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Ground State of the Nelson Model

ALIEE R R FBEE R AR e« AR # (Itaru Sasaki)
Department of Mathematics, Hokkaido University

1 The Nelson Model

We consider the ground state problem of the Nelson model. The Nelson
model is a quantum mechanical model which describes the dynamics of some
particle and a scalar Bose field. In this paper, we consider only in the case
that the particle number is one.

In this paper, we consider two kind of the Nelson models. The first type
Nelson model is the standard Nelson model which appeared in [8]. The second
type is the Nelson model in a non-Fock representation which introduced by
Araifl]. ‘

The Hilbert space of the Nelson model is defined by

F = L}R%) @ F,

where
o0

Fo :=@

n=0

X L (®Y)

3

is the Boson Fock space over L?(R?*)(see [10]). Any state of the Nelson model
is described by a non-zero vector in F.

For the Boson mass m > 0, we define a function wy(k) := vk? +m?2.
The function w,,(k) defines a nonnegative self-adjoint operator on L*(R*).
The n-Boson Hamiltonian wiﬁ] is defined by

winl ::Zﬂ@---@ﬂ@ﬁ@ﬂ@---@n,
j=1

which is a self-adjoint operator on ®”*L?*(R?*). The free Hamiltonian of the
Bose field Hy(m) is defined. by the direct sum of all n-Boson Hamiltonian:



Figure 1: Spectrum of Hy{m)

where wig] = 0. The operator Hy,(m) is a nonnegative self-adjoint operator

on Fy. The vector £ := (1,0,0,...) € F is unique eigenvector of Hy(m)
and o{Hy(m)) = {0} U [m, co)(Figure 1).
For f € L*(R3) we define a closed operator a(f)* on Fy by

Da(f)") := {‘I’ & Al nllSef U < °°} ’

n=1

(a(fy )™ = /nS.f @ ¥, ¥ e D(a(f)"),

where S, is the symmetrization operator on ®”L?(R®). The operator a(f)*
is called a creation operator. We set a(f) := (a(f)*)* the adjoint of a(f)".
The operator a(f) is called an annihilation operator. The operator

1
V2

is called a Segal field operator, and is self-adjoint. For z € R® and p €
L*(R3) N D(|k|~*/?) we define v(z) € L*(R?) by

D5(f) = —=(alf) +al(f)*)

v(z)(k) == v(z, k) := (5%375 lf;ﬁf/)z ik

The Hilbert space F can be identify with the fibre direct integral of Fy:

57
F=[ Fdz (1)
R3

In this identification the operator

6°(v) = ]R @ &, (u(z))dz @)

gives a self-adjoint operator on F. In the context of physics, the function p
is called a ultraviolet cutoff function. The most important example for p(k)
is xa (k) which is a characteristic function on the ball {k € R*|k| < A}. The
positive constant A is called a ultraviolet cutoff.

Let V € L (R3) be a external potential for the particle. In this article,

loc
we assume that
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Figure 2: Spectrum of H,

IN.1] There exist constants a < 1 and b € R such that
V2Pl < all (=) PP + B9, ¥ € CF(RY),
where V_(z) := — min{0, V(z)} is the negative part of V.

Hypothesis[N.1] defines a semi-bounded symmetric quadratic form

(, Hp(V)) := (6, =00) + [V ull? = V201, o € CR(R?).

That quadratic form uniquely defines a semi-bounded self-adjoint oper-
ator, and we denote that operator by the same symbol Hy(V). The self-
adjoint operator Hy(V) is a Schodinger operator defined as quadratic forms.
The typical example of V satisfying [N.1] is

V(z) = -C/lz|, V(z)=Cz? (C>0).

In the first(Coulomb) case, it is well known that H, has negative eigenvalues
{ea}2, and o(Hy) = {en} U [0, 00) (Figure 2).
We call
Hy(m) := H, ® 1+ 1® Hy(m),

the free Hamiltonian. Ho(m) does not include the interaction term between
the particle and the Bose field. Therefore we can find spectrum of Ho(m)
easily:

 o(Ho(m)) =(A+ u € RIA € o(Hy), p € o(Hy(m))}
Up(HO(m)) x{)\ +pe Rl)‘ € (’p(Hp)> ue Gp(Hb(m))} = ap(Hp)-

In the Coulomb case, we draw o(Hy(m)) at Figure 3.
The Hamiltonian of the standard Nelson model H, has the following
three parts:
H) = H,(V)® 1+ 1® Hyp(m) + ¢%(v).

the second term Hy,(m) is the free Boson Hamiltonian with Boson mass m,
and the last term ¢®(v) is the interaction Hamiltonian between the particle
and the Bose field. For the ultraviolet cutoff function p, we assume



min{eo + m, 0} 0

bt

embedded eigenvalues
Figure 3: Spectrum of Hy(m)

[N.2] |k|~1/2p € D(wm"?).

Note that, if the Boson mass m > 0 then w;;! is bounded, so Hypothesis[N.2]
" holds. In the case that m = 0 and p = x4, Hypothesis[N.2] holds.
We define another Hamiltonian

HY = Hy (V)@ 1+ 18 Hi(m) + ¢2(G) = Va(#) @ 1+ Wo1,  (3)

where G(z, k) := v(z, k) — v(0, k) € L*(R®) N D([k[~'/?), Vin(2) is the multi-
plication operator by the function

Vn(z) = Re(w;l/zv(O),w;mv(a:)),

and Wy, = Hw,}l’/zv(O)H2 is a constant (note that, by [N.2], v(z),v(0) €
D(wi/®)).

The Hamiltonian of the quantum system must be self-adjoint. About the
Nelson model, we can easily prove the self-adjointness of these Hamiltonian:

Proposition 1.1. Assume that [N.1] and [N.2]. Then H), and HY, is self-
adjoint on D(H, ® 1+ 1® Hy(m)) and bounded below. Moreover HY and

flx is essentially self-adjoint on any core for H, @ 1+ 1® Hyp(m).

Definition 1.2. We say that the infrared reqular condition holds if and only

if
k|72 € D(wyY),

and we say that the infrared singular condition holds if and only if

k|75 ¢ D(wy),

When the massive case m > 0, w;! is bounded, so the infrared regular
condition holds. In the case m = 0 and p = xa, it is easy to see that
\k|=272]k|"1xa ¢ L*(R®), so this case is infrared singular.

The following proposition means that infrared regular condition lead to
the equivalence between HY and H,:

18
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Proposition 1.3. Assume [N.1] and [N.2]. Suppose that the infrared regular
condition holds. Then the Hamiltonian HY, is unitarily equivalent to H,,.

Proof. By the infrared regular condition, the operator T;, := exp[—il ®
®5(iv(0)/wnm)] is a unitary operator on F, and we have
1
T Hy(m)T;, = Hy(m) — 1® @5(v(0)) + 5{v(0), wn'v(0)),
T 8®(0) Ty, = ¢°(v) + Relw;'v(0), v(2)),

where we use a formula(see [2, Lemma 4-44 and 12-5]). Obviously 7;, com-
mutes H,. Therefore HY, = T, H Ty, . |

For ¥ € D(Hy(m)), we define a Fock space valued function a(k)¥ by
a(k)¥ = (IO (&), V2UD(k, ), ..., v/n¥™(k,),...).
Next we define a distribution on the Fock space F,, by
i e L% -
(a(k)* @)™ .= 7 > 8k — kYYD, ki, s k).
=1

Here § is the Dirac delta function. The a(k)’s and a(k)*’s satisfy the following
"formal’ CCR relations:

[a(k)’ a(k,)*] = 5(k - ki)$
la(k), a(k")] = [a(k)", a(k')"] = 0.

we define
b(k) := a(k) — \—}_Ewm(k)“lv((), k),
b(k)" = a(k)* — %wm(k)‘lv((), k).

The second term of b(k), b(k)* is constant for each k € R®. Hence b(k)’s and
b(k)*’s satisfy the formal CCR relations:

[6(k), b(K')"] = 6(k — K),
[b(k), b(K")] = [b(k)", b{K")"] = 0.
By using a(k), we write the Hamiltonian H as
(U, HY ) =(¥, H, @ 10) + / wm(k)(1® a(k) T, 1® a(k)¥)dk

R3

n /ﬂ;g ]igffl Re—z‘k:f: @ a(k)¥, ¥) + (¥, e " ® a(k)\ll)] dk,



and H), can be written as

(¥, B w) =<‘1:,Hp®n\p>+/ Wi (B) {1 ® b(k)T, 1@ b(k)T)dk
R3

pk)

T Jes TR

[(e™** @ b(k)T, ) + (¥, @ b(k)¥)] dk

a(k),a(k)* is called the Fock representation of the CCR. When the in-
frared regular condition holds, b(k), b(k)* is unitarily equivalent to the Fock
representation of the CCR, but in the infrared singular case, b(k), b(k)* is not
unitarily equivalent to the Fock representation of the CCR(see [2, p.202}).
By this reason, when the infrared singular condition holds, we call that the
operator HY is the Nelson Hamiltonian in a non-Fock representation.

2 Existence of Ground State

Let H be self-adjoint and bounded from below. We call the real value
Eo(H) = inf o(H) the ground (state) energy of H. If Eo(H) is an eigen-
value of H, the corresponding eigenvector is called a ground state of H. We
set

EY(m) :=info(Hy), EY(m):=info(H})

the ground state energy of HY, and HY, respectively.
Proposition 2.1. Assume [N.1] and [N.2]. Then

EV(m) = EY(m)

for all m > 0.

Proof. In the case m > 0, by Proposition 1.3, HY is unitarily equiva-

lent to HY. Hence EV(m) = EV(m) for m > 0. Let m > m' > 0,
then we have HY(m) > HY(m') > HY(0). Therefore, by the variational
principle EV(m) > EV(m) EV(0). Hence llmm_,+gE (m) exists, and
im0 EV(m) > EV(O) It is easy to see that limy_4o HY ¥ = HY ¥ for all
¥ € D(H,)®D(Hy(0)), where & means algebraic tensor product Therefore
H,, converges to Hy in the strong resolvent sense. ([9, Theorem VIIIL.25}).
Similarly H V converges to Hﬂ strong resolvent sense. Hence we have the
inverse inequality limpy_40 EY(m) < EV(0) and limg 40 EY(m) < EV(0)
([9, Theorem VIIL.23)).
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excited state orbit

lower orbit

Figure 4: All excited states are unstable

The problem we consider here is

Problem. Do HY and HY have a ground state?

In the case m > 0, the free Hamiltonian Hy(m) has a discrete ground state
(see Figure 3). Therefore by the regular perturbation theory, the massive
Hamiltonian HY (m > 0) has a ground state for sufficiently small ||5]|. But
we show that the massive(m > 0) Hamiltonian H), has a ground state for all
coupling constant ||]]. In the proof about existence of massive ground state,
we use a localization estimate technique which is developed by M. Griesemer,
E. Lieb, and M. Loss [4]. The condition to have a ground state we give here
is essentially same as GLL criterium[4], but our condition contains the case
of the oscillator(V = Cz?, (C,a > 0)).

In the massless case m = 0, all eigenvalue of the free Hamiltonian Ho(m =
0) embedded in the continuum(Figure 3), so we can not apply the regular
perturbation theory for any perturbation. Since the embedded eigenvalue
may vanish by any small perturbation, the analysis of ground state for Hy,
HY is difficult.

When there is no interaction between the Bose field and the particle, all
excited states are stable because they are eigenvectors of the free Hamiltonian
Hy(m = 0). However, when the particle interact with the Bose field, the
excited state particle should emit a Boson and fall to a lower orbit (see Figure
4). Actually, in an atom, any excited state electron emits light spontaneously
and falls to a lower orbit. Namely, all excited states should be unstable.
Therefore, we expect that HY and H] have no eigenvalue above the ground



state energy.

Incidentally, for a natural potential V, 1 believe that the Hamiltonian
HY and H{ have no singular continuous spectrum. Then all spectrum of
the Hamiltonian is absolutely continuous spectrum if the Hamiltonian has
no ground state. In this situation, for any state ¥ € F, the time evolution
of ¥ converge weakly to 0 by the Riemann-Lebesgue Theorem, which is a
contradiction. Because, the particle must remain near the origin as Figure
4.. Therefore if the particle Hamiltonian H, has ground state and the Nelson
model is physically natural, the Hamiltonian of the Nelson model should have
a ground state.

In 2001, A. Arai showed that the Nelson Hamiltonian in a non-Fock rep-
resentation HY has a ground state, if V(z) > c|z|% c¢,a —2 > 0 and the
infrared singular condition holds(see[1]).

However, J. Lorinczi, R. A. Minlos and H. Spohn showed that if V{(z) >
c|z|®, ¢, — 2 > 0 then the standard massless Nelson Hamiltonian H{ has
no ground state in the infrared singular case({7}).

In Mathematically, the existence of ground state is a phenomenon de-
pending on the representation of the CCR. In the context of this article, in
the infrared singular case, the Arai’s Nelson Hamiltonian HY is physically
natural more than the standard Nelson Hamiltonian Hy .

Let § € CP(R?), § € C*(R®) be functions which satisfy the following
properties (i), (ii):

() 0<6(z),0(z)<1, 0()}?+0@)?’=1 zeR.

RS

For R > 0 we define particle cutoff functions 0p, fr as follows:
8r(z) = 6(z/R), Or(z):=0(z/R).

We abbreviate 8 ® 1, 51; ® 1 to Og, §R. We define a minimal energy in the
state where the particle is separated more than R away from the origin:

(0%, HY Bz ¥)

i L
veQ(AY) B2
Hgmgo 0R Y|l

0p¥, HY0p¥) ~
EnY Hudn®) B rym) =
e N OSTE

18R Tli#0

EOO(R, m) =

where () means the form domain. Note that Ex(R, m) and E’w(R, m) are
monotone increasing in m > 0. If m > 0, since fz commutes with T,,, we

23



24

have Ex(R,m) = Eo(R, m). By the variational principle, we have
Ew(R,m) > EY(m), Ew(R,m)>E"(m),
for all m > 0.
Definition 2.2 (binding condition). We say the inequality
EV(m) < limsup Eq (R, m)

) R—o00
the binding condition.
Now we state that the existence theorem of the massive Nelson model;

Theorem 2.3 (Existence of ground state (m > 0)). Let m > 0. Assume that
[N.1] and [N.2] hold. Suppose that the binding condition for m > 0 holds.
Then HY has a ground state.

Proof. This proof is based on [4]. In this proof, we take the space represen-
tation for the Bosons. Namely, we consider

H:=1@D(F HYH' 1 T(F)
=H, @ 1+ 1® dlh(v/~A + m?2) + ¢®°(F'v),

where F is the Fourier transform on the one Boson space, I' is the second
quantization of second type, dI}, is the second quantization operator (see [2]),
and

(Flo)(z,y) = (2711')3 /Ra li(i’f/)ze—ik{x—y)dk,

where z is the coordinate of the particle, and y is the coordinate of the

o~

Boson. For P > 0 we set 7,(y) := 0(y/P), j2(y) := 6{y/R) the Boson cutoff
functions. We define a new creation and annihilation operators

o(f) = aliaf) ® 1+ 1@ aliaf),
e9)” = a(j19)* ® 1+ 1®a(jag)*, f.g< LR,

which is a closed operator on F, ® Fy,. Let

Fe = fg,ﬁn C Fo ® Fy,
Fum = L@, clg1)" ()" @ Qg € LARY),j = 1,..., k. k € N}.

We define a operator Uy : F, — F, ® Fy, by

D(Ug) = Fan,
Usa{g1)" - a{g)"Q =clq1)" - clgr)" 2 ®Q,



where Fg, means the finite particle subspace (see [2]). It is easy to see that
Uy is isometry, and U := Uy is isometric operator from Fy, to Fy, ® Fy, with
Ran(U) = F;. Therefore

U*U =15, UU” = orthogonal projection on F;.

We define a dense space by D := C°(R¥)®Fg, (C5°(R?)). By the IMS local-
ization formula, we have that

f;tr = HRI:IHR + ggﬁg}g - -;—lVQRP — %]Vﬁﬁlz, | (4)

in the sense of quadratic form on D. The key of the proof is the following
lemma

Lemma 2.4. For all ¥ € D, we have that
(0, 0rHORY) = (U, U {H @ 15, + 1 ® Hy(m)}Udr¥)
+o(1)(¥, (H — EV(m) +1)¥),

in the sense of quadratic form, where the operator in {} is acting on the
Hilbert space F@Fy, and o(1) is a constant such that limpo0 limp_,o0 o(l) =
0.

We omit the proof of this Lemma(see [4]). By this lemma and (4), we
have

H > 6gU{EV(m)® 1+ 1@ m(1 - P,)}Ubg
+Eoo(R,m)8% + o(1)(H — EY (m) +1),

in the sense of quadratic form on D, where P, is the orthogonal projection
on . Therefore

H — EV(m) >(Ex(R,m) — EY (m))0% + mb}, — m8rU*I ® P,Ub
+o(1)(H + 1).

Note that T := 0zrU*1® P,Ubg = (I'(j1)8r)?. Since Hy(m) is massive, hence
Tis (-A®1+1® Hy(m) + 1)-form compact(more precisely see [4]). By
0% + 6% = 1, we have that

(Ex(R,m) — EY (m))% + mb% > min{Ew(R,m) — EV(m),m}.
Therefore we get

(1 - o(1))H — EY (m) + mT > min{Ew (R, m) — E"(m),m} + o(1),
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in the sense of the quadratic form on Q(H), where we done the closed ex-
tension of the quadratic form. Using the condition [N.1],[N.2], one can show
that T is H -form compact. So T does not change the essential spectrum of
H, and hence

(1= 0(1))S(H) — EV(m) > min E(R,m) — EY(m),m+o0o(1), (5)

where ¥ means the bottom of the essential spectrum. Now we take the limit
limp_ye0 iMp_seo, and we get

S(H) - EV(m) > 0.
This inequality means that H has a. discrete ground state. |

 For existence of the massless ground state, we assume these following
conditions:

[N.3] There exists an open set S C R?, such that supp p = S. Moreover, for
alln €N
Sp :={i € S||k| < n}

has the cone-property (see [6]).
[N.4] There exists a function 7 € H'(R?), such that p = xs7.
[N.5] p is continuously differentiable in S\{0}.
[N.6] |k|=3/2p, |k|~1/2|Vp| € LP(S) for all p € (1,2).

Theorem 2.5 (Existence of ground state m = 0). Let m = 0. Assume
conditions [N.1]-[N.6]. If the binding condition holds, then H{ has a ground
state.

Remark. If limyz)0 V(2) = 00, one can show that limp o Boo(R, m) = o0
Therefore the binding condition holds. If limy o V(z) =0, V € Lj, (R®)

and H, has a negative ground state. Then the binding condition holds (see
[4, Theorem 3.1]).

Remark. fp = x, satisfies the conditions [N.1]-[N.6].
Proof. See [12] i
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