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1 Introduction

The notion of quantum Markov chains was introduced by Accardi in [1]. As
special cases, the notion of quantum Markov states was defined by Accardi
and Frigerio in [2] and that of C*-finitely correlated states was discussed by
Fannes, Nachtergaele and Werner [5]. Further discussions on quantum Markov
states are found in [3], [8] and [10] for example.

In |7], Fidaleo and Mukhamedov showed that the von Neumann algebras
generated by faithful translation-invariant quantum Markov states are factors
of type II; or type III, with A € (0,1]. In the present paper we discuss the
von Neumann algebras generated by C*-finitely correlated states. In the case
where the states are Markov states, it is known ([8], [10] for example) that the
states are unique KMS states, and the exact form of local density matrices is
also known. Hence, we can see that the von Neumann algebras are factors, and
the types of factors can be determined in terms of the local density matrices.
But, in the case where the states are C*-finitely correlated states, we have to
find a different method.

A C*-finitely correlated state is a state on the UHF algebra &), M, defined by
a triplet (€, E, p}, where € is a finite dimensional C*-algebra, F is a completely
positive map from My ® € to € and p is a state on €.

In section 2, we show that a C*-finitely correlated state is a factor state if
and only if it satisfies the strong mixing property. To see this, we look at the
eigenvectors of E(I ® -) with eigenvalues of modulus 1. In section 3, we show



that the factors generated by C*-finitely correlated states are of type I or
type II; or type 1, or type III, for some A € (0,1]. '

2 Equivalent condition for factor

Let 9B8; = My = My(C), the d X d complex matrix algebra, for i € Z and
B be the infinite C*-tensor product ®iEZ B,. We denote B, = ®nEA B, for
arbitrary subset A C Z. The translation  is the right shift on 2. We write
$pum for the localization @By .. The following definition is from [5].

Definition 2.1 A state ¢ on B is called a C*-finitely correlated state if there
exist a finite dimensional C*-algebra €, a completely positive map £ : My®<€ —
€ and a state p on € such that

P(E:®C)) = p(C)
for all C' € € and
HA1® @ An) = p(E(A @ B(4,@ - @ E(4, @ I)--+)))
for all Ay,..., A, € M.

Let ¢ be a C*-finitely correlated state generated by the triplet (€, E, p). For
any n € N, we define the completely positive map E™ from B, ® € to € by

EM(A @ 84,80)=BAQEA4® ®EA&C) )

for all Ay,..., A, € Myand C € € We will also need the linear space €, C €
which is the smallest subspace of € containing / and invariant under F(AQ® -)

for all A € My. Since € is finite dimensional, there exists an integer N such
that

€= {EM(ALm 1) | A€ Bym}.

Moreover, we assume that the triplet (€, F, p) is minimal, that is, € generates
€ in the sense of algebra.

Let (H,m,&) be the GNS representation of ¢. Then, we can extend ¢ to
7(%B)". In the following, we omit =, if there is no confusion. We want to show



the condition that 7(%)” is a factor. To this end, we introduce two subspaces
of €;. We define the subspaces L(E) and L,{E) by

LEYy={Ce €| E{C)=XC, AT}
and
Li(E)={C e | E/(C)=C},

where E; = E(I ® +). Li(E) is the eignespace of E; with eigenvalue 1 and
L(E) is the space generated by eigenspaces with eigenvalues of modulus 1.
From [6], L(E) and L;(F) are algebras containd in the center of €. Moreover,
there exists an integer M such that AM = 1 for any eigenvalue A of E; with
modulus 1.

The following argument is in [6]. For any minimal projection P of Li(E),
we consider the algebra €p = PE€P. Obviously, € = € €p, where the sum is
taken over all minimal projections in Li(E). Since E is a completely positive
map, we have E(M; ® €p) C €p. Therefore, we can define the restriction
Ep: M;®€p — €p. We can assume p(P) # 0. Then, with pp = p(P)p|€p,
we have a triplet (€p, Ep, pp) generating a C*-finitely correlated state ¢p. A
direct expression of ¢p is

¢p(A1 @+ ® An) = p(P) ' p(B(A® @ E(A,® P)-+)) (1)

for all Ay,...,An € My Then, we have the decomposition

¢ = p(P)¢p,

where the sum is taken over all minimal projections in L (E).

Let TI denote the set of minimal projections in L(E). Then, E;|II defines &
bijective map from II to II. For any projection @ in II, we have EX(Q) = Q.
Hence, @ is in Ll(E( )), where E(M) = EM)([®M g .) and we have a
C’*—ﬁmtely correlated state ¢ on a regrouped chain generated by the triplet
(Cq, EQ ,pq), where € and pq are defined as above and E( ) is the com-
pletely positive map from ® M; ® €g to €y defined by

E(‘QM’(A1®A2®---®AM®CQ) =EB(A®E(A:® - ®E(Ay®Cqo):-))
for any Ay, ..., Ay € M; and Cg € €q. A direct expression of ¢g is

do(A @ ® Ay) = p(Q) p(EM (41 @ @ BN (4,0 Q)--))  (2)



for all A;,... ,An € ®£1 M. Then, we have the decomposition

¢=_ p(Q¢q-

Qell

Moreover, ¢q is strongly clustering for M that is,
Tim go(47"M(B)) = B(A)(B)

for all A, B € 8. Indeed, we consider the Jordan decomposition of EéeM )) 7=
PO ), e,
(ESD)r = (AP + Ry),
)

where the sum is taken over all eigenvalues, P\Pyx: = d,x Py and R, is nilpotent
with PyRy = Ry P, = SRy Since [[(ESD)r] < 1 and (ES™); has trivial
peripheral spectrum ([6]), i.e., the only eigenvector of (EéM)) ; with eigenvalue
of modulus 1 is @, By = 0 and P, = Ry = 0 for A with [A| > 1 and A # 1.
Hence, for any € > 0, there exists a number m € N such that || P, — (EézM))}"H <
e. Furthermore, for any A € By ., We obtain

b(4) = pa(E™ (A ® Q) = lim po((Eq" (B (A @ Q)))
Therefore, we have

lim (ES™) (BT (4 ® Q) = ¢o(4)Q.

=00

This implies that ¢g is strongly clustering for v™. In particular, if I = {I}, -
we obtain

Jim (B}(E®) (4@ 1)) = $(A)] ®)

for all A € By .
For each @ € II, we set the projection Q € L(E) by

Q=) {Rell| o =gn}
and the set II by

I={Q|Qel}.



Lemma 2.2 With the above notation, we have
L(E) N & = spanll.

Proof. For any T' € L(E) N &, there exists an element B € By s such that
ECM(B ®I) =T. From the above argument, we have

T = EMM(BQI) = Jim E‘M(E("M) (BaI))

= hm E(E(M) E(nM)(B ®Q))
QEH

= Y $a(B)Q =) ¢a(B)Q. )
Qen Qell
This implies L(E) N € C spanll.

To prove the converse, we show that Q € & for any @ € II. For each
P,Q €11, P # Q implies ¢p # ¢q. Since ¢p and dq are y-ergodic, ¢p # ¢¢
implies that ¢p and @g are mutually disjoint ({4, 4.3.19]). Hence, for any
e > 0, there exists an element A € B|_nar+1,n0 such that |¢pp(A) — 1| < £ and
|6o(A)] < € for any Q € I with P # Q. Since ¢q is ~M_invariant, we can
assume that A € By nu for some n € N. Moreover, from (4), there exists a
number [ € N such that

|EM(EMART) - Y ¢o(A)Q] <e.
Qenl
Therefore we have
1P — EM(EMD (A D))
1P =3 6a(AQ +11 Y ¢olA)Q - EME™O(4 0 D)
Qell Qell
< 2

Since € is closed and EXM(EMM(A @ I)) is in &, we have P € &,. 0O
Now, we have the next theorem.

Theorem 2.3 For any C*-finitely correlated state ¢ generated by the triplet
(€, E, p), the following conditions are equivalent.

(i) =(B)" is a factor.

(ii) ¢ is strongly clustering for ~.

(iif) L(E) N & =CI.

(iv) T = {I}, that is, ¢q’s in (2) with projeclions Q € Il are same.



Proof. (iii} & (iv) follows from Lemma 2.2.

(iif) = (ii). Since L(E) N € = CI implies ¢ = ¢q for any Q € II, ¢ is
strongly clustering for ™. Moreover, ¢ is v-invariant. Therefore, we have
lim G(AMH(B)) = lim Ay ((B) = p(A)S0(B)) = HAIS(B)
for any A, B € B and 0 <1 < k — 1. Hence, ¢ is strongly clustering for ~.

(i) = (iv). For any P,Q € II, P # Q implies ¢p and ¢q are disjoint. This
contradicts Z(7(%B)") = CI. Hence, we obtain II = {I}.

(ii) = (iii). We assume that ¢ is strongly clustering for v. Then, ¢ is strongly
clustering for ¥ and hence ¥ -ergodic. Since ¢q is v -ergodic for any Q € T,
we have II = {I}.

(ii) = (i). Since Z(m(B)") = Myen T (B(co,—nluimee))” (see e.g. [4, 2.6.10]
), for any X € Z(n(B)") with || X || = 1, there exists a sequence {X,} with
Xo € Bymymuniys [ Xnll < 1 and limy e X, = X in the weak operator
topology. We can write

Xo = DY)

for some Yi(n) € B-in),-n} and Zi(") € Bp,i(n)-n+1)- For any element A € By,
p € N, there exists an element A’ € By n; such that

E®(AQI)=EMA QI
We write A’ = 6(A). For any element B,,, B}, € By, with m <n, we have

(Bmé, (I°" ® A)B,.&) = ¢(B;.(I°" ® A)B,)
= (E{")( B’ B!, ®I®” ™ @ EP(A® D))
p(E™(B, B, ® I°™ @ EM{(9(A4) ® I)))
= (Bm¢, (I®" ] 6’(1‘1))3’ €).
Therefore, X! = S>Y,™~ym1(8(Z{™)) converges to X in the weak operator
topology. Moreover, since H(Zi(n)) € BN}, We can write

2N

X, =37 8"y

i=1
for some Sz-(”) € B{_i(n),—n) and a system of matrix units {T;} of By n). Since
X converges to X in the weak operator topology, there exists sotme constant
C > 0 such that | X/ || < C for any n € N. Then, we have []Si(n)ﬂ <C.



From the proof of (3), for € > 0 there exists L € N such that
IEF(EP(A® 1) — (A < | A]

for any A € By, and p € N. Using this uniform convergence, for any
B, B, € By1m we have

(Bné, XBj&) = im (Bué, X}, Bl6)

2N a2N
_ (n) \n / x om) (g
= J’l&z Bmé&, ;Y (T1) Br€) = 1}5&245 (B8~ (T3) Br,)
dQN
= lim 3 p(BmH(s™ @ Bf(E™)(B;,B,, & By (BT 9 1))
i=1
d'ZN dzN
_ (ﬂ) * ! * i (n).n
= nlggozqss ¢(B:BL)(T3) = BB)hmZng

= ¢(B], B' ) lim qb(X') = {(Bm&, ¢(X)B/.£).
Therefore, we obtain X = ¢(X)I. O

By the theorem, for any P, @ € Il such that ¢p # ¢g, ¢p and ¢q are disjoint
and factor states. Therefore, for any P € II, there exists a minimal projection
T in Z(x(B)"), such that

¢p(B) = (£, T€)"H& BTE)

for any B € m(®B)". In fact, T is the support projection of ¢p. We define a
bijective map 1 from II to a set of minimal projections in Z(7(%B)") by

n(P) =
Now, we have the next corollary.
Corollary 2.4 We obtain
Z(n(B)") = span{n(P) | P € 1I}.

In particular, the dimension of the center Z(m(B)") is finite and not greater
than the dimension of the center of €. '



3 Types of factors generated by C*-finitely cor-
related states

In this section, we examine the types of factors generated by strongly clus-
tering C*-finitely correlated states. In the following, we assume that ¢ is a
C*finitely correlated state generated by a triplet (€, E, p) and it is strongly
clustering.

Since ¢ is «y-invariant, we can extend v to w(B)”. Let P be the support
projection of ¢. Then, 7(P) = P. Indeed, ¢(v(P)) = ¢(P) implies 4(P) > P.
Similary, we have y7*(P) > P. This means 4(P) = P. Therefore, we can
define the automorphism ~|P9BP. Here, the normal extension of ¢ to w(B)"
is denoted by the same ¢ and 7(B) is identified with %B.

Let S(n{®B)") be the Connes invariant. The next proposition is in [7]. The
proof is given for convenience.

Proposition 3.1 Let ¢ = §|PBP. Then, we have
S(r(B)")\{0} = Sp(A,2)\{0},

where Ayr 18 a modular operator of ¢F.

Proof. Since 7(*B)” is a factor, we know that S(7(B)") = S(P=x($8B)"P). PBP
is asymptotically abelian with respect to v and ¢F is strongly clustering for
7. Therefore, if a state w on PBP is quasi-containd in ¢¥, then we have
Sp(Agr) € Sp(A,) ([13]). In particular, for a projection @ € 7(B)” with
0 # @ < P, we have Sp(A4r) C Sp(Age), where ¢% = ¢F(Q) 107 (Q - ).
Moreover, ¢* is faithful on Pr(B)"P and P8P is weakly dense in Px(8)"P.
Hence, we have

S(Pm(B)"P)\{0} = Sp(A47)\{0}.
O

In the following, we examine the type of 7(88)". In the case where Sp(A,r) #
{1}, since ¢ is faithful, Sp(A4r) contains a number which is neither 0 nor 1.
Therefore, S(7(3B)") # {0,1}. Hence, 7(B)" is a III, factor for some A € (0,1].

If Sp(Agr) = {1}, then @* is a tracial state on P7r(%8)”P. Hence, P is a
finite projection. Therefore, 7(B)” is not a III factor. If ¢ is faithful, then
7(B)" is a II; factor. If ¢ is pure, then m(B)" is a I, factor. From [6], ¢ is
pure if and only if ¢ is strongly clustering and the mean entropy of ¢ is zero.



Proposition 3.2 If Sp(Aur) = {1} and ¢ is neither faithful nor pure, then
7(B)" is a Il factor.

Proof. From the assumption, ¢ is not pure. Hence, 7(5B)” is a II; factor or
a Il factor. Now, we assume that w(B)” is a II; factor. Then, there is a
faithful tracial state 7 on 7($B)". Since ¢ is not faithful, there exist a support
projection P of ¢ with 0 < 7(P) < 1. Then, we can get the decomposition

7= r(P)r(P) 4 7l = Pyr((I - P)-).

But, since P is invariant under +, this contradicts to the ergodicity of 7. There-
fore, 7(*B)" is a Il factor. O

In the rest of this section, we present examples of III, factors for A € (0, 1]
which are generated by translation-invariant quantum Markov states.

Definition 3.3 [2] A state ¢ on B is said to be a quantum Markov state,
if there exists a conditional expectation £, from By .11y to By, such that
B C ran(E,) and

QS o En = ¢{1,n+1}

for each n € N.

Although the above definition is a bit different from the original one of
Accardi and Frigerio in [2], it is known that both definitions are equivalent
(18])-

In the case where the quantum Markov state ¢ is translation-invariant, we
can assume that B, = idg,, , ® & for some conditional expectation E from
My ® My into My ([10]). Therefore, translation-invariant quantum Markov
states are C*-finitely correlated states.

In the following, we assume that ¢ is a locally faithful translation-invariant
quantum Markov state generated by (E, p) with p = ¢|%; and that ¢ is not a
tracial state. Let ©® = ran(E). Since D is a finite dimensional C*-algebra, we

can write

D = é Mdi'
i=1



10

Let m; be the multiplicity of My, as a C*-subalgebra of M, and we define

P
D =P My,
i=1

¢, =2 ®@B1n-1 ®D and €Y = My, @ By ny @ My, for 1 < z,y <p. From
[3], there exist positive operators Tj; € M, ® My, for any 1 < 4,j < p such
that the density matrix of ¢|€, is written by
Dy = @ p(Im41 )Tiliz ® T;zis @& Eﬂnfl’in' (5)
11 3een5im
Since T;; is positive, we can choose a system of matrix units {egj )} for M, ®
My, and write

RONrC) 30

d:\
et e,

Tz'j = dlag(e
To calculate S(w(B)"), we consider sp(Ay). Since ¢ is faithful, we obtain

sp(24)\{0} = exp(sp(c?)),

where ¢ is the modular automorphism group of ¢ and sp(c?®) is the Arveson
spectrum of o®. Since B is weakly dense in 7(28)", we have

sp(e?) = |Jspe(B)=J U spas(B)

- U U U e

n=l z,y=1 Be&r?

From [2], we know that
ofl&, = AdDY.
Therefore, € is invariant under ¢® and we have

U spse(B) = sp(o?]€5).

BeerY

Lemma 3.4 Let1) be a state on M, with the density matriz D = diag(e™, ... ,e%).

Then the Arveson spectrum of o¥ is written as

sp(o¥) = {t: —t; | 1 < 4,5 <k}
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Proof. This is obvious from the fact that
o? = Ad(D").
O

Since the density matrix of ¢|&, is written as in (5), the density matrix of
G|E2Y is written as

@ p(Imm)Tmiz & Ti2i3 @@ Tin—z'in—l ® Tin—w‘

12y ,i‘nfl

Therefore, we have

sp(o?|Ex)

n—2 n—2
= {ggﬂfi?) 1+ Z tgikiwz) + tt(zi:lw) _ t,(fsz) _ ztgzjtﬂ) - tiin:}ly)
k=2 =2
| all possible 4, 71, gk, 71 }- (6)

Since exp(sp(c?)) = S(=(B)")\{0}, sp(¢?) is a group. Hence, we obtain
sp(c?®) = R or else there exists a number X € (0,1) such that

sp(0?) = (log M) Z.
Let G be a closed subgroup of R generated by
{tg”b) + tgi”“) - tgli?’) - tﬁsi“) | all possible 4, ji}-
Proposition 3.5 We obtain
G = sp(0?)
Proof. By (6), for any 4, ji, we obtain
tﬁm) + tg"i“) - tgf:ig) - tﬁ‘*i“) € sp(o®|Ch™).

Therefore, G C sp(c®). . N
We show the converse. From definition, we obtain tﬁ”‘) — tg-i‘“"‘) € G. Then,

for any

Ja s
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by adding
t}(il'ii) + t§i3i4) _ tiiza'ix) _ tg;’i‘;)
_ (tgi;il) _ t}(:u)) + (t§;324) + t}(:;m) - t;;:stl) _ tg;hi)) €aq,
we have

(tﬁil) + tj(iiliz) + tg'?y) _ t;f:is) _ tﬁ_ish) N t§24y))
+ (tglxﬁ) + t;im) _ tgeizsil) . tg»szm))
= (gl gl glais) gty gl gl i) ¢

J4
Hence, we get sp(c®|€3’) < G. The idea of the above calculation is to
split (zi149y, Tisiay) to (zi1i1, zizt) and (41%2y,%1%4y). The same can be ap-
plied to longer words. For example, split (zi1%2i3y, Zisisiey) to (xiyiy, Ti4t1),
(i149%1,911591) and (i14ay, i196y). In this way, we obtain sp(c?|€2¥) for all 1 <
z,y < pandn €N, so that sp(¢?) C G. O

Now, we define a number A € R to be 1 if G =R or to be t if G = (logt)Z.
Then, we have the next proposition.

Proposition 3.6 With the above definition, if ¢ is not a tracial state, 7(8)"
is a type 111, factor.

It was shown in [7] that 7(B)" is a type III, factor for some A € (0, 1] as far
as ¢ is not tracial. But, the above proposition enables us to determine the A
from the density matrices Tj;’s.
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