obooooooooo 14620 2006 O 63-78

On the convergence rate of 2-dimensional low
discrepancy sequences |
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1 Overview

We will consider a sequence {zx}%_, which is uniformly distributed on [0, 14,
that is, for any interval J € [0, 1],

lim #{z; € J|i <N}
N-—oco N

= |J}.
Here, |J} is the Lebesgue measure of J. The discrepancy of {zy}%., is defined
by

#{QZZE.]IZSN}
N

D(N) = sup

. —m},

here sup; is taken over all intervals Hle[O, L) (0 <l; <£1). It is conjectured
that for any sequence {zn}¥~;

(log N)¢
N} > —— ]
D(N)>O ( ~
We call {zny}%-; a low discrepancy sequence if it satisfies

b - o (1822,

For a low discrepancy sequence {zn}$%_y, D(N)/ (iﬁ)ngi) is bounded. In
quasi Monte Carlo methods, we need the sequence with small bound. Thus we
are interested in this rate for concrete sequences.

In the following sections, we consider the case d = 2, and introduce two low
discrepancy sequences and make numerical experimentations of their bounds.
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2 Halton Sequences (multi—-dimensional van der
Corput sequences)

In this section, we will review the construction of Halton sequences, one of the
most famous low discrepancy sequences. Let p be a positive integer and ng N
be k-th number of p-adic expansion of N: N = 322 ng yp*. Using this ng w,
we construct zy by an equation Ty = 3 g e np F L. Then {zn}F-; isa
low discrepancy sequence called van der Corput sequence. For d dimensional
cases, take different primes p1,p2,--- .04, and expand N to ps-adic for every
j=1,2,...d. For each expansion, we set z}; as above:

oo
7o —k—1
mN—E:kNp] .
k=0

1 2 d o0 ’ « .
Then the sequence {(m NI TNy T N)} N 18 proved to be a d-dimensional low
discrepancy sequence.
Let us consider an example. For 2-dimensional case, choose p; = 2 and

po = 3. Then

py = 2, binary expansion p =3, ternary expansion
1— Ol—>x1—~01(9)- 01-—-—>:E1——01(3) g
33— 1l—=ux “011(9) = 10 — 3 2001(3)
4 — 160 — 1 = 0.0019) 11—z =01l =

H -mcmw

Then, a Halton sequence is:

L1y (L2} (81Y (14
25314’31419?8197

3 Mori’s Sequences

In this section, we introduce Mori’s sequence, which is two dimensional se-
quence constructed by the inverse image of symbolic dynamics. To express
the dynamics, we prepare some notations. Let p be an integer, and A =
{0,1,2...,p — 1}. A is the set of p-adic digits. We treat one sided infinite
sequence = TiTp- Tk -+, (Zi € A), and identify it with 3 7 Ia:np_” €
[0,1]. We denote by (z ) the i-th symbol of a sequence T = ZyTg - Tp--
For two sequences z and y, we define the sum z = z + y by digitwise sum:
(z); = (z);+ (y); (mod p),i=1,2,.... We express the shift operator by 8, that
iS, @IICL‘Q = ToTg 0t

For a finite word w = ajas - - - a; and an infinite word z = x1xz9 -+ -, we define
WL = a1ag - apxiTe -+ . Similarly

a1ag - 0 v a1y -0k, T1Ty "+
(: / /) (131332"‘7331:532'”): 7ot '

ajay - ay @@y, 1Ty

We need infinite sequences So, 51, -, Sp—1 of A with the following properties:



1. For any positive integer k and any finite word w = ajay - - - ai, there exists
a unique S;,,S;,, - ,Si,, such that first k symbols of 5;, +6S;, +--- +
6"*15@-&: coincide with w.

2. Foreach i,j € A, S, +5; = Siy; (mod p) (digitwise).

We can prove the existence of such sequences. For p = 2, one of the examples
of these sequences Sy and 5, are

SO sy O .. y
S; = 101000100000010-- - ,

that is,

1 fk=2"-1{n=12,...)
(8): = _ ( )
0 otherwise.

Now we can define transformations F,, (n = 1,2,...) on {0, 1}* as follows:
(T 2gn (SR Siy +0Sy 4+ 6"Sy
. " Y i’f,zg,u- 77:%7"' Szgt+951;jkl++0”51; ’

i85, 08, . . z .

here | L% K is the p-adic expansion of € [0,1]2. Then the
7’1’?'2"‘.’?"4:"” Y

inverse image of F,, is expressed

Frl Ty (ET’E%V" ’6ft> {(’L:f,i;, f“i’)
n Y 5%”533... &Y z%{,@g’... ,Z‘z,...
SE%—I—HSEK”+‘-~—I—9”S€?
Sex +88x 4o+ ensﬁ-)}

for = {1 "% ]. Take any initial point y and fix it. Because

, Yy Y
y 21’7,2’...’3}‘:;‘.
gL g ... g%
we can choose 55*55’ ’E;} arbitrary, the number of the inverse images
13€29° 77 1 p

2
under F), equals p*™.
To align these inverse images, we introduce an order. First, we define an

order in (Z) € A? as follows:

0 < ! < 2 < e <
0 0 0 (1)
Py (Y e (N e (P (N <. (P
0 1 1 1 2 p—1}"
Using this order, we define an order in A%%. We determine
a1,a2, " ,0k < bl,b?,a"'vbk
allaaév"'»a;c bll) j_)’...’b;g ’

if there exists { < & such that

<a4+1>"' ,ak) _ (bz+1,"' ,bk> and (m) < (bf)
7 7 s ! 14 7
Qpppsst 0 by Ok a; !
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in the order (1). Moreover, for two words with different length & </, we define

(al’ ’ak> < (Z,: ’bg) Along this order, we align the inverse image of

O ).() e )
() (o) )0 G) (G0 )
®)6) GG (323 6):
o) (2')_1(%%?_ D) CeD) 6 (E060)6)

Then this sequence is proved to be a low discrepancy sequence. ([5])

8
N

4 Numerical Results

We will compare the discrepancies and the rates of convergence

C = lim D(N)/ ((ng)?)’ (2)

N—oo N

for two low discrepancy sequences which we studied in the previous sections. All
calculations were carried out in Mathematica 4.2 on Windows-XP and Mathe-
matica 5.0 on Macintosh OS X.

We make the first 1,000, 000 number of each sequences, under the following
conditions: For Halton sequences,

case (1). p1 =2, p2=3,
case (2). p1 =17, p2 =19,
case (3). p1 =71, po=T3.

These are the examples, (1) small primes, (2) medium primes, and (3) large
primes.
For Mori's sequences, p = 2 and
case (1). initial point (0,0),
case (2). initial point (0,4,0,4),

case (3)." initial point {7, ‘{f)

These are the examples of initial points, (1) the simplest case, (2) a rational
case, and {3) an irrational case.

We calculate the discrepancy of each sequence of the visit to an interval
[0,z] x [0,y] in the following cases:

case (A). [0,0.4] x [0,0.4],

case (B> [ ) 10] [ %]9
case (C). [0,0.1] x [0,0.8],
case (D). [0,0.5] x [0,0.5].



Here, we choose two square cases ((A) and (D)), an irrational rectangle (B),
and a rectangle for which the length of edges are quite different (C).

The numerical results are shown in Table 1 and Table 2. In these tables, the
upper row corresponds to discrepancies D(NV) and the lower row corresponds to

rates D(N)/{(log N)?/N) at N = 1000000 for each columns.

Table 1: Results of Halton sequences

case {A) case (B) case (C) cage (D)
case (1) | 1.0x 107° | 1.0x107° 1 6.0x 107° | 6.0 x 107°
0.05 0.05 0.05 0.05
case (2) | 20x10°° | 20x107° | 1.0x107°
0.1 0.1 0.05
case (3) | 1.2x 10 % | 1.4x107% [ 3.5%x 107°
0.6 0.7 0.18

Table 2: Results of Mori’s sequences

case (A) case (B) case {C) case (D}
case (1) | 24x10°% | 27 x10°% | 40x107° | 80x 1077
1.6 1.3 1.8 0.004
case {2) 8.0 x 10°°
8.5
case (3) | 23x 10 % | 25 x 107% | 40x 107¢
1.2 1.3 1.9

In the case Mori’s case D, the rate is very small. This is because Mori’s
sequences based on binary expansion, and we consider the visits to the square
[0, 51>

2The distributions in [0,1)? are shown from Fig. 1 to Fig. 4. The first 1000
points in each sequence are plotted in the figures. It seems that Halton sequences
distribute entirely to [0, 1]% in small primes and are getting worse in large primes
as shown in Fig. 2, and that Mori’s sequences may not depend on initial points.

Discrepancies D(IN) and the ratios D(N)/({log N)*/N) are shown in Fig. 5
to Fig. 20 These figures are the first 100000 discrepancies, the last 100000 dis-
crepancies, the first 100000 ratios and the last 100000 ratios of million data for
each case. Because the speed of convergence to these ratios is very slow, it seems
that the ratios are still decreasing after million data in all cases.

Fig. 5 to Fig. 9 are the Discrepancies D(NN) and the ratios D(N)/((log N)?/N)
of the visits to [0,0.4]% for Halton sequences with p; = 2, p» = 3. Fig. 9 to
Fig. 12 are the discrepancies and the ratios of the visits to [0,0.1] x {0, 0.8] for
Halton sequences with p; = 71, p» = 73. Fig. 13 to Fig. 16 are the discrepancies
and the ratios of the visits to [0,0.4]* for Mori’s sequence with the initial point
(0.4,0.4) Fig. 17 to Fig. 20 are the discrepancies and the ratios of the visits
to [0,0.5]% for Mori’s sequence with the initial point (0.4,0.4). In these figures,
four lines appear. This means for the interval [0, %]2, discrepancy oscillates with
period 4 = 22,
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Figure 4: 1000 plots of Mori, initial point (0.4,0.4)
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Figure 5: Halton p; = 2, p» = 3, discrepancy D(N) of the first 100000 of Million
data
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Figure 6: Halton p; = 2, py = 3, discrepancy of the last 100000 of Million data
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Figure 7: Halton p; = 2, ps = 3 ratio of the first 100000
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Figure 8: Halton p; = 2, p» = 3 ratio of the last 100000
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Figure 9: Halton p, = 71, pg = 73, discrepancy: the first 100000 of Million data
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Figure 10: Halton p; = 71, ps = 73, discrepancy: the last 100000 of Million
data
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Figure 11: Halton p; = 71, p; = 73 ratio: the first 100000 of Million data
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Figure 12: Halton p; = 71, pz = 73 ratio: the last 100000 of Million data
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Figure 13: Mori, discrepancy: the first 100000
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Figure 14: Mori, discrepancy: the last 100000
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Figure 15: Mori , ratio: the first 100000
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Figure 16: Mori, ratio: the last 100000
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Figure 17: Mori (0.5,0.5), discrepancy: the first 100000
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Figure 18: Mori (0.5, 0.5), discrepancy: the last 100000
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Figure 19: Mori (0.5,0.5) ratio: the first 100000
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Figure 20: Mori (0.5,0.5) ratio: the last 100000
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