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1 Trace inequalities of Tsallis entropy

We define g-logarithm function as follows;

zim1—1

1—¢

, (220,¢20,¢# 1)

In,z =

Then we have the following properties;

(1) lim,; In, 2z = log 2. (in uniformly)

(2) In,zy = Ingz +In,y + (1 —q) In,zlng y.
(3) In,z: concave in z for g > 0.

Definition 1 (Tsallis entropy) For density operator p on a finite dimen-
sional Hilbert space H, Tsallis entropy S,(p) is defined by

Trip? — pl
S:[(p)'_—_'—:{lﬁ___q“p_l? <(J203(1#1)
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Proposition 1 We have the following properties;
(1) limg—1 S,(p) = =Triplogp|.
(2) Sy(o1 @ pa) = S,(p1) + Sqlp2) + (1 = 0)F4(p1)S4(p2)-

Lemma 1 S,(p) <ln,d, (d=dim%H).

Proof. Since In, x is concave, we have

d

b; 2 b
Dr;(AIB) - —Zai 11’1,1 a,—/ _>_ —'h'lq(z (Lja—’> = 0.

i=1 J =1
We put A = {a,}, B = {u;}. u; = % (1<j<d). Then
D,(A|B) = —d*1(S,(A) —In,d) > 0.

Thus S,(A) < In,d. | q.e.d.

Lemma 2 If f is a concave function satisfying f(0) = f(1) =0, then
|f(t+s) = f(2)] < max{f(s), (1 — )},
where s € [0,1/2],t € [0,1],0 < s+t < 1.

Proof. We put

r(t) = f(s) = f(t+s) + f(D).
Then
()=~ (t+s) + ().
Since f' is a monotone decreasing function, r (t) > 0. Thus we have r(t) > 0
by 7(0) = 0. Therefore f(t +s) — f(t) < f(s). We also put

0(t) = f(t+s)— f{t)+ f(1=3s).
Then

£ty =7(t+s)-f(t)

Since f is a monotone decreasing function, ¢ (¢) < 0. Thus we have £(2) > 0
by €{1 — s) = 0. Therefore —f(1 —s) < f(t + s} — f(t). Thus we have the
result. ' g.e.d.
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Lemma 3 If |u —v| < 1/2, then |n,(u) = n,(v)] < n,(Ju —v]),
q_
;, g€ 0,2, wve01]

where n,(x) = -

Proof. Since 1, is a concave function with 7,(0) = 7,(0), we have

Ing(t + 8) — ny(t)] < max{n,(s),n,(1 — s)}
for s € [0,%] and t € [0, 1] satisfying 0 <t +s < 1 by Lemma 2.

Since nq(m)‘ is a monotone increasing function on [0,¢"/(~9] and ¢/~ < 1
for ¢ € (0,2].

max{77(1(3)7 ’7(1(1 - S)} = T](}(S)'
Thus we have the result by letting u =t + s and v = t. ' g.e.d.

Lemma 4 Let \; > X\ > -+ > A, be eigenvalues of Hermitian matriz A and
i1 > g > - >, be eigenvalues of Hermitian matriz B. Then we have the
following;

Tr|A - Bl > Z N — il

Theorem 1 (Generalized Fannes’s inequality) For two density operators
o1, pa on H and q € [0,2], if |pr — p2lly < g0, then

18,(p1) = Sylp2)l < llox = p2ll{1ng d + n,(llor = p2ll1),
where d = dimH and || Ay = Tr{|Al}.
Proof. Let A > ... > 2D e eigenvalues of p;.

We set

From Lemma 2.

1S,(p1) = Sy(p2)| < Z Y =7, AN <D maley)-

By In,(zy) = In,x + z'~%1n,y and Lemma 1. we have
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d

d d g
¢ 6,- 6
Zm(é.;) = - E ejlnqej _ g{_ E €J hlq('g—lé)}
J= i=1

=1
d ¢! d eq ¢
- 3 I s di g
J=
d
= 611277:1( ) +1,(€) < €?lngd +7y(e).
=1

Therefore we have
1S,(p1) — Sy(p2)| < €'n, d + n,(e).

From Lemma 3, we have |lp; — p2/li = €. And 7,(x) is monotone increase on
x € [0,¢"3=7]. In addition. #7 is monotone increase on z € [0,2]. Thus we
have theorem.

q.e.d.

Since lim,_.; ¢t/0-9 = 1/e, we have

Corollary 1 (Fannes’s inequality) For two density operators p1, pa on H,
if |1 — pa2ll < 1/e. then

|S1{p1) = Si(pa)] < lpr = palls log d+m(|lp1 — palli)

where Sy(p) = =Tr[plogp], m(z) = —zlogz.

2 Operator inequalities of Tsallis relative op-
erator entropy

We change the notation (A =1 — ¢). That is, for A € (0,1],

z* =1
T

Inyz =

Definition 2 (Tsallis relative operator entropy) For A > 0,B > 0,\ €
(0,1], Tsallis relative operator entropy Th(A|B) is defined by

T\ (A|B) = AV In\(A"12BA™YH) A2,



Proposition 2 we have the following properties;

(1) limyo Th(A|B) = S(A|B) = A% log(A/2BA~1/?) 412,
(2) T\(adlaB) = aT\(A|B), a € RT.

(3) If B<C. then T\(A|B) < T (A|C).

(4) Ta(A; + As|By + Ba) > Th(A1|Br) + Ta(A2|By).

(5) Th(ceAy + BAs|aBy + Bs) > aTx(A1]B1) + BTa(As2|By).
(6) T\(UAU*|{UBU*) = UT\(A|B)U".

(7) ®(TH(A|B)) < Th(®(A)|®(B)), where U is an unital positive linear map.

Remark 1 Same properties are shown for a more general case by Fugii et.al.

Solodarity AsB = AY2f(A™Y2BATY2)AY2 for operator monotone f.

Since \ R
=1 2t =1
<1 <
5 = ogx < 5

for z > 0, \ > 0. we have the following.

Proposition 3 For A> 0,B > 0, € (0,1], we have the following;

T \(A|B) < S(A|B) < T\(A|B).

Since

1
l—=<Imz<z-1
x

for x> 0,0 < X < 1. we have the following.

Proposition 4 For A > 0,B > U,;\ € (0,1], we have the following;

A—AB'A<T\(AB)<B-A

Since ) . 1
z

Ml - —)+Inp—<Ime < T o1-2Mny -

o e o o

for « > 0,2 > 0,0 < A < 1, we have the following.
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Theorem 2 For A>0,B > 0,a > 0, € (0,1}, we have the following;

Aﬁ,\B — }'Aﬁ/\‘lB + (1!1,\ }')A < T,\(A[B) < l‘B —A— (h’l) }-)Aﬂ\B,
« (8] (e} (8%

where Af\B = AV2(A12BA1/2)N AL,

We have the following by taking A — 0, a = 1, respectively;

Corollary 2 For A > 0,B > 0,a > 0, we have the following;
(1—loga)A— éAB'lA < S(A|B) < (loga—1)A + zi—B‘

For A > 0, B > 0, we have the following;

A—-AB 'A< S(A|B)<B- A

Lemma 5 For X >0,Y > 0,a € R, we have

(XQY)=X"9Y"

Theorem 3 For Ay, As, By, By > 0, ) € (0, 1], we have the following;

T(A1@As|Bi©By) = Ta(A1|B1)@As+A1@Ta(Az| Ba)+ATa (A1 B )@T\ (A2 Ba).

Proof. From Lemma 5, we have for X > 0,Y > 0,\ € (0, 1],
In(XeY) = InX)eI+I1e(In\Y)
—i—,\(ln)‘ ;\r) DY) (h’l,\ Y)
By putting X = Al—l/zBlAl_l/g, Y = A;l/ngAgl/z and by multiplying A}/z @
Aé/ ? from hoth sides. we have the theorem. q.e.d.

Corollary 3 For Ay, As, By, By > 0, we have

S(A1 @ As|By @ By) = S{A1|B1) @ Ay + A1 ® S(A2|Bs).
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Since we put By = By = I, A; = p;. we have the following;
Corollary 4 (pseudo additivity) For py, ps, we have

Sx(pr ® p2) = Salp1) + Salpa) + ASa(p1)Sa(p2).

Corollary 5 From Theorem § we have the following inequalities;
(1) For A€ (0,1} and 0 < A; < B; (i =1,2), we have

(a) Ty(A1 ® As|By @ By) 2 ATa(A:]B1) @ T\(As|Bs).

(b) Ty(A1 @ A3|B1 @ By) > Ta(A1|B1) @ Ay + A1 @ T\(A2|Bs).
(2) For A€ (0,1] and 0 < B; < A; (1 = 1,2), we have

(c) Ta(A; @ As|By ® Bs) < AT\ (A;|By) @ T\(A3|Bs).
(d) T)\(Al & Ag‘Bl ®Bg) > TA<A1iB1) ® Ag + Al €2 TA<A1iBg)

3 Trace inequalities of Tsallis relative entropy

Definition 3 (Tsallis relative entropy) For density operators p, o, Tsallis
relative entropy is defined by

T?‘{p _ pl—/\o./\

5 }, X e (0,1].

Di(plo) =

Theorem 4 D,(plo) < =Tr[T)(p|o)].
Proof. We remark that

AﬁuB = Al/‘z(A_l/QBAAl/g)“Al/?

is o power mean. By Theorem 3.4 in Hiai-Petz 3], we have
Tr(eqe”] < Trlelt=AteB],

for any « € [0,1]. We put A = logp, B = logo.
Tr|pf,o) < Trleler " Hoer™],

We apply Golden-Thompson inequality

Trle*H] < Trlee”]
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for any Hermitian operators A, B. Then we have
T?,[elogpl““‘+logfr“} S T,’,‘[elogpl”“elog(‘r"] — T,,.[pl—ao_a].
Thus we have
T,),{pl/Z(p—l/i?a.p—l/i’)wplf?.} < T’I"{plma(fﬂ].
q.e.d.

Corollary 6 (Hiai-Petz) Tr[p(logp — logo)] < =Tr(plog(p~2ap1/?)].

Definition 4 (Tsallis relative entropy) For positive operators A, B and 0 <
A < 1, we define
TrlA - A'~*B*
D,(ap) = TAZATET

Theorem 5 (Generalized Bogoliubov inequality) For positive operators
A, B and 0 < X < 1. we have the following;

TriA] - (Tr[A)(Tr(B])*

Dy(A|B) > 3

Proof. It follows by the application of the Holder's inequality:

(TrXY) < TrIX Ty

for 1 < s t<oo, 1/s+1/t=1. q.e.d.

Corvollary 7 (Peierls-Bogoliubov inequality) For positive operators A, B,
we have the following;

Tr[A(log A —log B)] > Tr[A](log Tr[A] — log Tr[B}).
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