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Let B and C be two AW*-subalgebras of an AW*-algebra A. In this talk,
we describe the relative position of B and C in A (e.g., Morita equivalence,
etc.) in terms of AW*-subtriples of A, the normalizer of B and C in A, or
partial *-isomorphisms between B and C' (the definitions will be given below).
Then, under a stronger assumption of B and C being monotone complete, we
show that the set of these AW*-subtriples is embedded naturally in an inverse
semigroup associated with B and C. The key idea is to regard AW™-algebras
and AW*-triples as a generalization of projections and partial isometries.

1 Introduction

If X is a linear subspace of a *-algebra A, the two conditions that X ?2c X =X* (X being
a *.subalgebra of A) and that XX*X C X (we call such an X a subtriple of A) are
regarded as a generalization of the notions of projection (p? = p = p*) and partial isometry
(zz*z = ), respectively. Here, for X, Y, Z C A wewrite XY :={zy:ze€ X,y € Y},
X2 .= XX, X*={z*: z€ X}, and XYZ := (XY)Z = X(YZ). Fora subtriple X of
A the sets B := lin XX* and C := lin X*X (lin denotes linear span) are *-subalgebras of
A, and the relation among B, C and X is viewed as an analogue of the relation among
Murray-von Neumann equivalent projections and the partial isometry implementing the
equivalence.

*From October 1, 2005 or later the author’s affiliation and the English name of the university have
changed due to the merger of three universities.
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If we adjust the above situation slightly, we obtain the notions of strong Morita equiv-
alence for C*-algaberas and Morita equivalence for von Neumann algebras in the sense
of M. Rieffel [7]. That is, two C*-algebra B and C are strong Morita equivalent if there
exist a C*-algebra A containing B and C as C*-subalgebras and a norm closed subtriple
X of A such that B = Iin XX* and C = lin X*X. Two von Neumann algebras B and U
are Morita equivalent if there exist a von Neumann algebra A containing B and C as von
Neumann subalgébras and a o-weakly closed subtriple X of A such that B = i’ XX*
and C = Tin’ X*X. Here _{_}, T}Ta denote respectively norm closure and o-weak closure.
The linking algebra technique ([3]) shows that the definitions of (strong) Morita equiva-
lences above are equivalent to the usual ones, which are defined in terms of imprimitivity
bimodules. |

Subtriples in the above sense arise naturally in the theory of operator algebras, The
following fact, which will be worked out in another paper, was a motivation for considering
them and introducing an inverse semigroup structure of them in [4]. Let A be a von
Neumann algebra and let {X,}4ec be a family of o-weakly closed linear subspaces of A
indexed by a discrete group G such that

X; = Xg-1, Xg1X92 C Xoger V9, 91,92 €G

(such a family corresponds to each coaction of G on A). Then each X, is a subtriple of
A, the algebraic direct sum A = @ . X, with the product and involution inherited
from A, is a G-graded *-algebra, and under a certain technical assumption, A (and A
also if {X,} is associated with a coaction of G) is viewed as the twisted crossed product
B x4, G with respect to a twisted action (#, u) of G on the von Neumann subalgebra
B := X,, and is described in ternis of only B and G. Indeed, it follows from Theorem 1
below that each X, = Bs,B for some s, € PI A (partial isometries of A). If B is o-finite
and properly infinite, then we may take s, so that X; = Bs; = s,B and s; = s4-1, and
@ : G — PAut B (the set of all partial *-automorphims of B, i.e., *-isomorphisms between
reduced subalgebras of B) and u : G x G — PI B are defined by 8, :== Ad s, : sjs,B —
5¢83B, T ++ 5,5}, and u(g1, g2) = Sg,84,(8g.0,)" 50 that b, 0 8y, = Ad u(g1, g2) © Ogyg0> U
satisfies the 2-cocycle condition, and the product and involution in A are given in terms
of (8, u).

The work in this talk was intended to generalize, and simplify the proofs of, part of
the results in [4].

2 Invertible bimodules and normalizers

In this section A denotes a fixed AW*-algebra ([5], [1]), and S(A) denotes the set of all
AW*-subalgebras of A.
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Definition (Invertible bimodule, MR-equivalence in an AW*-algebra).
(i) For B, C € S(A) we call X C A an invertible B-C-bimodule in A if

L(X) = [B* )C’{} C My(A) is an AW*-subalgebra of M(A).

Here M,(A) (the algebra of 2 x 2 matrices over A) is an AW*-algebra ([2]). Then BX +
XCc X, XX*Cc B, X*X CC; hence

(1) X is both a sub-B-C-bimodule and a subtriple of A,

3 left inner product (-, -};: X x X — B, (z, y) = zy",

3 right inner product {-, -)» : X x X = C, (z, y) = =™y,

3 triple product [+, -, -] : X x X x X = X, [z, ¥, 2] == zY"2;

(2) 3h € Proj Z(B) (resp. Ik € Proj Z(C)): My(X) = M(K(X)) = hB, M.(X) =
M(K,(X)) = kC, where Proj(-) denotes the set of projections, Z(-) denotes the center,
K(X) := n XX* (resp. K,(X) := linXX*) is a norm closed two-sided ideal of B (resp.
C), and M(-) denotes the multiplier algebra of a C*-algebra.

We write INV 4(B, C) for the set of all invertible B-C-bimodules in A.

(i) We call B, C € S(4) MR (Morita-Rieffel) equivalent in A and write B~y C
i 3X € INV4(B, C): B = M(X), C = M(X).

Deﬁnition (Normalizer). For B, C € S(A) we call the following sets the normal-~
izer and the regular normalizer of B, C in A, respectively (PL A denotes the set of all
partial isometries in A): :

Nao(B,C):={r € A: 203" CB, z*Bc CC, 5" € B, 2’z € C},
RNA(B, C) = {s € PLAN N4(B, C) : 3h € Proj Z(B), 3k € Proj Z(C) -
h < ss*,k < s*s, s = hs + sk}.

Theorem 1. Let A be an AW*-algebra and B, C € S(4).

(i) For X C A, X € INV4(B, C) <= 3s€ RN4(B,C): X = BsC.
In this case, Mi(X) = Cp(ss*)B, M(X) = Co(s*s)C (Cs(-) and Cc() denote the
the central cover of a projection in B and in C, respectively);

PIX := XNPIA={usv: u€PIB,vePIC, u'u < s5°, vv" < 875, u*u = svv*s*}.
(i) For s,t € RN4(B,C), BsC = BtC <= 3u € PIB, v € PIC: t = usv,
u*ty = 8%, s*s = vv*.
(ili) B ~a C <> 35 & RN4(B, O): Cp(ss*) = 15, Ce(s™s) = 1lc.
(iv) Na(B, C) = B- RN4(B, C)-C = U{X : X € INV4(B, C)}.
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3 Invertible bimodules and partial *-isomorphisms

Definition ((Abstract) invertible bimodule). (i) Let B and C be AW™-algebras.

We call a linear space X an invertible B-C-bimodule if it is & B-C-bimodule and there

exist maps (-, ) : X x X = B, {-, ) : X x X - C such that L(X) = [B* )01 is an

AW*-algebra with the following product and involution:

rfl 331} {bz $2j} _ |:blb2+ (Z1, yo)1 b1za + 7102 } {bl zlJ* _ [b‘{ yl] _

v ol |y e yibo+ays  (, To)e +ac Y oa T o

Here X* denotes the set of all z*, z € X, which is made into a C-B-bimodule by the
following operations:

ret = (Oz)', co'b=(bzc")* (A€C,be B, ceC, zeX).

Then it follows that (-, -}; and (-, -}, satisfy the usual properties of inner products.

(ii) We call two AW*-algebras B and C MR (Morita-Rieffel) equivalent and write
B ~ C if 3 invertible B-C-bimodule X: M;(X) = B, M(X)=C.

We write INV(B, C) for the set of all invertible B-C-bimodules. If, in particular,
B = C, we abbreviate this to INV(B) :=INV(B, B), and call its element an invertible
B-bimodule.

(iii) We call a map 7 : X — Y between X, Y € INV(B, C) a module monomor-
phism if it is a B-C-bimodule map and preserves the inner products (i.e., 7(bzc) = br(z)c,

(r(z), (W) = {z, Y1, {7(z), 7(¥))r = (2, Y)r, Y2,y € X, b € B, c € C). A surjective
module monomorphism is called a module isomorphism.

We call X, Y € INV(B, C) isomorphic and write X 2 Y if 3 a module isomorphism
X =Y.

X € INV(B, C) = X* € INV(C, B), (X*)* = X. Here we define the inner products
in X* by (z*, v*)1 := (2, y)r € C, (&%, ¥*)r := (2, y)1 € B (z, y € X).

Definition (Partial *-isomorphism). By a partial *_isomorphism between
AW*-algebras C and B we mean a *-isomorphism of the form 8 : r(8)Cr(6) — 1(6) Bi(6),
where r(#) € ProjC and [(f) € Proj B. We call the partial *-isomorphism # paositive
(resp. negative) if r(f) € Proj Z{C) (resp. 1(#) € Proj Z(B)); central if it is both
positive and negative; and regular if 3 positive 6;, 3 negative fo: § = 6, ®8,. Here, when
two partial *-isomorphisms 6;, ¢ = 1, 2, satisfy the condition Ce(r(61))Co(r(6s)) = 0 =
Cg(l(61))Cp(I(62)) (hence (r(61) + r(62))C(r(61) + r(62)) = r(6:)Cr(6;) + r(62)Cr(6s),



and similarly for I(-)), a partial *-isomorphism 6; & 6, is defined by

r(Gl €B 92) = 7'(91) -+ T‘(ez), l(91 ) 92) = 5(91) -+ l(ez),
(91 & 62)(5131 + :132) = 61((1?1) + 92(1‘2), z; € 7’(91)’07'(6,)

We write PIsom(B, C) for the set of all partial *-isomorphisms between C and B,
and Plsom(B, C)*, Plsom(B, C)~, Plsom(B, C)°, and RPIsom(B, C) for the sets of all
positive, negative, central, and regular ones, respectively.

Definition (Invertible bimodule associated with a regular partial *-isomor-
phism). For 6 = 6, @0, € RPIsom(B, C) with 6, positive and 6; negative we define
() € INV(B, C) as the set Bl(f;) @ r(6:)C with the following module operation, inner
products, and triple product:

Vbe B,Vce C, V1, y1, 21 € Bl(6:1), VT2, Yo, 22 € r{62)C:

be (21 ® 33) - ¢ = bz101(r(01)c) & 65 (1(62)b)zac,
(z1 @ 29, Y1 ® o)1 = L1y + O2(7213) € B,
(1 ® Z2, 1 ® Y2)r = 67 (zjy1) + 25y € C,
[21 ® T2, 11 DY, 21 B 2] := T1Y121 B Talp 22 = (T1 @ T2, Y1 D 2)i - (21 D 22)
= (2B %2) Y1 DY, 21D Z3)r-

Definition (Equivalence for partial *-isomorphisms). Define 6, 1) € PIsom(B,
C) to be equivalent, § ~ 4, if 3u € PIB, dy € PIC: v*v < r(¢) < Co(v*v), vo* <
r(0) < Co(vv*), B(wv*) = vy, Ylv*vCv*v = (Ad u) o 8o (Adw).

We denote by [6] the equivalence class in Plsom(B, C) containing 8, and by [S] the
set of all equivalence classes containing elements of S C Plsom(B, C).

Proposition 2. If B and C are AW*-algebras, then VX € INV(B, C), 30 €
RPIsom(B, (*): X 2 (f), and hence 3 bijection [INV(B, C)] +— [RPIsom(B, ),
[BsC] +— [nus].

Theorem 3. Let B and C be monotone complete C*-algebras (and hence AW*-
algebras; herc a C*-algebra is called monotone complete if every bounded increasing
net in its self-adjoint part has a supremum).

(i) The following conditions are equivalent:
(1) B ~ C (MR-equivalent);
(2) d6 € RPISOIII(B, G) GB(Z(H)) =1, Cg(?"(e)) = 10;
(3) 36 € Plsom(B, C): as in (2).

(ii) 3 monotone complete C*-algebra D containing B and C as monotone closed C*-
subalgebras: each element of INV(B, C) or Plsom(B, C) is realized via a partial isometry
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of D,ie., VX € INV(B, C),3s € RNp(B, C) (the normalizer of B, Cin D): X = BsC,
V0 € Plsom(B, C), 3s € RNp(B, C): 8 ~ Ads.

(iii) 3 inverse semigroup S (cf., e.g., [6]): [INV(B, C)] & [Plsom(B, C)] is a subtriple
of S. Here T C S is called a subtriple of S if TT'T = T (and so the triple product
[z, y, 2] = zy~'z is defined in T). Moreover the triple products in [INV(B, C)] and
in [PIsom(B, C)] are described in terms of the tensor product of bimodules and the
composition of maps, respectively.

4 AW*-triples

Definition (AW*-triple). (i) Let A be an AW*-algebra. We call X C A an AW™-
subtriple of 4 if 3 B, C € S(A): X € INV4(B, C).

(ii) By an AW*-triple we mean an AW*-subtriple of some AW*-algebra. Here we
identify two AW™*-triples X and Y if 3 triple isomorphism 7 : X — Y (a linear bijection
satisfying the condition '

7([z, y, 2]) = [7(x), 7(y), T(2)}, V=, 9, z € X),
i.e., we consider only the triple products forgetting the bimodule structures.
Proposition 4. (i) Every AW*-triple X is written in the following form:
X=X"eX'eX ™, XtT=Ae XA, X = fA;,
where A;, i =1, 2, 3, are AW*-algebras, e € Proj Ay, Cy,(€) = 14,
dh € Proj Z(A1), 3u€PIA;: he=w", v'u=h = h=0;

f € Proj As, Ca,(f) = 14, f satisfies the condition similar to the above; and the triple
products in Ase, As, fAs are given by [z, y, 2] = zy*2.
(ii) For AW*-triples X, Y, write X+t = Aje, X® = Ay, X7~ = fA;, YTt = Byp,
Y® = By, Y™~ = ¢B; as above. Then 7 : X — Y is a triple isomorphism <=
T(XTH) =Y+ r(X%) =Y° 7(X~~) =Y, 3 *isomorphisms o : A; — By, §: As =
Bs, v : A3 — Bs, Ju € PIBy, ale) = uu*, u*u = p, 3v € By: unitary, 3w € PIB;,
v(f) = wrw, ww* = ¢

71X =al(u, 71X°=8(), 7|X"" =wy().
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