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We discuss some problems studied in diverse contexts but with a common
theme; the use of Fourier analysis to evaluate norms of som $\mathrm{e}$ special

matrices.

Let $\ovalbox{\tt\small REJECT}_{n}$ be the space of $n\mathrm{x}$ $n$ matrices. For $A\in\ovalbox{\tt\small REJECT}_{n}$ let

$||A||= \sup\{||Ax|| : x\in \mathbb{C}^{n})||x||=1\}$ ,

be the usual operator norm of $A$ . Let $A\circ X$ be the entrywise product

of two matrices A and $X$ and let

$||A||_{S}= \sup\{||A\circ X|| : ||X||=1\}$ .

This is the norm of the linear map on $\ovalbox{\tt\small REJECT}_{n}$ defined as $X\mapsto A\circ X$ . Since
$A\circ X$ is a principal submatrix of $A\otimes X$ , we have $||A\circ X||\leq||A\otimes X||=$

$||A||||X||$ , and hence

$||A||_{S}\leq||A||$ .
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Let $\lambda_{1},$ . . . $7\lambda_{n}$ be distinct real numbers and let

$\delta=\min_{i\neq j}|\lambda_{i}-\lambda_{j}|$ .

Let $H$ be the skew-symmetric matrix with entries $h_{r\epsilon}$ defined as

$h_{rs}=\{\begin{array}{l}\mathrm{l}/(\lambda_{r}-\lambda_{s})r\neq s\mathrm{O}r=s\end{array}$ (1}

Motivated by problems arising in number theory, Montgomery and Vaughan

[5] proved the following.

Theorem 1. The norm of the matrix H is bound ed as

$||H||\leq c_{1}/\delta$ , (2)

where

$c_{1}$
$= \inf\{||\varphi||_{L_{1}}$ : $\varphi$

$\in L_{1}(\mathbb{R})$ , $\varphi$
$\geq 0$ , and $\hat{\varphi}(\xi)=\frac{1}{\xi}$ for $|\xi|\geq 1\}.(3)$

Here $\hat{\varphi}$ stands for the Fourier transform of $\varphi$ . Further,

$c_{1}=\pi$ . (4)

A very special case of this theorem is “Hilbert’s inequality” Let

$\lambda_{j}=j_{7}$ $j=1,2$ , $\ldots$ . Then the (infinite) matrix $H$ defined by (1) is

called the Hilbert matrix. Hilbert showed that $H$ defines a bounded
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operator on the space $\ell_{2}$ and $||H||<2\pi$ . This was improved upon

by Schur who showed that $||H||=\pi$ . Different proofs of this fact were

discovered by others, one using Fourier series by Toeplitz. (Matrices

structured as $H$ are now called Toeplitz matrices.)

In particular, this shows that the inequality (2) with $c_{1}=\pi$ is sharp

(in the sense that if it is to hold for all $n_{7}$ then no constant smaller than

$\pi$ would work).

Now suppose we have two real $n$ -tuples $\lambda_{1}$ , . . . , $\lambda_{n}$ and $\mu_{1}$ , . . . ’ $\mu_{n}$

where for all $\mathrm{i}$ and $j$ we have $\lambda_{i}\neq\mu_{j}$ . Let

$\delta$ $= \min_{i_{2}j}|\lambda_{i}-\mu_{j}|$ .

Let $\mathrm{A}I$ be the matrix with entries $m_{rs}$ defined as

$m_{rs}= \frac{1}{\lambda_{r}-\mu_{s}}$ . (5)

Motivated by problems arising in perturbation theory, Bhatia, Davis and

Mclntosh [1] proved the following.

Theorem 2. The norm $||M||_{S}$ is bounded as

$||M||_{S}\leq c_{2}/\delta$ , (6)

where

e2 $= \inf\{||\varphi||_{L_{1}}$ :: $\varphi\in L_{1}(\mathbb{R}))\hat{\varphi}(\xi)=\frac{1}{\xi}$ ffoorr $|\xi|\geq 1\}$ . (7)
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The constant $c_{2}$ tad been evaluated earlier by Sz-Nagy [6] and we

have
$c_{2}= \frac{\pi}{2}$ . (8)

Note that the infimum in (7) is over a class of functions larger than the

one in (3).

It has been shown by McEachin [4] that the inequality (6) is sharp

with $c_{2}=\pi/2$ , and the extremal value is attained when the points $\{\lambda_{i}\}$

and $\{\mu_{j}\}$ are regularly spaced.

The resemblance between the two problems is striking and it is a

natural curiosity to ask whether good expressions for the norms $||\mathit{1}’I||$

and $||H||_{S}$ may be found to supplement what is known.

In [1] the authors considered also the case where $\{\lambda_{i}\}$ and $\{\mu_{j}\}$ are

$n$ -tuples of complex numbers with the same restriction as before, $\mathrm{v}\mathrm{i}\mathrm{z}.$ ,

$\delta=\min_{i,j}|\lambda_{i}-\mu_{j},|>0$ .

They proved the following.

Theorem 3. Let $M$ be the matrix (with complex entries) defined as in

(5). Then
$||M||_{\mathit{8}}\leq c_{3}/\delta$ , (9)
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where

$c_{3}= \inf\{||\phi||_{L_{1}}$ : $\varphi\in L_{1}(\mathbb{R}^{2}),\hat{\varphi}(\xi_{1}, \xi_{2})=\frac{1}{\xi_{1}+\iota\xi_{2}}$
, for $\xi_{1}^{2}+\xi_{2}^{2}\underline{>}1\}$ .

(10)

An attempt to calculate the constant $c_{3}$ was made by Bhatia, Davis

and Koosis [2]. These authors first obtained another characterisation of

$c_{3}$ . Let $C$ be the class of all functions $g$ on $\mathbb{R}$ that satisfy the following

conditions

(i) $g$ is even,

(ii) $g(x)=0$ for $|x|\geq 1$ ,

(iii) $\int_{-1}^{1}g(x)$ $=1_{7}$

(iv) $\hat{g}\in L_{1}(\mathbb{R})$ .

The following theorem was proved in [2]

theorem 4.
$c_{3}=$ $\inf$ $|\hat{g}|$ : g $\in C\}$ . (ii)

Using this the following estimate was derived in [2]

$c_{3} \underline{<}\frac{\pi}{2}$ $\frac{\sin t}{t}dt<$ 2.90901 (10)
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The constant $c_{2}$ occurs in another context called Bohr’s inequality.

This says that if a function $f$ and its derivative $f’$ satisfy the following

conditions

(i) $f\in L_{1}(\mathbb{R})\mathrm{l}$ $f’\in L_{\infty}(\mathbb{R})$ ,

(ii) $\hat{f}(\xi_{\wedge})=0$ for $|\xi|\leq$ J.

Then
$||f||_{\infty} \leq\frac{c_{2}}{\delta}||f’||_{\infty}$ , (13)

and the inequality is sharp.

Attempts have been made to extend this result to functions of several

variables. Hormander and Bernhardsson [3] have shown that if $f$ is a

function on $\mathbb{R}^{2}$ satisfying conditions akin to (i) and (ii) above, then

$||f||_{\infty} \leq\frac{c_{3}}{\delta}||\nabla f||_{\infty}$ . (14)

With this motivation they tried to evaluate C3. Like the authors of [2],

they too first prove (11), and then use it more effectively to show that

2.903887282 $<c_{3}<$ 2.90388728275228. (15)

It would surely be of interest to find the exact value of $c_{3}$ , especially

since the formulas (4) and (8) are so attractive.

Some other problems remain open. The estimate (6) has been shown

to be sharp by McEachin [4]. The question about (9) does not seem to
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have been addressed. The matrix (5) when $\{\lambda_{i}\}$ and $\{\mu_{\dot{i}}\}$ are points

on the unit circle was considered in [1]. An extremal problem involving

Fourier series instead of Fourier transforms as in (7) and (10) arises in

this case. This too has not been solved.
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