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ON THE HYPERREFLEXIVITY OP SUBSPACES OF
TOEPLITZ OPERATORS

MAREK PTAK

ABSTRACT. The review of recent reflexivity and hyperreflexivity results for
subspaces of Toeplitz operators will be presented. We will consider Toeplitz
operators on the unit disc, the bidisc, the unit ball and generalized Toeplitz
operators. The problems in this area are given.

1. INTRODUCTION

The notion of reflexivity and hyperreflexivity was at first stated for algebras of
operators on Hilbert spaces. Both notions have their roots in invariant subspace
problem. An algebra of operators is reflexive if there are so many invariant
subspaces for all operators from the algebra that the set of these subspaces
determine the algebra itself. An algebra of operators is hyperreflexive if the
usual distance from any operator to the given algebra is controlled by distance
given by invariant subspaces. Later this notion was extended to subspaces of
operators, which seems to be more suitable setting, $[16, 4]$ . As we will see later
the most convenient setting for the above notions is duality between the $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$

class operators and the algebra of all bounded operators. In Section 2 we put
the definitions in this setting which is equivalent to classical one, see [7].

Toeplitz operators are naturally given thus investigating their properties is
one of main point in operator theory. Our aim is to present refiexivity and
hyperreflexivity results on Toeplitz operators on various spaces. In Section
3 we consider Toeplitz operators on the classical Hardy space. Section 4 is
devoted to Toeplitz operators on the Hardy space on the bidisc and unit ball.
The generalized Toeplitz operators are considered in Section 5.

2. DEFINITIONS

Let $\mathcal{H}$ be a complex Hilbert space and let $\mathrm{B}(\mathrm{H})$ denote the algebra of all
bounded linear operators on $\mathcal{H}$ . For a set of operators $\mathrm{S}$ $\subseteq B(\mathcal{H})$ we denote
by $\mathcal{W}(S)$ the smallest algebra containing the set $S$ , the identity operator I and
closed in weak operator topology. By $\tau c$(-?) we denote the $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ class operators
and by $F_{k}$ the set of operators of rank at most $k$ . Duality between $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ class
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operators $\tau c(\mathcal{H})$ and the algebra $B(\mathcal{H})$ is given by

$\langle A, t\rangle=\mathrm{t}\mathrm{r}$ (A $t$ ) for $A\in B(\mathcal{H})_{7}t\in\tau c(\mathcal{H})$ .

An important role in reflexivity and hyperreflexivity is played by rank one
operators; for $x$ , $y\in \mathcal{H}$ we define $(x\otimes y\}z=(z, y)x$ for $z$ $\in 7${. The action of a
rank one operator $x\otimes y$ on any operator $A\in B(\mathcal{H})$ can be expressed as

$\langle A, x\otimes y\rangle=$ tr $(A(x\otimes y))=$ {A, $y$).

Let $\mathcal{N}t$ $\subseteq B(74)$ be a subspace, then by $[perp] \mathcal{M}\subseteq\tau c(\mathcal{H})$ we denote the pre-
annihilator of A{ and by $\mathrm{b}\mathrm{a}11_{[perp]}\mathcal{M}$ the unit ball .in $[perp] \mathcal{M}$ . The reflexivity and
transitivity can be described by rank one operators. The $w^{*}$-closed subspace
$\mathcal{M}$ is called reflexive if rank one operators in the preannihilator spans the pre-
annihilator, i.e. $\mathrm{s}\mathrm{p}\mathrm{a}\mathrm{n}(_{[perp]}\mathcal{M}\cap F_{1})=[perp] \mathcal{M}$ . In other words any operator out of
the subspace can be separated from the subspace by rank-one operator. The
subspace A4 is transitive if there is no rank one operator (except the zero op-
erator) in its preannihilator, i.e. 1M rl $F_{1}=\{0\}$ . In other words there is no
operator which can be separated from the subspace by rank-one operator. The
antonyms of this two notions become clear. We will call thhe subspace k-reflexive
if $\mathrm{s}\mathrm{p}\mathrm{a}\mathrm{n}([perp] \mathcal{M}\cap F_{k})=[perp] \mathcal{M}$. In other words any operator out of the subspace can be
separated from the subspace by operator of rank $k$ . This condition is equivalent
to require that the $k$ amplia ion $\mathcal{M}^{(k)}=$ { $T\oplus T\oplus\cdots\oplus T$ : $k-$ times, $T\in \mathcal{M}$ }
of the subspace $\mathcal{M}$ is reflexive, see [2].

Let $A\in B(\mathcal{H})$ . Then by duality the usual distance dist(A, $\mathcal{M}$ ) $= \inf\{||A-$

$T||$ : $T\in \mathcal{M}$ } can be calculated by $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ class operators, i.e.

dist(A, $\mathcal{M}$ ) $= \sup\{|\langle A, t\rangle| : t\in\tau c, t\in \mathrm{b}\mathrm{a}11[perp] \mathcal{M}\}$ .

On the other hand, we can introduce the distance a which uses only rank one
$\mathrm{o}\mathrm{p}$ erators, see [7]. Namely

(1) $\alpha(A, \mathcal{M})=\sup\{|(Ax, y)|=|\langle A, x\otimes y)| : x\otimes y\in \mathrm{b}\mathrm{a}11_{[perp]}\mathcal{M}\}$ .

We have the following inequality
$\alpha(A, \mathcal{M})\leq \mathrm{d}\mathrm{i}\mathrm{s}\mathrm{t}(A, \mathcal{M})$ .

A subspace $\mathcal{M}$ is called hyperreflexive if there is a constant $\kappa$ such that

(2) dist $(A, \mathcal{M})\leq$ rc $\alpha(A, \mathcal{M})$ for all $A\in B(?\mathrm{f})$ .

The smallest constant $\kappa$ fulfilling $\acute{(}2$ } is called constant of hyperreflexivity and
it is denoted by $\kappa_{\mathcal{M}}$ .

Hence the hyperreflexivity of a subspace A4 means that the distance from an
operator to a subspace can be controlled by the distance calculated using rank
one operators.

Taking the operators of rank $k$ instead of rank-one we define

(3) $\alpha_{k}(A,\mathcal{M})=\sup\{|\langle A,t\rangle|:$ t $\in \mathrm{b}\mathrm{a}11_{[perp]}\mathcal{M}\cap F_{k}\}$ .
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Similarly a subspace $\mathcal{M}$ is called $k$ -hyperreflexive if there is a constant $\kappa$ such
that

(4) dist(\^A|| A4) $\leq\kappa$ $\alpha_{k}(A, \mathcal{M})$ for all $A\in B(\mathcal{H})$ .
As it was observed in [14] it is not equivalent to hyperreflexivity of $\lambda 4^{(k)}\sim$

The reason why we call the subspace hyperreflexive can be seen by the fol-
lowing.

Proposition 2.1, Let $\mathcal{M}\subseteq B(\mathcal{H})$ be a norm-closed subspace. If $\mathcal{M}$ is hyper-
refifiexive then $\mathcal{M}$ is reflexive.
Proof. Assume that $A\in$ refA4 Using (2) it is clear that $a(A, \mathcal{M})$ $=0$ .
Thus by hyperreflexivity dist(A, $.\mathrm{A}\Lambda$ ) $=0$ and by norm-closeness $A\in \mathcal{M}$ .

$\square$

The reverse implication is not true, see [15], i.e. there is a subspace and even
an algebra which is reflexive, but not hyperreflexive.

3. TOEPLITZ OPERATORS ON THE DISC

Let $\mathrm{T}$ be the unit circle on the complex plane C. Set $L^{2}(\mathrm{T})=L^{2}(\mathrm{T}, m)$

and $L$“(T) $=L^{\infty}(\mathrm{T}, m)$ , where $m$ is the normalized Lebesgue measure on T.
Let $H^{2}(\mathrm{D})$ be the Hardy space corresponding to $L^{2}(\mathrm{T})$ and let $P_{H^{2}(\mathrm{D})}$ be the
projection from $L^{2}(\mathrm{T})$ onto $H^{2}(\mathrm{D})$ . By $H^{\infty}(\mathrm{D})$ we denote the Hardy space
corresponding to $L^{\infty}(\mathrm{T})$ , i.e. the space of these functions from $L^{\infty}(\mathrm{T})$ which
have an analytic extension to the whole unit disc D.

For a given function $\varphi\in L$“(T) we can define a Toeplitz operator with the
symbol $\varphi$ as

$T_{\varphi}f=P_{H^{2}(\mathrm{D})}(\varphi f)$ for $f\in H^{2}(\mathrm{D})$ .

The unilateral shift can be seen as the operator $S\in B(H^{2}(\mathrm{D}))$ , $(Sf)z=$
$zf(z)$ for $f\in H^{2}(\mathrm{D})\dot,$ i.e. $S=T_{z}$ . By $\mathcal{T}(\mathrm{D})$ we denote the space of all
Toeplitz operators and by $A(\mathrm{D})$ the space of Toeplitz operators with symbols
from $H”(\mathrm{D})$ . Note also that $\mathcal{T}(\mathrm{D})=\mathcal{W}(S)$ . Moreover, ([12, Corollary to
Problem 194]),

(5) $\mathcal{T}(\mathrm{D})=\{A\in B(H^{2}(\mathrm{D})) : A=T_{z}^{*}AT_{z}\}$

and by [12, Problem 116],

(6) $A(\mathrm{D})=$ {A $\in B(H^{2}(\mathrm{D}))$ : $AT_{z}=T_{z}A$ }.
First refiexivity result concerning Toeplitz operators was shown by Sarason.

Theorem 3.1. [22] If S is the unilateral shift then $\mathcal{W}(S)$ is reflexive.
Proof. Note that vectors $k_{\lambda}=$ $(1-\lambda z)^{-1}\}$ A 6 ]$\mathrm{D}$ , are eigenvectors of the back-
ward shift (i.e. $S^{*}k_{\lambda}=$ A $k_{\lambda}$ ). Moreover, the set { $k_{\lambda}$ : A $\in \mathrm{D}$ } is linearly dense
in the Hardy space $H^{2}(\mathrm{D})$ .

Now when we take an operator $A\not\in \mathcal{W}(S)$ , then $A$ do not commute with $S$

by (6), thus $A^{*}$ do not commute with $S^{*}$ . Hence there is $k_{\lambda}$ such that $A^{*}S^{*}k_{\lambda}=$
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$\overline{\lambda}A^{*}k_{\lambda}\neq S^{*}A^{*}k_{\lambda}$ and $(\overline{\lambda} - S^{*})A^{*}k_{\lambda}\neq 0$ . Hence there is vector $y$ such that
$((\overline{\lambda}-S^{*})A^{*}k_{\lambda}, y)\neq 0$. Thus

$\langle$ $A$ , (A $-S$) $y$ $\otimes k_{\lambda}\rangle$ $=(A(\lambda-S)y, k_{\lambda})=$ ( $y$ , (A $-S^{*})A^{*}k_{\lambda}$ ) $\neq 0$ .

On the other hand if $B\in \mathcal{W}(S)$ then (A $-S^{*}$ ) $B^{*}k_{\lambda}=0$ since $B$ commutes with
$S$ and $B^{*}$ commutes with $S^{*}$ . Therefore $\{\mathrm{A},$ $(\lambda-S)y\otimes k_{\lambda}\rangle=0$ . $\square$

In general, the reflexivity and the hyperrefiexivity are not hereditary, but, in
this case using property A and $\mathrm{A}_{1}(1)$ (see [7]) it is not hard to show that

Proposition 3.2. [22] Let $\mathcal{M}\subseteq A(\mathrm{D})$ be a $w^{*}$ -closed subspace. Then $\mathcal{M}$ is
reflexive.

On the other hand

Proposition 3.3. [3] The space of all Toeplitz operators $\mathcal{T}(\mathrm{D})$ is transitive.

Proof. Let $f_{)}g\in H^{2}(\mathrm{D})$ and $f\otimes g\in[perp] \mathcal{T}(\mathrm{D})$ . Then, for all $\varphi\in L^{\infty}(\mathrm{T})$ , we have

$0=\langle T_{\varphi}, f\otimes g\rangle$ $=\langle T_{\varphi}f, g\rangle$ $= \int\varphi f\overline{g}dm$ .

Since the equality holds for all functions $\varphi\in L"(\mathrm{T})$ thus $f\overline{g}=0$ as a function in
$L^{1}(\mathrm{T})$ . Since $f$, $g$ $\in H^{2}(\mathrm{D})$ thus both functions $f$ , $g$ can not be equal to 0 on the
set of positive measure on T. Hence $f=0$ or $g=0$ thus $[perp]^{\mathcal{T}(\mathrm{D})\cap F_{1}=}\{0\}$ . $\square$

If we consider not rank-one but rank-two operators, the space of Toeplitz
operators is ”close” to reflexivity.

Proposition 3.4. [3] The space of all Toeplitz operators $\mathcal{T}(\mathrm{D})$ is 2-reflexive.
Proof. By characterization (5) of Toeplitz operators, if $A\not\in \mathcal{T}(\mathrm{D})$ there is rank-
two operator $T_{z}x\otimes T_{z}y-x\mathfrak{H}$ $y$ which is not zero on $A$ , but zero on $\mathcal{T}(\mathrm{D})$ . $\square$

The following dichotomy between transitivity and reflexivity of Toeplitz op-
erators holds.

Theorem 3.5. [3] Let $B$ $\subseteq \mathcal{T}(\mathrm{D})$ be a $w^{*}$ -closed subspace. Then the following
are equivalent:

(1) $B$ is reflexive,
(2) $B$ is not transitiv\^e

(3) there is $f\in L^{1}(\mathrm{T})$ such that $\log|f|\in L^{1}(\mathrm{T})$ and $\int fgdm=0$ for all $g$

such that $T_{g}\in B$ .

The condition (1) and (2) give the dichotomy while the condition (3) gives

full characterization of a reflexive subspace of Toeplitz operators. There is also
an extension of Theorem 3.2.

Theorem 3.6. [3] Let $B$ be $w^{*}$ -closed subspace such that $A(\mathrm{D})$ $\subseteq B\subsetneq$ $\mathcal{T}(\mathrm{D})$ .

Then $B$ is reflexive.
As a consequence of the above there are two following results
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Example 3.7. The subspace
$S^{*n}A(\mathrm{D})=\mathrm{s}\mathrm{p}\mathrm{a}\mathrm{n}\{S^{*\mathrm{n}}, S^{*n-1}, \ldots, S^{*}, I, S, S^{2}, \ldots\}$

is reflexive.

Example 3.8. Let E $\subseteq \mathrm{T}$ , such that 0 $<m(E)<$ 1 and $\chi_{E}$ denote the
characteristic function of the set E. Then $T_{XE}A(\mathrm{D})$ is not reflexive.

The natural direction of study is extending reflexivity results to hyperreflex-
ivity. Theorem 3.1 was improved to hyperreflexivity by Davidson and next the
hyperreflexive constant was sharpened in [13].

Theorem 3.9, [9, 13] Let S be the unilateral shift. Then $\mathcal{W}(S)$ is hyperreflexive
and $\kappa_{\mathcal{W}(S)}<13$ .

The proof of this theorem is not so elementary as in reflexivity case. The
Nehari’s theorem is strongly used. It says that

$||H_{\varphi}||=$ dist( $\varphi$ , H2 (3)) for $\varphi\in L^{\infty}(’\mathrm{F})$ ,

where $H_{\varphi}$ $\in$ $B(H^{2}(\mathrm{D}), L^{2}(\mathrm{T})\ominus H^{2}(\mathrm{D}))$ is a Hankel operator defined as
$ff_{\varphi}f$ $=P_{L^{2}(\mathrm{F})\ominus H^{2}(1\mathrm{D})}.(\varphi f)$ for $f\in H^{2}(\mathrm{D})$ .

Now we can ask whether Proposition 3.4 can be strengthen. In [1, Proposition
5.2] Arveson constructed the projection $\pi$ : $B(H^{2}(\mathrm{D}))arrow \mathcal{T}(\mathrm{D})$ , which has the
property that for any $A\in B(H^{2}(\mathrm{D}))$ the operator $\pi(A)$ belongs to the $w^{*}-$

closed convex hull of the set $\{T_{z^{n}}^{*}AT_{z^{n}} : n\in \mathbb{N}\}$ . Using this projection it can be
shown that

Theorem 3.10. [14] The space of all Toeplitz operators $T(\mathrm{D})$ is 2-hyperreflexive
and $\kappa_{2}(\mathcal{T}(\mathrm{D})\leq 2$ .

Proof. Let $A\in B(H^{2})_{7}$ then

$d(A,T) \leq||A-\pi(A)||\leq\sup_{n\in \mathrm{N}}||A-$
$T_{z^{n}}^{*}AT_{z^{n}}||$

$= \sup_{n\in \mathrm{N}}\sup\{|\langle(A-T_{z^{n}}^{*}AT_{z^{n}})f, g\rangle| : f, g\in H^{2}, ||f||=||g||=1\}$

$= \sup_{\mathrm{n}\in \mathrm{N}}\sup\{|\langle Af,g\rangle-\{Az^{n}f, z^{n}g\rangle| : f, g\in H^{2}, ||f||=||g||=1\}$

$= \sup_{n\in \mathrm{N}}\sup\{|tr(A(f\otimes g-z^{?\mathrm{t}}f\otimes z^{n}g))| : f, g\in H^{2}, ||f||=||g||=1\}$ .

Note that rank$(/\otimes g-z^{n}f\otimes z^{n}g)\leq 2$ and $||f\otimes g-z^{n}f\otimes z^{n}g||_{1}\leq 2$ .
Therefore the last expression is less than or equal to 2 $\alpha_{2}(A, T)$ . Hence $T$ is
2-hyperreflexive with constant $\kappa_{2}(T)$ $\leq 2$ . $\square$

To extend the result above to any subspace of Toeplitz operators we need an
extra property, property $\mathrm{A}_{1/2}(1)$ , of $\mathcal{T}(\mathrm{D})$ , for definition and the proof see [14].

Corollary 3.11. Every $w^{*}$ -closed subspace consisting of Toeplitz operators is
2-hyperreflexive with constant at most 5.
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Compering the above results the following problem arises:

Problem 3.12. Which reflexive subspaces of $T(\mathrm{D})$ are hyperreflexive?

It is worth to add that, in the context of Theorem 3.5 the Bergman shift was
investigated in [8].

4. TOEPLITZ OPERATORS ON THE BIDISC AND THE UNIT BALL

We can also consider Hardy spaces $H^{2}(\mathrm{D}^{2})$ , $H^{\infty}(\mathrm{D}^{2})$ on the bidisc $\mathrm{D}^{2}$ and the
projection $P_{H^{2}(\mathrm{D}^{2})}$ : $L^{2}(\mathrm{T}^{2})arrow H^{2}(\mathrm{D}^{2})$. For $\varphi\in L^{\infty}(\mathrm{T}^{2})$ we define a Toeplitz
operator with a symbol $\varphi$ as

$T_{\varphi}f=P_{H^{2}(\mathrm{D}^{2})}(\varphi\prime f$ } for $f\in H^{2}(\mathrm{D}^{2})$ .

Then the multiplication operators by independent variables can be written as
$(T_{z_{i}}f)(z_{1}, z_{2})=z_{i}f(z_{1}, z_{2})$ for $f\in H^{2}(\mathrm{D}^{2})$ , $\mathrm{i}=1,2$ .

The space of all Toeplitz operators we denote by $\mathcal{T}(\mathrm{D}^{2})$ and the algebra of
analytic Toeplitz operators by $A(\mathrm{D}^{2})=\{T_{\varphi} : \varphi\in H^{\infty}(\mathrm{D}^{2})\}$ , which is equal to
$\mathcal{W}(T_{z_{1)}}T_{z_{2}})$ .

Similarly like in one variable case we have the following characterization (see
[19, Proposition 3.3] $)$

(7) $T(\mathrm{D}^{2})=\{A\in B(H^{2}(\mathrm{D}^{2})) : A=T_{z_{i}}^{*}AT_{z_{\mathrm{i}}}, \mathrm{i}=1, 2\}$ .

Theorem 3.1 and Proposition 3.3 can be generalized to bidisc situation.

Theorem 4.1. [17, 19]
(1) The algebra $A(\mathrm{D}^{2})=\mathcal{W}(T_{z_{1}},T_{z_{2}})$ is reflexive.
(2) The subspace $\mathcal{T}(\mathrm{D}^{2})$ is transitive.

The proof of reflexivity of $A(\mathrm{D}^{2})$ is similar to the disc case. Note that the set
$\{k_{\lambda_{1},\lambda_{2}}=(1-\overline{\lambda}_{1}z_{1})^{-1}(1-\overline{\lambda}_{2}z_{2})^{-1} : \lambda_{1}, \lambda_{2}\in \mathrm{D}\}$ is dense in $H^{2}(\mathrm{D}^{2})$ and that
the functions $k_{\lambda_{1},\lambda_{2}}$ are joint eigenvectors for $T_{z_{t}}$ , $\mathrm{i}=1,2$ .

Thus the following problem arise:

Problem 4.2. Horn to characterize reflexive subspaces of $T(\mathrm{D}^{2})Q$

In the contexts of hyperreflexivity of $A(\mathrm{D})$ (Theorem 3.9), we can ask about
hyperreflexivity of $A(\mathrm{D}^{2})$ . As we have noticed, one of the tools for the proof of
hyperreflexivity of $A(\mathrm{D})$ was the Nehari’s theorem.

In [5], [i1] it was shown that the Nehari ’s theorem can not be extended to

bidisc case. Thus we have the following prob $\mathrm{l}\mathrm{e}\mathrm{m}$ .

Problem 4.3. Is $A(\mathrm{D}^{2})$ hyperrefifiexive?

The characterizations (5) was the main tool to prove Proposition 3.4 thus (7)

allows us to see that

Theorem 4.4. The space of all Toeplitz operators on the bidisc $T(\mathrm{D}^{2})$ is 2-

reflexive.
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The main tool to prove 2-hyperreflexivity of the space of Toeplitz operators
on the disc was the Arveson’s projection. In [20] the existence of the similar
projection was shown for a bidisc using two-variable Banach limit. Hence the
2-hyperreflexivity can be show $\mathrm{n}$ .

Theorem 4.5. [20] The space of all Toeplitz operators on the bidisc $T(\mathrm{D}^{2})$ is

2-hyperreflexive and $\kappa_{2}(T(\mathrm{D}^{2}))\leq 2$ .

The two-variable generalization of the disc $\mathrm{D}$ is not only bidisc $\mathrm{D}^{2}$ , but also
the two dimensional unit ball $\mathrm{B}^{2}$ .

Let $H^{2}(\mathrm{B}^{2})$ and $H^{\infty}(\mathrm{B}^{2})$ be the Hardy spaces on the ball $\mathrm{B}^{2}$ . Let us denote
by $P_{H^{2}(\mathrm{B}^{2})}$ a projection from $L^{2}(\partial \mathrm{B}^{2})$ onto $H^{2}(\mathrm{B}^{2})$ . Similarly as for the disc
case we can define a Toeplitz operator. For $\varphi\in L^{\infty}(\partial \mathrm{B}^{2})$ we define an operator
$(T_{\varphi}f)$ $=P_{H^{2}(\mathrm{B}^{2})}(\varphi f)$ for $f\in H^{2}(\mathrm{B}^{2})$ . We keep notation $A(\mathrm{B}^{2})$ for analytic and
$\mathcal{T}(\mathrm{B}^{2})$ for all Toeplitz operators in the ball $\mathrm{B}^{2}$ .

It is known that

Theorem 4.6. [19, 18]
(1) The algebra $A(\mathrm{B}^{2})$ is reflexive.
(2) The subspace $T(\mathrm{B}^{2})$ is transitive.

Moreover, we get by [6] and [10, Corollary 2.13 and 2.14] the following

Theorem 4.7. The algebra $A(\mathrm{B}^{2})$ is hyperreflexive,

Hence we can state the following problem.

Problem 4.8. Horn to characterize the reflexive subspaces of $T(\mathrm{B}^{2})^{g}$

5. $2$–HYPERREFLEXIVITY OF GENERALIZED TOEPLITZ OPERATORS

The idea of generalized Toeplitz operators comes from replacing in the char-
acterization (5) the backward shift $T_{z}^{*}$ by any contraction. Precisely, for given
contractions $S$, $T\in B(H)$ , an operator $X\in B(?4$ } is called a generalized
Toeplitz operator with respect to $S$ and $T$ if $X=SXT^{*}$ . This type of oper-
ators was investigated in [21]. The space of all such operators we denote by
$\mathrm{T}(\mathrm{S},\mathrm{T})=\{X\in \mathrm{B}(\mathrm{H}) : X=SXT^{*}\}$ . Note that this characterization implies
$w^{*}$-closeness of $\mathcal{T}(S, T)$ .

In [18] this idea was extend ed to two variables. Having in mind characteriza-
tion (7) of Toeplitz operators on the torus we can set the following definition.
For given pairs of commuting contractions $S_{1}$ , $S_{2}$ and $T_{1}$ , $T_{2}\in B(\mathcal{H})$ , an oper-
ator $X\in B(74)$ is called a generalized Toeplitz operator with respect to pairs
$S_{1}$ , $S_{2}$ and TU T2 if $X=\mathrm{S}\mathrm{i}\mathrm{X}\mathrm{T}\mathrm{f}$ and $X=S_{2}XT_{2}^{*}$ . The space of all such opera-
tors we denote by $T(S_{1}, S_{2};T_{1}, T_{2})=\{X\in B(\mathcal{H}) : X=S_{1}XT_{1}^{*}, X=S_{2}XT_{2}^{*}\}$ .
This space is also $w^{*}$-closed.

The reflexive behavior of the space of generalized Toeplitz operators $\mathcal{T}(S, T)$

depends on contractions $S,T$ (the same we can tell about two $\mathrm{v}$ ariables case).
For example, if the underling Hilbert space is the Hardy space on the unit circl$\mathrm{e}$
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and $S=T=T_{z}^{*}$ then $\mathcal{T}(T_{1}^{*}, T_{2}^{*})=\mathcal{T}(\mathrm{T})$ is transitive. On the other hand,
the space $T(S, T)$ might be even reflexive. For example if $S=T=I_{H}$ then
$\mathcal{T}(I_{H}, I_{H})=B(\mathcal{H})$ which is reflexive.

In [20] the linear projection $\pi$ : $B(\mathcal{H})$ $arrow \mathrm{T}(5, T)$ and projection $\pi:B(\mathcal{H})arrow$

$\mathcal{T}$( $S_{1},$ $S_{2;}T_{1},’\overline{\mathit{1}^{l}}_{2}\}$ with the similar properties as Arveson’s projection were con-
structed. Hence we can estimate the reflexive behavior by

Theorem 5.1. [20] Let S, T $\in B(\mathcal{H})$ be contractions. Then $T(S,$T) is 2-hyper-

reflexive.
We have also a two variables version of Theorem 5.1.

Theorem 5.2. [20] Let $S_{1}$ , $S_{2}\in B(\mathcal{H})$ and $T_{1}$ , $T_{2}\in B(\mathcal{H})$ be two pairs of
commuting contractions. Then $T(S_{1}, S_{2\}}.T_{1},T_{2})$ is 2-hyperreflexive.
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