{t’})\cap E)\leq M\mu(F_{t}\triangle F_{t’})$ .

Step 3: Finally the continuity of $tarrow\chi_{W_{t}}$ follows from the continuity of the mappings
$tarrow\chi_{F_{l}}$ and $tarrow\chi_{E\backslash E_{t}}$ and the fact that $F_{t}\cap(E\backslash E_{t})=\emptyset$ . This completes our proof of
Theorem 5.5.

PROBLEM 5.10. Are any two $s$-elementary frame wavelets directly path-connected?

5.5. Connectivity with Direct Path. Notice that the proof of Theorem 5.5 de-
pends on Theorem 5.3. Thus for any two given $s$-elementary frame wavelets $\psi_{E_{1}}$ and $\psi_{E_{2}}$ ,
the connecting path constructed using the approach outlined in the proof of Theorem 5.5
will use sets outside $E_{1}\cup E_{2}$ . In other word, it cannot be determined from the above
section whether any two elements in $\mathcal{W}_{f}^{s}$ are connected by a direct path. This remains an
open question,

PROBLEM 5.11. Given any two $s$-cicmcntary frame wavelets $\psi_{E_{1}}$ and $\psi_{E_{2}}$ , is there
always a direct path connecting them?

In fact, there arc a few more questions one can ask here.

PROBLEM 5.12. Given any two $s$-elcmentary tight frame wavelets $\psi_{E_{1}}$ and $\psi_{E_{2}}$ (of

the same optimal frame bound k), is there always a direct path within the set $\mathcal{W}_{f}^{s}(k)$

connecting them?

PROBLEM 5.13. Given any two $s$-etementary tight frame wavelets $\psi_{E_{1}}$ and $\psi_{E_{2}}$ (PoS-
sibly with different optimal frame bounds), is there always a direct path within the set
$\mathcal{W}_{f}^{s}$ connecting them?

5.6. Uniform Connectivity. Let $\psi$ be a fixed orthonormal wavelet. The local
commutant [7] at $\psi$ is the set:

$C_{\psi}(D, T)=$ {A $\in B(L^{2}(\mathbb{R}))$:$AD^{n}T^{m}\psi=D^{n}T^{m}A\psi\}$ .

For each frame wavelet $\eta$ , there is a unique operator $U_{\eta}\in C_{\psi}(D,$T) such that $U_{\eta}\psi=\eta$ ,
$U_{\eta}^{*}$ is injective and has closed range. Moreover, $\eta$ is an orthonormal wavelet if and only if
$U_{\eta}$ is unitary, while $\eta$ is a normalized tight frame wavelet if and only if $U_{7f}^{*}$ is an isomctry

[11].
Two frame wavelets $\eta_{0}$ and $\eta_{1}$ are said to bc uniformly path-connected if there is a path

of frame wavelets $\{\eta_{t}$: t $\in[0, 1]\}$ such that $U_{\eta_{l}}$ is a continuous path in the operator norm
(and hence $\{\eta_{t}$ : t $\in[\mathrm{O},$ $1]\}$ is a continuous path in $L^{2}$-norm). The uniform connectivity

for certain classes of wavelets is related to the interpolation theory of wavelets and was
investigated in several papers [7, $3_{\rfloor}^{\rceil}$ . We may ask whether the path-connectedness of
$s$-elcmentary frame wavelets can be strengthened to uniform path-connectedness. The
answer to this question is no. In fact, the following theorem has more to say on this issue

[4].

THEOREM 5.14. None of the following sets is uniformly path-connected

(i) The set $\mathcal{W}_{f}$ of all frame wavelets;

(ii) The 6 et $\mathcal{W}_{f}(1)$ of all normalized tight $f_{7}ame$ wavelets

(i) The set $\mathcal{W}_{f}^{s}$ of all $s$ -elementary frame wavelets
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Given that all the answers above are negative; we wonder if there is any subset of $\mathcal{W}_{f}$

that is uniform ly path-connected. And if there is, what structure such a set may have,

We post this as the following question.

PROBLEM 5.15. Prove or disprove the existence of a uniformly path-connected subset
of $\mathcal{W}_{f}$ .
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