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1 Introduction
Variety has come to the options market nowadays since Black & Scholes (1973) and Merton (1973)
published the seminal paper. In particular, the valuation of American options (i.e., options which can
be exercised before the pre-specified date) written on dividend-paying assets is an important issue in the
market due to that they have a much broader range of applications. Many academics and practitioners
have attempted to resolve the value of American option analytically since McKean (1965) and Merton
(1973) formulated the option value as a free boundary problem. However there have been no closed-form
formula and analytical solutions. The difficulties in such pricing options originate from the possibility
of early exercise and the early exercise boundary not known priori must be determined as a part of the
solution. Researchers have also made further efforts toward developments of numerical approximation
methods for pricing American options.

A brand-new approximation is the randomization method proposed by Carr (1998), which is based
on an American option with a random maturity. The random maturity follows the $n$-stage Erlangian
distribution with mean equal to the pre-specified maturity. Although the idea is easy to understand,

the probability density function (pdf) of Erlangian distribution is not suitable for obtaining a sim ple
formula for the n-th approximation. Actually, Carr’s formula for the n-th approximation of the Am erican
put value is given by a recursion of com plex triple sums. To improve this shortcoming, an alternative
randomization method has been recently developed by Kimura (2004), which used an order statistic $\mathrm{f}_{\mathrm{o}\mathrm{I}}$

the random maturity. The order statistic also plays a key role in our new randomization method in this
thesis, and hence the details of his method will be specified later. Kimura.i,, approximation not only has a
much simpler expression than Carr’s one, but also its numerical results have almost the same accuracy as
Carr’s. However, com putational results sometimes behave unstably under a certain condition. Improving
this inadequacy is a principal goal of our randomization method, which we call a pincer randomization.
The primal focus of this thesis is on the American put option because the call case can be analyzed by

put-call symmetry relations
The rest of this thesis is organized as follows: In Section 2, we provide some prelim inaries for the

analysis. Section 3 provides an idea of the pincer randomization method. To examine the accuracy of

our method, numerical comparisons with other approximations are shown in Section 4. Finally, we give
a conclusion and some comments on future research in Section 5.

2 Preliminalies

2.1 Basic Framework
Assume that the stock price is a risk-neutralized process governed by the stochastic differential equation

$\frac{dS_{\mathrm{f}}}{s_{t}}=(r-\delta)dt+\sigma dW_{t}$ , (2.1)

where $W\equiv\{W_{t} : t\in[0, T]\}$ is a standard Brownian motion process on a filtered probability space
$(\Omega, (F_{t})_{t\geq 0},\mathrm{P})$ where $(F_{t})_{t\geq 0}$ is the natural filtration corresponding to $W$ and the probability measure

$\mathrm{P}$ is chosen so that the stock has mean rate of return $r$ . Here, $r$ is the risk-free rate of interest, $\delta$ is the

dividend rate, and a is the volatility coefficient of the asset price.
We define the value of American put option with maturity date $T$ and exercise price $K_{\}}$ which

is expressed as $C(S_{t}, t)$ through this article, satisfies the Black and Scholes (1973) partial differential
equation (PDE)

$\frac{1}{2}\sigma^{2}S^{2}\frac{\partial^{2}P(S,t)}{\partial S^{2}}+(r-\delta)S\frac{\partial P\langle S,t)}{\partial S}+\frac{\partial P(S,t)}{\partial t}-rP(S, t)=0$ (2.2)
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subject to the boundary conditions

$\lim_{S\downarrow 0}P(S, t)=0$ , (2.3)

$\lim_{S\uparrow B_{t}}P(S, t)=K-B_{t}$ , (2.4)

$\lim_{S\uparrow B_{t}}\frac{\partial P(S,t)}{\partial S}=-1$, (2.5)

and the terminal condition
$P(S_{T}, T)=(K-S_{T})^{+}$ . (2.6)

Equation (2.4) is usually called the “value matching” condition and Equation (2.5) is the “smooth pasting”
condition. These conditions guarantee that premature exercise strategy on the early exercise boundary
$B_{t}$ will be optimal.

2.2 Randomization Methods

2.2.1 Carr’s randomization

Carr’s random ization method consists of the following three steps:

1. Randomize the maturity $T$ by an exponentially distributed random variable $\tilde{T}$ with mean $\mathrm{E}[\tilde{T}]=$

$\lambda^{-1}=T$ in order to value the so-called Canadian option.

2. Extend the result to the case that $\tilde{T}$ is distributed as the $n$-stage Erlangian distribution with the
same mean $\mathrm{E}[\tilde{T}]$ $=\lambda^{-1}=T$ .

3. Take the limit of the randomized option value by letting $narrow\infty$ to obtain the underlying American
option value

Figure 1 illustrates the $n$-stage Erlangian distribution converges to Dirac’s delta function concentrated
at the mean $\lambda^{-1}=T$ .

$x$

Figure 1: $n$-stage Erlangian probability density functions $(n =1,2, 4, 8, 16, 32)$

Let $g_{n}^{*}(T)$ $=\mathrm{E}[g(\tilde{T})]$ for a continuous fimction $g$ . Then, we have

$g_{n}^{*}(T)= \int_{0}^{\infty}g(t)\frac{(nt/T)^{n-1}}{(n-1)!}\frac{n}{T}e^{-nt/T}dt$, (2.7)

for which we obtain
$\lim_{narrow\infty}g_{n}^{\mathrm{x}}(T)=g(T)$ (2.8)

that is the mathematical essence of Carr’s randomization method
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2.2.2 Kimura’s randomization

Instead of the $n$-stage Erlangian distribution, Kimura (2004) used an order static for the random maturity.
In much the same way as in Carr’s randomization, his method consists of the following three steps:

1. Randomize the maturity $T$ by an exponentially distributed random variable $\overline{T}$ with mean $\mathrm{E}[\tilde{T}]$ $=$

$\lambda^{-1}=T$ in order to value the Canadian option.

2. Extend the result to the case that $\tilde{T}$ is distributed as an order statistic whth the same mean
$\mathrm{E}[\tilde{T}]=\lambda^{-1}=T$ .

3. Take the limit of the randomized option value by letting n, m $arrow\infty$ to obtain the underlying
American option value.

Let $X_{1)}$ . . ’ $X_{n+m}$ be independent and exponentially distributed random variables with parameter $\alpha$

$(>0)$ , and let $X_{(i)}$ denote the i-th smallest of these random variables $(\mathrm{i}=1, , . , n+m)$ . Thle pdf of
$X_{(7l+1)}$ is given by

$f(t)= \frac{(n+m)!}{n!(m-1)!}(1-e^{-\alpha t})^{n}\alpha\epsilon^{-m\alpha t}$ , $t$ $\geq 0$ . (2.9)

The mean and variance of $X_{(\uparrow 1+1)}$ are given by

$\mathrm{E}[X_{(\mathrm{n}+1)}]=\frac{1}{\alpha}\sum_{\mathrm{i}=0}^{rx}\frac{1}{m+\mathrm{i}}$ , $\mathrm{V}[X_{\langle n+1)}]=\frac{1}{\alpha^{2}}\sum_{i=0}^{n}\frac{1}{(rn+\iota)^{2}}$ . (210)

In add ition, the modal value of $X_{(7b+1)}$ is given by

NI $[X(7\downarrow+1)]\equiv \mathrm{a}\mathrm{r}\mathrm{g}\mathrm{n}t$ lax $f(t)= \frac{1}{cx}\log\frac{n+m}{m}$ . (2.11)

1

0

$X$
$X$

(a) mean rnatching $\mathrm{E}[X_{\{n+1)}]=1$ (b) mode $\Pi 1\mathrm{a}\mathrm{t}\mathrm{c}\mathrm{h}\mathrm{i}_{\mathrm{I}\mathrm{l}}\mathrm{g}$. $\mathrm{M}|X(n+1)]=1$

Figure 2: Probability density functions of the order statistic $(n=m=1, 2,4, 8, 16, 32)$

Figure $2(\mathrm{a})$ and $2(\mathrm{b})$ show the convergence of the pdf as $n(=m)arrow\infty$ . There is not all that much
difference between these figures and they converge to Dime’s delta function concentrated at the mean
$\mathrm{E}[X_{(7\iota+1\}}]=1$ . By setting either $\mathrm{E}[X_{(n+1)}]=T$ or $\mathrm{N}\#[X_{(\tau\iota+1)}|--T,$ $X_{(n+1)}$ can be another candidate for

the random maturity $\tilde{T}$ , because $1\mathrm{i}\ln_{\mathit{7}1,marrow\infty}\mathrm{V}[X(n+1)]-\wedge 0$.
Kimura (2004) adopted the mode-m atching NI[X(n+l)]=T in his randomization for $\mathrm{c}\mathrm{o}$ mputational

convenience, because there is no significant difference between the two matchings. For the mode-matching,
a can be determined by

$\alpha=\frac{1}{T}$ ltog $\frac{n+m}{m}$ . (2.12)

For a continuous function $g(t)(t\geq 07$ , let $g_{\iota}^{*},,n\iota$ $\equiv g_{l,7n}^{*},(T)$
$=\mathrm{E}[g(\tilde{T})]$ , $\mathrm{t}\}_{1}\mathrm{e}\mathrm{n}$

$g_{n,n\iota}^{*}(T)= \frac{(n+m)!}{n!(m-1)!}\oint_{0}^{\infty}g\langle t$) $(\mathrm{L}-e^{-\alpha t})^{n}\alpha e^{-m\alpha t}dt$ , (2 i3)
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for which we have
iim $g_{n,m}^{*}(T)=g(T)$ . (2.14)

$n,r’\iotaarrow\infty$

Proposition 1 (Kimura) The sequence
$(g_{r\iota,m}^{*})_{r\iota,\tau n\geq 1}$ satisfies the recursion

$\{$

$g_{0,m}^{*}=I_{0}^{\infty}$ rnae $-mc\iota tg(t)dt$

$g_{n,m}^{*}= \frac{n+m}{n}g_{n-1,m}^{*}-\frac{m}{n}g_{n-1,m+1}^{*}$ , $n\geq 1$ .
(2.15)

Let $L^{*}(m\alpha)$ denote a root of the equation for the eaxly exercise boundary of Canadian options. The
$7\mathrm{V}$-th randomized approximation $g_{N,N}^{*}\equiv\beta_{N}\approx B_{t}(N\geq 1)$ can be obtained by the algorithm named
OS-Random.

The algorithm also can be applied to computing the option value $F(t, S)$ by assuming that we have
a functional program for computing $P^{*}(m\alpha, S)$ for a set of the parameters $\{t, S, K,T, r, \delta, \sigma\}$ .

2.3 Canadian Options
The randomization methods are based on the value of Canadian option whose maturity is exponentially
distributed to introduce not only Carr’s randomization but aiso the alternative one proposed by Kimura
(2004).

Proposition 2 (Kimura) The value of the European-style Canadian put option is given by

$p^{*}(\lambda, S)=\{$

$\xi(S)+\frac{\lambda}{\lambda+r}K-\frac{\lambda}{\lambda+\delta}S$, $S<K$
$\eta(S)$ , $S\geq K$ ,

(2.16)

where

$\xi(S)=\frac{1}{\theta_{+}-\theta_{-}}\frac{\lambda}{\lambda+\delta}(1-\frac{r-\delta}{\lambda+r}\theta_{-})K(\frac{S}{K})^{\theta_{+}}$ , $S<K$

$\eta(S)=\frac{1}{\theta_{+}-\theta_{-}}\frac{\lambda}{\lambda+\delta}(1-\frac{r-\delta}{\lambda+r}\theta_{+})K(\frac{S}{K})^{\theta_{-}}$ , $S\geq K$ , (2.17)

and the parameters $\theta\pm$ are two roots of the follow ing quadratic equation

$\frac{1}{2}\sigma^{2}\theta^{2}+$ $(r- \delta -\frac{1}{?}.\sigma^{2})\theta-(\lambda+r)=0$ , (2.18)

$\mathrm{i}.e.$ ,
$\theta_{\pm}=\frac{1}{\sigma^{\underline{9}}}\{-(r-\delta-\frac{1}{2}\sigma^{2})\pm\sqrt{\langle r-\delta-\frac{1}{2}\sigma^{2})^{2}+2\sigma^{2}(\lambda+r)}\}$ . (2.19)

Proposition 3 (Kimura) For $L^{*}\leq K$ , the value of the American-style Canad ian put option is given
by

$P^{*}(\lambda, S)=\{$

$K-\mathit{3}$, $S\leq L^{*}$

(2.20)
$p^{*}(\lambda, S)+e^{*}(\lambda, S)$ , $S>L^{*}$ ,

where
$e^{*}( \lambda, S)=-\frac{1}{\theta_{-}}\{\theta_{+}\xi(L^{*})+\frac{\delta}{\lambda+\delta}\}(\frac{s}{L^{*}})^{\theta_{-}}$ $S>L^{*}$ . (2.21)
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3 A Pincer Randomization Method

Kimura’s random ization method is not only much simpler than Carr’s one, but also as accurate as Carr’s
one; how ever the method shows unstable behaviors near the expiry under certain conditions. The reasons
for the unstability are considered as

(i) the algorithm is sensitive to the precision of the root $L^{*}$ .

(ii) the $(n, m)$-th approximation $g_{n,m}^{*}$ cannot appropriately satisfies the value matching condition in the
recursive procedure.

In this section, we propose a new randomization scheme named a pincer randomization (PR) method
to overcome those difficulties. The PR method is based on a pair of lower and upper bounds for a
true value (say TRUE), and then TRUE is sandwiched in between the bounds. This methods reflect
some fundamental properties of the option Greek Theta and the order statistic. It is generally known
that Theta indicates the ratio of the change in an American put option price to the decrease in time to
expiration, so that the shorter the remaining time to expiration, the option value is cheaper.

Remark 1 Note that the relation of a pair of lower and upper bounds inverts if and only if the Theta
is negative under deep-in-the-money.

3.1 Lower and upper bounds for the option value

Assume that the maturity $T$ is a random variable $\tilde{T}$ distributed as the order statistic $X(n+1)$ with mean
$\mathrm{E}[\tilde{T}]=T$ , as in the OS-Random algorithm. From Figure $2(\mathrm{a})$ and the Theta property of American put
options that the mean-m atching approximation for the option value always underestimates the true value
when $n$ , $m$ is not large enough, giving a lower bound. Note that mean-matching approximation for the
early exercise boundary provides the upper bound. Figure $3(\mathrm{a})$ shows that the lower bound $\mathrm{i}_{\mathrm{b}}$ a tight one
over the true value derived by the CRR binom ial method with $n=$ 1000.

In the same manner as the mean-matching case, Figure $2(\mathrm{b})$ and the Theta property shows that the
mode-matching approximation always overestimates the true value when $n$ , $m$ is small, $\mathrm{i}.e.$ , it is an upper
bound For the early exercise boundary, the mode-matching approximation provides the lower bound
Figure $3(\mathrm{b})$ shows that the upper bound is less tight than the lower bound, where TRUE values are also
computed by the CRR binomial method with $n$ $=$ 1000.

50

(a) A lower bound for the TRUE value (b) An upper bound for the TRUE value

Figure 3: Lower and upper bounds $(T=1.0, S=100, K=100, r=0.05, \sigma=0.3, \delta=0)$

3.2 Interpolating lower and upper bounds

Figure 4 illustrates a relationship between the lower and upper bounds for the early exercise boundary.

This figure shows that the the TRUE value is appropriately sandwiched in between the bounds, and that
the upper bound derived by the mean matching is a good approximation for the TRUE value. For the
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Figure 4: Lower and upper bounds for the early exercise boundary ($K=100$ , $r=0.05$ , a $=0.3$ , $\delta=0$)

option value, the TRUE value is appropriately sandwiched in between the bounds, and the lower bound
is a good approximation for the TRUE one. From Figure 3, the mean matching provides more accurate
approxim ations for the option value. Prom these observations, we employ the two methods below for
valuing American put options.. Arithmetic Average:

$P_{A}\langle t$ , $S_{t}$ ) $= \frac{L(t,S_{t})+U(t,S_{t})}{2}$ (3.1)

where $L(t, S_{t})$ and $U(t, S_{t})$ are the lower and upper bound for the option va $\mathrm{l}\mathrm{u}\mathrm{e}$ , respectively.. Geometric Average:
$I_{G}^{\supset}(t, S_{\mathrm{t}})=\sqrt{L(t,S_{t})\mathrm{x}U(t,S_{t})}$ (3.2)

As described above, the upper bound of the early exercise boundary and the lower bound of the option
value are good approximations for the TRUE values. Hence, we also add the lower-bound approximation
for the option value in comparisons.

0

0

0

-0

(a) $N=3$ , 4, $!\mathrm{J}\ulcorner$ (b) $N=6$ , 7, 8

Figure 5: Relative percentage errors of the approxim ations for the vanilla European put value $p(0, S)$
$\langle$ $T=1.\mathrm{O}$ , $K=1\mathrm{O}\mathrm{O}$ , $r=0.05$ , a $=0.3$ , $\delta=0.05$ )

To determine the level 1V of the approximation, we make a comparison between $p(t, S)$ and its PR
approxim ation. Obviously, the exact values of $p(t, S)$ can be computed by the Black-Scholes formula
$(2,2)$ , Figure 5 illustrates the relative percentage errors of approximations for $p(0, S)$ as functions of $S$ .
The approximations become better as $N$ increases and we have sufficient accuracy for $N\geq 6$ . Hence, we
will employ $N=8$ in our numerical experiments
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4 Computational Results
Figure $6(\mathrm{a})(6(\mathrm{b}))$ shows some relations between the early exercise boundary and the volatiliry (dividend
rate). Also, Figure $7(\mathrm{a})(7(\mathrm{b}))$ shows somne relations between the option values and the volatility (ma-
turity). In order to check the performance of the PR method in detail, we comnpare them with other
approximations for particular cases quoted from numerical experiments in AitSahlia and Carr (1997).
Tables 1 and 2 summarize these results, in which we compute three approximation by the PR method
with both the arithmetic and geometric averages and the lower-bound approximation nam ed LB-Rondorn.
We employ the arithmetic average of the 1000- and lOOl-steps binomial value as a bench mark of the
TRUE value. For the methods of OS-Random, Carr, and Geske & Johnson, ‘.N-pts” in these tables
denote the number of steps of the $N$-point Richardson extrapolation. For the finite-difference results, the
parameters $N$ and $M$ denote the numbers of time and state steps, respectively. See AitSahlia and Carr
(1997) for details of their experiments.

$t$

(a) $\delta=0.05$ , $\sigma=0.2$ , 0.05, 0.3 (b) $\delta=0$ 02, $00_{\iota}^{r_{\mathrm{J}}}$ , 0.05, $\sigma$ $=02$

Figure 6: Early exercise boundaries of put options $(K=1\mathrm{O}\mathrm{O}, T=1.\mathrm{O}, r=0.05)$

(a) T $=1.()$ , a $=0$ 2,0.3, $().4$ (b) T $=0.05$ , 10, 1.0, $\sigma=02$

Figure 7: Values of put options $(K=1\mathrm{O}\mathrm{O}, t=0, r=0.05, \delta=0.02)$

The PR method performs very well and competes with OS-Random and Carr’s randomization, In
addition, the PR method succeeds in the way that modification of OS-Random that always underestimates
the TRUE value, because the PR method provides not only much more accurate approximations for
valuing put options but also better approximation than OS-Randomn In addition, we see from these
figures that the PR method is more accurate than LBA and LUBA, which are also the lower-bound and
the lower-and-upper-bounds approximations, respectively.

Table 1 shows the impacts of the initial stock price $S$ . The PR method $\mathrm{w}\mathrm{i}\mathrm{t}\mathrm{h}_{1}$ both of arithmetic
and geometric average becomes accurate as $S$ increases, because the early exercise prem iu1n relatively
constitutes a smaller portion of the value for such cases. The fact is very well deserved from the viewpoint $\mathrm{s}$
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that the PR method can value European option values as accurate as the Black-Scholes formula and that

we can decompose American option value into the early exercise premium plus European option value.

Table 2 demonstrates that remaining time impacts on the option values. The PR method with

both arithmetic and geometric averages becomes accurate as the remaining time becomes long. For this

tendency, we can give the same prospect from Table 1. In addition, from Tables 1 and 2, we can see that

the PR method with arithmetic average is accurate enough and is greater than the one with geometric
average. Clearly, this reflects the fact that $P_{A}(t, S_{t})\geq P_{G}(t, S_{t})$ for all $(t, St)$ .

From the observations in Figures 3 and 4, it was considered that the lower-bound approximations
for the option values would perform well. However, we see from Tables 1 and 2 that the lower-bound
approxim ations are less accurate than other approximations. We also see from other numerical experi-

ments that the randomization method with mean matching performs well if and only if dividend is zero
for which the root $L^{*}$ can be compiited via

$L^{*}=K( \frac{r(\theta_{+}-1)}{\lambda})\frac{1}{\mathit{0}_{+}}$ (4.1)

without using Newton’s method. These observations would imply that the accuracy of the lower-bound
(or mean-matching) approximation is highly sensitive to the computational accuracy of the root $L^{*}$ .

5 Conclusion
The previous randomization methods have crucial problems such as (i) difficulty of implementation for
Carr’s one and (ii) unstable behavior near expiry for Kimura’s one. To rectify these faults at the same
time, we have employed an interpolation approximation using a pair of lower and tipper bounds obtained
by Kimura’s randomization method. The idea is based on the Theta property of American put options.
Our new method, the PR method, refines Kimura’s one, removing another fault of underestimation.

The PR method generates accurate approximations when the initial stock price is in the out-of-money
or the remaining time to maturity is long. It is straightforward to interpret these properties frorn the
fact that American option value can decomposed into the early exercise premium and the associated
European option value, the latter of which constitutes a greater portion of the whole value. However , the
PR method still have a tendency of underestimation from the true value, which needs a further revision
of the randomization.

Mathematically, the essential of randomization can be interpreted as an inversion of Laplace or Fourier
transforms. This interpretation enables us to apPly the random ization methods includ ing the PR method
to valuing other options, $e.g.$ , exotic or path-dependent options such as Asian, lookback, barrier options
and so on. This is a future theme of extensive research. Another extension of the randomization method
is the case that the stock return jumps accidentally, that is, the stock price process follows not the
Brownian motion but a jum $\mathrm{p}$-diffusion process such as Levy processes. This remains as future work, too.
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$\mathrm{T}\mathrm{a}\cdot\frac{\mathrm{b}1\mathrm{e}1.\mathrm{A}\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{a}\mathrm{r}\mathrm{i}\mathrm{s}\mathrm{o}\mathrm{n}}{\mathrm{M}\mathrm{e}\mathrm{t}\mathrm{h}\mathrm{o}\mathrm{d}}$
of approximationsfor

$P(0,S)S=\mathrm{S}0(T=3,K=100,r=0.06, \sigma=0.4,\delta=0.02)S=90S=100S=110S=120$

Binomial 29.2601 24.8023 21.1294 18.0849 15.5428
PR method (Arithmetic Ave.) 28,8392 24.4533 20,8489 17.8681 15.3892
PR method (Geometric Ave.) 28.8373 24.4501 20.8445 17.8624 15.3823
LB-Random 28.5135 24.0614 20.4092 17.3971 14.9005
OS-Random (8-Pts) 28.7998 24.4246 20.7891 17.7971 15.2995
Carr (3-pts) 29.2323 24.7692 21.0835 18.0369 15.4873
Geske and Johnson 31.0305 26.1543 22.1114 18.7646 15.9911
Quadratic 29.4377 25.0614 21.4484 18.4418 15,9239

LBA 29.2105 24.7669 21.1039 18.0635 15.5252
LUB A 29.2540 24.7989 21.1306 18.0860 15.5437
Bunch and Johnson 29.938225.1566 21.3092 18.1558 15.5755
Huang et al. 29.7147 25.0136 21.2121 18.1173 15.5729

$\underline{\mathrm{F}\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{D}\mathrm{i}\mathrm{f}\mathrm{f}\mathrm{e}\mathrm{l}\mathrm{e}\mathrm{n}\mathrm{c}\mathrm{e}(N=200,\lambda f=300)}$29.058424.4744 20.633014.5535 14.5535

$\frac{\mathrm{T}\mathrm{a}\mathrm{b}1\mathrm{e}2\cdot \mathrm{A}\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}\mathrm{a}\mathrm{r}\mathrm{i}\mathrm{s}\mathrm{o}\mathrm{n}\mathrm{o}\mathrm{f}\mathrm{a}\mathrm{p}\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{x}\mathrm{i}\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{f}\mathrm{o}\mathrm{r}P(0,100)(K.=100,r=0.06,\sigma=0.4,\delta=0.02)}{\mathrm{M}\mathrm{e}\mathrm{t}\mathrm{h}\mathrm{o}\mathrm{d}T=0.5T=10T=1.5T=2.0T=2.5}$

Binomial$\overline{10.2741}$13.877416.3682 18.284019.8349
PR method (Arithmetic Ave.) 10.3057 13.8392 16.2596 18.1109 19.6045
PR method (Geom etric Ave.) 10.3016 13.8345 16.2547 $[perp] 8\prec.1061$ 19.5998
LB-Random 10.0157 13.4765 15.8586 17.6884 19.1702
OS-Random (8-pts) 10.1802 13.7083 16.1399 18.0090 19.5321
Carr (3-pts) 10.2759 13.8670 16.3469 18.2533 19.7960
Geske and Johnson 10.3159 14.0553 16.7200 18.8388 20.5970
Quadratic 10.2728 13.9142 16.4627 18.4476 20.0743
LBA 10.2697 13.8G79 16.3545 18.4476 19.8134
LUBA 10.2750 13.8796 16.3712 18.2869 19.8371
Bunch and Johnson 10.2679 13.8904 16.4070 18.3487 19.9434
Huang et al. 10.2813 13.8756 16.3657 18.2948 19.8742
Finite Difference (N $=200,$M $=300)$ 10.2614 13.8578 16.3158 18.1500 19.5442


