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BN R SRB AR} 830 = (Tatsuya Watanabe)
Department of Mathematics,

Tokyo Metropolitan University

1 Introduction

We consider the following semilinear elliptic problem in an exterior domain with
a Neumann boundary condition:

~Au+u=f(u) in RV\Q, (1.1)
du
5 =0 on 0f,

where £ ¢ RY is an open bounded domain with 82 € C*', N > 3 and v is an

interior unit normal vector on 8¢).
We are interested in the existence of a ground state solution of {1.1). More

precisely, we define a functional In : H*(RV \ 1) + R by:

In(u) = E/ [Vul? + u?dz —/ F(u)dx
2 Jrm\a RN\T

where F(s) = [ f(t)dt. A solution of (1.1) is called the ground state solution of
(1.1) if it achieves inf{Ig(u);u € H* RN \Q)\ {0}, I;(u) = 0}. In [5], Esteban
established the existence of ground state solutions in the case f(s) = |s|[F72s,
2 <p< 255

Our first purpose is to obtain the existence of ground state solutions of (1.1)
with an asymptotically linear nonlinearity. We assume
(f0) f € CYRM,R), f(s)=0foralls <0,
(f1) Ig—)Oass-—)O‘*‘, (f2) f—(s§l—>aass—%oo,1<a<oo,

Let G(s) = % f(s)s — F(s). Then
(f3) (i) G(s) > 0 forall s > 0,
(ii) There exists §o € (0, 1) such that if 21: 53) > 1 — dg, then G(s) > dp.

Then we obtain the following result.

Theorem 1.1. Let Q be an open bounded domain with 051 € Ct and assume
(f0)-(f3). Then problem (1.1) has a ground state solution.

Our second purpose is to study a symmetry breaking phenomenon when () is
a ball. In the case f(s) = |s|P~2s, Esteban ([5]) also showed that ground state
solutions of (1.1) are not radially symmetric. Moreover recently, Montefusco
[11] showed that the non-radial ground state solution has an axial symmetry
with respect to the line rp = 0P, where P is a maximum point.

Our question is that such a phenomenon occurs in the asymptotically linear
nonlinearity case. The next theorem gives a positive answer to the question.
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Theorem 1.2. Let Q = Bg(0) = {z € R¥;|z| < R} and assume (f0)-(f3).
Then for every R > 0, the ground state solution of (1.1) is not radially sym-
metric.

Finally we consider asymptotic profiles of ground state solutions of (1.1)
when Q = Bg(0). We denote xp by the characteristic function of a set D C RV,

Theorem 1.3. Let wr(z) be a ground state solution of (1.1) with £ = Bgr(0).
Then there exists xr € OBR(0) such that, passing to a subsequence,

”wR - w(' - mR)XRN\m(.)'!HI(RN\m) — 0 as R — oo,
where w(z) € HYRYN) is a ground state solution to the problem:
~Au+u= f(u) in RV,

Recently asymptotically linear problems on RY has been studied widely.
Especially our assumptions on the nonlinearity f(s) are based on those in [8].
The main difficulty of asymptotically linear problems is to obtain boundedness
of Cerami sequences.

We also mention that to find a ground state solution in elliptic problems, it
is usually assumed that f(s) satisfies

f(s)

8 = is nondecreasing. (1.2)

Actually if (1.2) is satisfied, then the Nehari manifold:
No ={u & H'RY \ Q) \ {0}; I (u)u = 0}

has nice properties. More precisely, a ground state solution w(z) of (1.1) has
the characterization:
1 = inf I = inf Iq(tu). 1.3
alw)= inf Io(u)= inf maxIq(tu) (1.3)
However in this paper, we don’t require (1.2). We will find a Mountain Pass
solution and after that, we prove the existence of a ground state solution.
To prove Theorem 1.2, we will compare the ground state energy level for
(1.1) with the radially symmetric one and obtain a strict gap between them. If

f(s) satisfies
0<uf(s) < fl(s)sforalls>0 (1.4)

for some p > 1, then we can see that for every v € H*(RY \ Bg(0))\ {0}, there
exists a unique k > 0 such that ku € Npj(). This fact and the chacterization
(1.3) are useful to show the energy gap. However (1.4) implies f(s)s™¢ is non-
decreasing for all 1 < g < p. This means that f(s) never satisfy (1.4) and (f2)
at the same time. Furthermore we can’t use the characterization (1.3) because
we don’t assume (1.2). Making use of the Pohozaev type identity as a main
tool, we will prove Theorem 1.2 (see also Remark 4.2 below).

Finally exterior Neumann problems which concern with multiplicity results
or multipeak solutions have been studied in [2], [4], [12], [13]. Especially our
asymptotic profile of Theorem 1.3 corresponds to that of the singularly per-
turbed problem with a fixed radius:

—e?Au(z) + u(z) = f(u(z)), = € RV \ B1(0).
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2 Some results for problems in RY

We consider the problem:
—Au = f(u) —u=: h{u) in RY. . (2.1)

In this section, we recall some known results for (2.1). Although results
below are obtained under weaker assumptions on the nonlinearity, we do not
provide precise statements here. '

Proposition 2.1. ([1]) Assume (f0)-(f2), then (2.1) has a positive ground state
solution wo(z) € C?(RY) and it satisfies |

(i) wo(z) is radially symmetric with respect to the origin (up to translation).
(ii) [D*wo(z)| < Ce~ %l z € RN for some C, § > 0 and for 0 < |of < 2.

Proposition 2.2. (/6], [9]) Assume (f0)-(f2), then every positive solution of
(2.1) are radially symmetric with respect to the origin (up to translation) and
satisfy () in Proposition 2.1.

Proposition 2.3. (/1)) Assume (f0)-(f2). Letu(z) be a solution of (2.1). Then
u(z) satsifies the Pohozaev type identity:

where H(s) = [, h(t)dt.
We define a functional Ip : H1(RY) — R by

Ip(u) = %/RN (Vaul? + w?dz — /RN F(u)dz.
We denote mg by a ground state energy level, i.e.
mo = inf{Io(u);u € H*(R)\ {0}, Iy(u) = 0}.
Finally we define a Mountain Pass value of Io.

=i t)),
co 71g1£0 Jnax To(7(1))

To = {v € O(0, 1], H*(®Y)); Io(0) = 0, To((1)) < 0}.

Proposition 2.4. ([7]) Assume (f0)-(f2). Then co = my, that is, the Mountain
Pass value of Iy is the ground state energy level.

3 Proof of Theorem 1.1

The purpose of this section is to establish the existence of a ground state solution
of (1.1). First we prove the existence of a Mountain Pass solution.

Lemma 3.1. Assume (f0)-(f2). Then
() Ta(w) = 310 gy + 001 )
(ii) There ezists v € H*(RY \ Q) \ {0} such that Ia(v) <0.
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The proof of Lemma 2.1 (i) is standard. The second part is not trivial
because the nonlinearity is asymptotically linear. See Lemma 3.3 below or [7]

for the proof.
By Lemma 2.1, we can define the Mountain Pass value for Ig:

= inf 1 t)),
co:= inf max a(v(%))

Tq = {y € C([0, 1], H RV \ ©2));7(0) = 0, In(~(1)) < 0}

Lemma 3.2. Assume (f0)-(f3). Let {u,} C HY (RN \ Q) be a sequence such

that
In(un) = ca, Ig(un) 1+ |lun]) = 0 as n — oo.

Then the sequence {un} is bounded.
In the proof of Lemma 3.2, assumption (f3) plays an important role.

Sketch of the proof of Lemma 3.2. We suppose by contradiction that

[tnl e (mviggy = 00 a8 1~ 00

and put
vn () = “—M—
”unHHl(mN\ﬁ)
Then by concentration compactness principle [10], one of the following state-

ments holds.
1: (Vanishing) For all r > 0,

lim sup / vade = 0. (3.1)
B.(y)\&

300 yElRN

2: (Non-vanishing) There exist a > 0, rp € (0, 00) and {yn} C RY \ 1 such that

lim v2dr > o (3.2)
n—oo Brg (g )\TT

We show that both of them derive contradictions.
Step 1:(3.1) is impossible.
Here we use assumption (£3). We assume (3.1). We define

Fun(z))
un ()2

where dp is the constant defined in (£3) (ii). Making use of assumption (3.1), we
obtain

Q, = {z e RN\ < %(1—5{))}

limsup RV \ (TUQ,)] = oo.

— o0

Then from (f3), we have

/  Clun)dz > / Glun)dz > 6o[RV \ (FUQ,)]
RN\ RN\ (QuQ,) :



and hence

—r 00

lim sup/ G(ug)dz = 0.
RN\G

On the other hand, we also have
1
] Glun)dz = In(un) — 5 In(tn)un — ¢ < 00.
RV\T 2

This is a contradiction.
Step 2: (3.2) is impossible.
We assume (3.2) and {y,} is bounded. Since {v,} is bounded, we may assume
that v, — v in HI{RY \ ). Then we can show that v(z) should be an eigen-
function of —A on L2(RV \ Q1) corresponding to the eigenvalue a — 1. However
this is a contradiction because —A on L2(RY \ §) has no eigenvalues (see [14]).
Finally we assume (3.2) and {y,} is unbounded. Since 8 € C, there exists
an extension operator E : HY(RM\Q) — HYRY). We put @ (z) := Eva(z+yn).
Then we can show that a weak limit of &, (z) should be an eigenfunction of —A
on L*(RY), which is a contradiction. O

Next we estimate a Mountain Pass value of Ig. It is rather standard to show
that cq < mg. We show that this inequality is strict.

Lemma 3.3. Assume (f0)-(f2). Then cg < my.
Here we give an outline of the proof.

Proof of Lemma 8.3. By definition of cq, it is sufficient to show that there exists
a path g € ' such that

o Ia(yo(t)) < mo.

We construct such a path vy as follows.
Let wo(z) be a ground state solution of (2.1). First we show there exists

to > 1 independent of z € RY such that

Iﬂ(’wo(m

t; “Ixama(e) <0. (3.3)

Indeed by Proposition 2.3, we obtain

mv

— Pxamal®))

T (wi(

< (2ol + s, IPlo(a) [0
ST TN wolLrmn T |

Thus we can choose £y > 1 so that (3.3) holds.
Next let 0 < § < mg be given. Then we can easily show that there exists

t1 > 0 such that

I(wo( ) xama(®)) <9 (3.4)

forall 0 < £ <t and z € RV,
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Finally we show that

max T (wo( ) Xpmya(2) < mo (3.5)

te[tl,to]

for some zg € RV \ﬁ. In fact, we can estimate as follows:

r—2z
I (wo( ; )XRN\E("’U))
N
<mo- [ wdtere [ (plwods.
2 Ji@ye) L(@+2)

Then by the decay property of wg (Prop. 2.1 (ii)), we obtain

‘ 1
max {——/ w%da:%—/ |F'(wp)|dz} < 0
t€ltito] 2 J 1@ 420) 1 (24 20)

for some z; € RY,
Now we define

— wﬂ(%;g) O0<t é 17
'yo(t) T { 0 a0 +=0.
Then from (3.3)-(3.5), 10(t) € I'q and maxeo,1) Ia(10(t)) < mo- O

Now by Lemma 3.1-3.3, we can show there exists ug € H!(R™ \Q) such that
I (ug) = 0 and Ig(ug) = ca.
Since cq > 0, it follows ug # 0. Especially,
{ue HYRY\ )\ {0}; In(u) =0} # 0.
Proposition 3.4. Assume (f0)-(f3). Then (1.1) has a ground state solution.
Proof. First we define the ground state energy level for (1.1) by
mg = inf{Ig(u);u € HY(RY \Q)\ {0}, IH(u) =0}

From (f3) (i), for any non-trivial critical point v of I, we have
1
In(u) = Ig(u) — I (u)u = / G(u)dz > 0.
2 RN\ﬁ

Thus mg > 0. On the other hand, _1_t is trivial that mg < cn.
Now let {w,} C {u € H*RY \0)\ {0}; I5(w) = 0} be a sequence such that
In(wy) = mg € [0,cq). Then {w,} is bounded and

ﬁrf{l_géf lwnl g1 gy = Po
for some pg > 0. Thus we may assume that w, — w in H}(RY \ ). Then we

obtain Ig(wp) — Io(w) and ||w|] > po. Thus we have Ig(w) = mg and w # 0,
that is, w(z) is a ground state solution. O
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Theorem 1.1 is a consequence of Proposition 3.4. In the proof of Proposition
3.4, we know that mgq > 0. We can show that maq > 0.

Finally we prepare a Pohozaev type identity which plays an important role
in the next section.

Proposition 3.5. Assume (f0)-(f1) and f(s) has a sub-critical growth at infin-
ity. Let u(x) be a solution of (1.1). Then u{z) satisfies the following Pohozaev
type identity:

i\f_:_%f ]Vu[zdmzN/ H(u)dﬂa—/ H(u)x - vdo,
2 Jrma RN\T 80

where v is an interior unit normal vector on OfL.

4 Proof of Theorem 1.2

Hereafter we consider problem (1.1) with @ = Bg(0):
—Au+u = f(u) in RV \ Br(0), (4.1)

—g—g =( on 8Bg(0).

By Theorem 1.1, (4.1) has a ground state solution wg(z) for every R > 0.
For simplicity, we write mp, ) = MR, €Br0) = CR, IBR(0) = In.

We define H}, := {uv € HY (RN \ Bg(0));u(x) = u(lz|)},

my = inf{Ig(u);u € HE \ {0}, Ix(u) =0}

Then we can show that m} is achieved.
Now we turn to the proof of Theorem 1.2. By definitions, it is trivial that

mp < m}. We show that this inequality is strict for every R > 0. By Lemma
3.3, we already know that mgr < myg for every R > 0. Thus we have only to
show that mg < m}%. Indeed, we obtain the following estimate.

Proposition 4.1. For every R > 0, mg < m}.

Proof. Now by Proposition 2.4, we know co = myp. Thus it is sufficient to show
that there exists a path (t) € T such that max,ejo 1] Jo(v(t)) < m%. The proof
consists of three steps.

Step 1: Formulation of m}.
Let w}, be a radial ground state solution of (4.1). Then by Proposition 3.5,

N .
wk, satisfies

N-2 / Vwh2dz = N H{uws)do+ R / H{w?)do
2 Jrv\BR(®) RV\Bz(0) 9Br(0)
=N H{wk)dz + RY|S" H(wk(R))-

RN\ Br(0)
Then we obtain

1
mp = —/ \Vwk|*de — / H(wg)dx
2 JrM\BR({O) RN\BR(0)
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B 1
N Jr\Br(@)
On the other hand, since wh(x) is radially symmetric, we may assume that
wh(r) satisfies the following ODE:

[Vw|?dz + RNfSN HH(wh(R)).

() (r) — ?(w}})’(r} — h(wh(r)), R <r < oo, (wh)(R)=0.

Multiplying (w}) in both sides and integrating over (R, o0o), we obtain

_ﬁ/ _(( 1))2dr — (N — 1)/ (wr))” /RDO(H(M}}))’dT.

Thus we have o I
1)/{2 .((lfl)_dr — H(wh(R)).

Now for simplicity, we write

A= _|Vuwi|?dz, B =RN|SVYH(wk(R)).
RN¥\Br(0)

Then A, B > 0 and we have m} = + (A4 + B).
Step 2: Construction of a path.

Now we define ) >R
- ) wglz) |z >R,
”’R(”?“{ wh(R) |a| < R.

Then wg(z) € H*(RY) and

p N2 N-2 ., )
o o
() = (g =g [ Ve

o / H(w})do — / H{ws(R))dz
8Br(0)

Br(0)
N2 N-2 1
=5 o AT
Since A, B > 0, there exists tp > 1 such that Jo(@r({>)) < 0. Putting

0tV B.

then vr(t) € I'y.
Step 3: Conclusion.
Now we have

N— -
ra(®) = (B2 - X2 44 (1)) B~ ).

Then for ¢t > 0, C'(t) = 0 if and only if ¢ satisfies

(N —1) B

1= (ttp)?(1 + g Z)'



We put
1 2(N-1)B,_:
oty = (1 ———~ )7,
iz to( TNz 4

Since 4, B > 0, we have t;t9 < 1. Moreover C(t) < C(t1) for all t € [0,1]. Thus
we getb
Io(vr(t)) < C(t1)
= (tItO)N'Z(é - (tltc)Q((N 22 ;-;(N 1)B))
1
N

1 1
= —N'(tlto)N__zA < A< N(A + B) = m}},

Thus we obtain
max I YR i)} <m *R
€[0,1] 0( ()) &

and hence my < mj. O

Remark 4.2. In the case f(s) = |s|P72s, 2 < p < 225, Esteban [5] showed

that
R+ m}, is increasing and lim m}p = me.
R—0t

Same conclusions hold true under assumption (1.4), i.e.
0< uf(s) < fl(s)sforall s>0

for some p > 1 (see [3]). In their proofs, they used nice characterizations
of my, (like (1.3) in section 1). In our proof, the key is the Pohozaev type
identity, which is applicable to general nonlinearities. Especially in the proof of
Proposition 4.1, we don’t require that f(s) is asymptotically linear.

Although we don’t know whether such a monotonicity of m}y does follow or
not in our situation, we can obtain the followings.

Corollary 4.3. (i) Let R' > 0 be given. Then there egists 0 < Ry < R’ such
that m% < my for all R € (0, Ry). () imp_,0+ mp = mo.

Proof of Theorem 1.2. Now by Lemma 3.3 and Proposition 4.1, we have
mpr < cg < mgy <my < cg-

This inequality implies that the ground state solution of (4.1) is not radially

symmetric. ]

As a corollary, we obtain the following result.

Corollary 4.4. Assume (f0)-(f3). Then problem (4.1) has at least two positive
solutions; one is radially symmetric and the other is non-radial. '

37



38

5 Proof of Theorem 1.3

In this section, we give a sketch of the proof of Theorem 1.3.
Let wg(z) be a ground state solution of (4.1). Then we have the following

lemma.

Lemma 5.1. There exists C > 0 independent of large R such that

lwrll g @\ mzEy < ©

To complete the proof of Theorem 1.3, we show a limiting behavior of mg
as R — oo. More precisely, we will show that limp._,oo mp = %mo. The most
difficult part of the proof of Theorem 1.3 is that we can’t prove limp 0o Mg =
%mo directly. First we obtain the following estimates.

Lemma 5.2. (i) There ezists C > 0 such that mp > C for sufficiently large
R>0.
(i) imsupg_,oo Ma < $Mo.

Proposition 5.3. limg 0o Mg = %mg. Moreover let wg(z) be a ground state
solution of (4.1). Then there exists xp € OBR(0) such that

lle - w( - ZCR)XRN\M(')”HJL(RN\ER—(D—)) — 0 as K — oo,

where w(z) is a ground state solution of (2.1).

This proposition completes the proof of Theorem 1.3. Here we just give an
outline of the proof of Proposition 5.3 because the proof is rather complicated.
By Lemma 5.1 and 5.2 (i), there exists yr € RY \ Bg(0) such that

wr(z) — w(z —ygr) — 0 in H'(RY \ Bg(0)) as R — oo

where w(z) is a ground state solution of (2.1). Then we have dist(yg, 0Br(0)) <
C for some C independent of large R. We suppose by contradiction that wg(z)—
w(z — yr) does not converge to zero in H(RY \ Bp(0)). Then we can show
that lim infp_y00 mp > mg, which contradicts to Lemma 5.2 (ii). Finally by the
property of w{z), we can complete the proof of Proposition 5.3.
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