obooooooOoooO 14620 2006 O 26-34

26

Nonreversible Perturbations Accelerate
Convergence™
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ABSTRACT

To sample from distributions in high dimensional spaces or finite large sets di-
rectly is not feasible in practice, especially when the corresponding densities are
known up to normalizing constants only. One has to resort to approximations. A
Markov process with the underlying distribution as its equilibrium is often used to
generate an approximation ("MCMC”). How good the approximation is depends
on the approximating Markov process and on the specific criterion used for com-
parison. One may investigate the convergence properties of some particular Monte
Carlo Markov processes, or compare the convergence rate within a family of Markov
processes (with the same equilibrium) w.r.t. different criteria, or even try to find
optimal solutions in that family. Mathematical problems arising from this approach
are challenging. By simply adding a weighted divergence-free drift to a reversible
diffusion, the convergence to equilibrium is accelerated. In other words, from an
algorithmic point of view the nonreversible algorithm performs better. Note that
two criteria are considered. The analysis is related to the study of antisymmetric
perturbations of self-adjoint infinitesimal generators. The optimal solution is stilil
open. However on torus the rate could be pushed to infinity. As for finite sample
space nonreversible perturbations reduce variance.

1 Introduction

In this talk we consider nonreversible (weighted antisymmetric) perturbations of
reversible diffusions and finite state Markov chains. By simply adding a weighted
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divergence-free drift to a reversible diffusion, the convergence to equilibrium is accel-
erated. In other words, from an algorithmic point of view the nonreversible algorithm
performs better. The analysis is related to the study of antisymmetric perturbations
of self-adjoint infinitesimal generators. As in the Markov chain case, antisymmetric
perturbations of reversible dynamic Monte Carlo methods have variance reduction
effect.

To sample directly from distributions in high dimensional spaces or large fi-
nite sets is not feasible in practice, especially when the corresponding densities are
known up to normalizing constants only. One has to resort to approximations. A
Markov process with the underlying distribution as its equilibrium is often used to
generate an approximation (“MCMC”). How good the approximation is depends
on the approximating Markov process and on the specific criterion used for com-
parison. One may investigate the convergence properties of some particular Monte
Carlo Markov processes, or compare the convergence rate within a family of Markov
processes (with the same equilibrium) w.r.t. different criteria, or even try to find
optimal solutions in that family. Mathematical problems arising from this approach
are challenging. Related works may be found in Amit (1991), Amit and Grenander
(1991), Frigessi, Hwang and Younes (1992), Frigessi, Hwang, Sheu and di Stefano
(1993), Hwang, Hwang-Ma and Sheu (1993), Amit (1996), Athreya, Doss and Sethu-
raman (1996), Gilks and Roberts (1996), Mengersen and Tweedie (1996), Stramer
and Tweedie (1997), Chang and Hwang (1998), Hwang and Sheu (1998, 2000),
Roberts and Rosenthal (2004).

We formulate the diffusion case first. Let U be a given real-valued function
defined in R? satisfying some smoothness conditions. The underlying distribution
7 is assumed to have a density proportional to exp —U(z). The following diffusion
is commonly used for sampling from its equilibrium =,

dX(t) = =VU(X(®))dt + V2 dW(t), X(0) =z, (1)

where W (t) is the Brownian motion in R%. For convenience, 7 will be used to denote
the underlying probability measure as well as its probability density.

If a diffusion is regarded as a useful approach to sampling, then it is natural to
consider a family of diffusions with 7 as their common equilibrium :

dX(t) = =VU(X({#))dt + C(X({£))dt + V2 dW(t), X(0)= o, (2)

under suitable conditions on C(z). Roughly speaking, the conditions are that
div(C{z) exp —U(z)) = 0 and there is no explosion in (2), ie. | X{t) | does not
tend to infinity in a finite time. A strict definition of explosion can be found on
p.172 of Ikeda and Watanabe (1989). It is easy to pick such a C. For example
C(z) = S(VU(z)), for any skew symmetric matrix S. We are interested in how
C(z) influences the convergence of the diffusion (2) to equilibrium.

Hwang, Hwang-Ma and Sheu (1993) focused on a special case, the study of a
family of Gaussian diffusions where 2U(z) = (~Dz) -z, —-VU(z) =Dz, C(z)=
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SDgz, and where D is a strictly negative-definite real matrix and S is any skew
symmetric real matrix. In this case, n(x) is Gaussian with mean 0 and covariance
matrix —D~! and X(t) is an Ornstein-Uhlenbeck process with drift (D + SD)z.
Using the rate of convergence of the covariance of X (¢) (or together with EX(¢)) as
the criterion, the reversible diffusion with drift Dz (i.e. C = 0) is the worst choice
and the optimal solution is obtained in this setup.

If C{z) is not zero, then the corresponding diffusion, regarded as a Markov
process, is nonreversible. In general it is difficult to analyze nonreversible processes.
We just cite some related works in different settings. In Geman and Geman (1984),
Amit and Grenander (1991), Hwang and Sheu (1998) the convergence properties of
some nonreversible Gibb samplers is studied. The ergodicity of systematic sweep in
stochastic relaxation, again nonreversible, is investigated in Hwang and Sheu (1992).

Two comparison criteria are considered here. Basic questions such as the ac-
celeration of convergence and the consistency of the comparison w.r.t. these two
criteria are answered.

Let Lo denote the infinitesimal generator of the diffusion X(t) from (2) and for
C =0, let L = Ly. Let T(t) = ¢**¢ denote the corresponding semigroup,

T()f(z) = BF(X(®) = [ pit,z,9)f(y) dy,

where p(t,z,y) is the transition density if it exists. Note that the index C is sup-
pressed from T'(t) and p(t, z,y) for the sake of brevity.

We define now the spectral gap of Lo in L*(n) as the first comparison criterion.
Since E, f(X(t)) — w(f) for any starting point z, one may consider the average case
formulation by averaging the difference (E,f(X(t)) — n(f))® over the starting point
w.r.t. m ‘

/(Exf(X(t))~7f(f))27T(x) de=||T()f —n(f) |* < constant || f—=(f) |*®, (3)

for some A less than or equal to 0, where 7(f) means integration of f w.r.t. 7. Now
consider the worst-case analysis over f, then || T(t) — 7 || < constant e*. The
infimum over such X’s indicates the convergence rate. This shows that the spectral
radius of T'(1) in the space {f € L?(r), #(f) = 0} is a measure of convergence rate
of diffusions to equilibrium. Furthermore the weak spectral mapping theorem holds
between Lg and e’ (Nagel (1986) p.91). Hence, the spectral gap of L¢ in L2(r)
defined by

AMC) = Sup{real part of p : p in the spectrum of Le, u # 0} (4)
is a good candidate to serve as a criterion for the comparison of convergence rates.

The constant in (3) may depend on C. If instead we reformulate the inequality
in (3) without the constant term,

IT@F —n(fY I <1 F=n(f) [le¥,



for some A, then the inequality depends only on the behavior of the process around
time 0 and the rate will be the same regardless of perturbations (Chen (1992) p.312).
Our interest here is instead in the large-time behavior.

We will always assume that there is no explosion for the diffusions under consider-
ation. For simplicity we just assume that the following assumption holds throughout
this paper,

(A1):C and VU arein L'(r)n0 Ll (x), for some [ > d;

lac

for feCP /(C’-Vf)wzo.

Under (A1) there is no explosion in the diffusion (2) and the transition density
exists with 7 as its equilibrium distribution (Stannat (1999), Bogachev, Krylov and
Rockner (2001)). For f e CF, f(C -V f)r = 0 means that C is weakly weighted
divergence free. This is essential for 7 to be an invariant measure.

Intuitively L¢ is a perturbation of a self-adjoint operator L by an antisymmetric
operator C'- V in L%(m). We are interested in how the spectrum changes. Note that
in general this perturbation is neither small nor relatively compact. For general
references, refer to Kato (1995), Yosida (1980). L is not self-adjoint for nonzero C.
The spaces considered are real vector spaces of real functions. However for spectral
analysis, one has to consider complex vector spaces. Let C; denote Le — L and C..
denote L_c — L.

We assume that the reversible diffusion (1) w.r.t. 7 has an exponential conver-
gence rate. Equivalently L has a spectral gap in L*(x), i.e.

(A2): A0} <0.

Note that the exponential convergence rate assumption is imposed only on the
reversible diffusion. As a consequence of Theorem 1 the perturbed diffusion (2)
has a better exponential convergence rate. In other words, adding an extra drift
accelerates convergence.

For the nonexplosion of (1), (A2), and A(0) in the discrete spectrum of L to all
hold, the following is a sufficient condition (Reed and Simon (1978)):

1/2| VU (z) |* - AU(z) — oo as | z |- co. (5)

From a probabilistic point of view, one may consider the rate of convergence of
p(t,z,y) to 7 in variational norm as a comparison criterion. The variational norm
of two probability measures is defined as the supremum of the difference between
the two probabilities over all events. This may be regarded as some kind of worst
case analysis. Note that the variational norm equals one half of the L*(dy) distance
between the two corresponding densities. Hence, p(C) defined below is used as a
comparison criterion,

p(C) = Inf{p: / | p(t,z,y) — w(y) | dy < g(z)e'}. (6)

29



30

g{z) may depend on C. Usually g is assumed to be essentially locally bounded or
locally integrable w.r.t. 7. It needs further study for unrestricted g. Theorem 2 and
Theorem 3 show that p(C") < A(C) and equality holds for the reversible case. Again
using p(C) as the comparison criterion, adding an antisymmetric perturbation does
help. This result is consistent with the previous one.

It is not clear how the perturbations affect p(C) directly. We compare p(C) and
p(0) via A(C) and A(0).

Results for the above two criteria are given in section 2. Details, proofs, and
discussion for other criteria can be found in Hwang, Hwang-Ma, Sheu (2005).

One may ask for the existence of an optimal C or whether InfA(C) = —co. We
have answer only for torus case, it is still open even for R? or §%. We consider anti-
symmetric perturbations of Laplacian on n dimensional torus, namely, the Brownian
motion is perturbed by a divergence free drift C to accelerate the convergence to its
equilibrium, the uniform distribution on torus.

The approach goes as follows. Some specific form of C’s are chosen. For each
picked C, InfiA(kC) is characterized explicitly. From the characterzation, one can
show that InfA(C) = —oo, the infimun is taken over general C, Hwang, Pai (2005).
This result is Theorem 4.

Now we turn to the dynamic Monte Carlo method. Assume that S is a finite
set. We are interested in the evaluation of Y ,cg f(s)7m(s), denoted by #(f). Let
Xo, X1, ey Xn, ... be a Markov chain with transition matrix P and invariant proba-
bitity 7. Under suitable condition on P, it is known that $3°72; f(X) converges to
7(f) and the corresponding asymptotic variance v(f, P) depends only on f and P.

For any two real-valued functions f and g defined on §, the weighted inner
product < f, g > is defined by

<f.g>=) f(s)g(s)m(s).
€8
The following result is well-known, see e. g. Theorem 4.8 in Iosifescu 1980. Under
suitable condition on P, for any initial distribution ug,

,n!'lm nE e["Zf(Xk ""W )] =’U(f,P)’
where the asymptotic variance v(f, P) equals

<{I =Py I+ P)(f —a(f), f—n(f) >.

The inverse is taken in the space N' = {f : n(f) = 0} and the 7(f) appearing in
f — r(f) means constant function with value 7(f).

Regarding P as a theoretical algorithm and without exploiting any prior knowl-
edge on any specific f, the worst case analysis for reversible P was investigated in
Frigessi, Hwang, Younes (1992) where the optimal P is characterized.

For any fixed reversible P, we consider the perturbation of P by adding an
antisymmetric (w.r.t. the above mentioned inner product) @ with row sums of Q
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being zero and entries of P + @ being positive. The perturbation reduces variance,
this is Theorem 5. Details can be found in Hwang, Hwang-Ma (2005).

2 Results

If A(0) is in the discrete spectrum of L in L? (7r), then by definition its corresponding
eigenspace, denoted by M, is finite dimensional. In this section our analysis assumes

7(f) =0, f € L*(n).

Theorem 1. If (A1) (A2) hold, then A(C) < A(0). Furthermore if A(0) is in the
discrete spectrum of L, then equality holds if and only if C or C_ leaves a nonzero
subspace of M invariant.

Remark. It seems that a stronger result should hold: if A(C) = A(0), then A(0) is
the real part of an eigenvalue of Lg. If this is the case, Theorem 1 has a stronger
form: the equality holds iff C.. leaves a nonzero subspace of M invariant. If (5) holds,
then (L —a)™* is compact for e in the resolvent of L (Reed and Simon (1978})). And
the stronger statements hold. ,

Remark. As mentioned in the Introduction, the existence of the transition density

is not needed here. A weaker assumption than (Al) suffices, e.g. C and VU are in
LY{m)yn LE (7} (Stannat (1999)).

loc

Under (A1) the transition density p(¢, z, y) exists. Let p;(z, y) denote p(t, z,y)/7(y);
pe(z,y) is locally Holder {Bogachev, Krylov, Rockner 2001].

Theorem 2. In addition to (A1) (A2) if VU and C are locally bounded, then
there exists a locally bounded function g such that

/ | pe(z,y) — 1| 7{y)dy < g(z)eP "

Moreover, p(C) < MC).

Remark. The local boundedness assumption in Theorem 4 is not needed for the
reversible case, since [ p?(z,y)7{(y)dy = pa2(z, z) is locally bounded.

The following theorem implies that for the reversible case, p(0) = A(0).

Theorem 3. For the reversible case, if there exists some g in L}, (7) such that

[ a5 =1 7wy < g@)e?,
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then || T(t) — 7 ||< .

We are going to consider the perturbation of Laplacian by divergence free vector
field on n-torus. '

Assume C(z) = pcos(q-z), for z = (21, ..., 2,) € R*, p,q € Z" satisfying p-q = 0.
It is not difficult to check that C is divergence free. "

Theorem 4.
klim AMkC) =sup{— | m|* m p=0,m € Z" - {0}}.
Hence by properly chosen C, the spectral gap can be pushed to —ooc.

For the finite sample space, we are interested in the variance reduction for dy-
namic Monte Carlo evaluation of expection.

Theorem 5.

Let P be a stochastic matrix reversible w.r.t. 7. If P has a cycle of length larger
than two, then there exist an antisymmetric ¢} such that P+ @ is a stochatic matrix
and v(f, P + Q) < v(f, P). Equality holds for rare situations.
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