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1 Introduction

We consider the degenerate Keller-Segel system of Nagai type:

ut:V~(Vum—-Xqu), zeRY, t>0,
(KS) 0=Av —9yv + au, zeRY, t>0,

u(z,0) = uy(z), reRY,
where m > 1, a,x > 0, v > 0 and N > 1. This equation is often called as the Keller-
Segel model describing the motion of the chemotaxis molds.

In this paper, we introduce our results concerning the properties of a weak solution for
the degenerate Keller-Segel system (KS), which were obtained in [27], [41], [44], and [45] .
The proofs for the global existence and finite time blow-up of solution for (KS) are given.

First of all, we give the definition of the weak solution (u, v) for (KS).

Definition Form > 1, non-negative functions (u,v) defined in [0,T) x RY are said to
be a weak solution of (KS) for ug € L* N L®(RN), u* € H*(R") if

i) we L>0,T; L*(RY)), v € L0, T; HY(RY)),
ii) veL=0,T; H(RY)),

ili) (u,v) satisfies the equations in the sense of distribution: i.e.

T
/ / (Vu™ - Vo — xuVv-Vo—u-p) dedt = f ug(z) - p(z,0) de,
0 JRY RV
—Av(z, t) + oz, t) —aufz,t) = 0 aa zeRY te(0,T),
for any function p € CY(Qr) which vanishes ont = T, where Qy = RN x (0, T).
The following proposition gives the existence of a time “local” weak solution to (KS)

and the uniform bound of the solution when ug € L*°(R"). The proof is based on the
L*-energy method which is employed in [35]. The proof was given in [44].
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Proposition 1.1 ({44]) [time local existence of weak solution and its L™ uniform
bound | Let m > 1, a,x > 0, v > 0. Then (KS) has a non-negative weak solution

-3
(u,v) on (0,Tp) with Tp = a‘l(Hug[[ Loo(rN) T 2) . Moreover, u(t) satisfies the following
a priori estimate

(1.1) [u@po@myy < |Jtollpogmyy+2  for all t € [0,T0).

If the mazimal ezistence time Tmay of (u,v) is finite, then we have

t—l>lar"£ax (-, )| Loy = o00.

In the following theorem, we consider the case of m > 2 — % The following theorem
gives the existence of a time “global” weak solution to (KS) and the uniform bound of
the solution when ug € L' N L®(RY). Recently, another degenerate case is treated by
Laurencot and Wrzosek [23]. The time global L™ bound was also obtained in Kowalczyk
[12] for the quasilinear Keller-Segel system of non-degenerate type and the existence of a
solution was not considered.

Theorem 1.2 ([41]) [ time global existence of weak solution of m > 2 — % case and
its L* uniform bound] Letm > 2— % and a,x > 0, v > 0. Then (KS) has a
global weak solution (u,v). Moreover it satisfies a uniform estimate, i.e., that there ezists
Ky = K (Jluoll 12wy uoll oo gy, my N) such that

sup (Hu(t)IILT(RN) + “'U(t)”Lr(RN)) <Ki; forallrellol.

In addition, in both cases (i) and (ii), there exists a positive constant Kz = Ka(||uoll 11 mm),
HU’O”LQ(RN)’ HUOHLm(RN),

(1.2) St;lg “”(t)“m(RN) < K.

In the following theorem, we consider the case of 1 < m £ 2 — % and the decay
property of a weak solution (u,v) for (KS) with small initial data is given. (see [40]
and {41]). On the other hand, the finite time blow-up of u for (KS) with large data is
also given. We remark that the finite time blow-up was first formally obtained by [4] for
Neumann problem, and then a rigorous complete proof using Bessel potential for (KS)
was given. (see [44] for more detail.)

Theorem 1.3 (]27]),([41]),([44]) [decay for small data and blow-up for large data
of l<m<2—2%case] Let N >3, 1<m<2—-2% and a,x >0, v > 0 and suppose
that the initial data ug is non-negative everywhere.

(i) We assume that the initial data is sufficiently small, i.e., for any fived number £ >

MEm (> 1),
(1.3) “uo”LE(RN) << 1.

then (KS) has a global weak solution (u,v) and the weak solution satisfies

(1.4) igg(l + ). (lu@llzr@yy + v pr@my) <00 forre [Mg—;—@, oo).
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where N .
d=— (1——), c=N{m—-1)+2.
o T
Moreover, the weak solution satisfies

uniformly with respect to = in the set |z| < Rts, where 6 and R are any fized positive

constant and
M = _/RN(A—— 2m0 le I)

(1.6) Glz,t; M) = t-%’(A— —1.1342):_1.

2mo 43

(i) We assume that v = 1 and the initial data ug € L* N L™(RY) with ue|z|? € LY(RY )
satisfies the following condition:

2 ™m
(Hl) m/l;lvuo de < LNUO'UO dm,

where vo = G * ug with the Bessel kernel G. Then the weak solution does not exists
globally in time, i.e., that there ezists Thay < 00 such that for some initial data ug the
weak solution blows up in a finite time Ty in the following sense:

limsup, 7, [u(®)] pomry = o0

In the following theorem, we consider the case of 1 < m < 2 — 1%- and construct an
initial function which assures the global existence for % small data and blow-up
for large “uO”Lﬂgz—_r_n_)_ data.

Theorem 1.4 ([45]) [global existence for %Zﬂ small data and blow-up for
large HUQHLM%—_@)_ dataof 1 <m <2~ 2 case] Lt N>3, 1<m<2-2 and
a, x>0, v>0.

(i) We take the initial data up by A(1 ~ [—Z’?—) + With positive constants A and b. We also

assume that

(7) Juo - v(z) dz
Jul(z) dz

where vg = G * ug with the Bessel potential G. Then, the problem (KS) has a global weak

solution (u,v).

<< 1,

N(@2-m)

(i) We take the initial data ug by Al - %—)_"‘_"2{"‘5 with A,b > 0. If fuy T  dx is
sufficiently large such that

(1.8) >

" . 267
” Ol N—(zg—l(RN) - CN €

for some Cy = Cy(a,x,m, N), Then, a weak solution (u,v) of (KS) blows up in a finite
time.
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By combining Theorem 1.3 (ii) with Theorem 1.4 (i), it is seen that the size of
%ﬁf divides the situation of the solution (u,v) into the global existence and the
finite time blow-up. Simultaneously, by combining Theorem 1.3 (i) with Theorem 1.4 (ii),

N{2—m)
the size [gvuy >  dx together with the geometrical restriction can divide the situation
too.

We now consider the Fujita’s exponent case: m = 2 — % and obtain the upper bound

(resp. the lower bound) on the size of the L'(= Lﬂ%ﬂ)-norm which assures the global

existence (resp. the finite time blow-up), which reads:

Theorem 1.5 ([45]) [ the L' upper and lower bound for time global existence
and blow-up; the critical case of m =2 — 2] Let N >3, m=2— 2% and o, x >

N
0, v20.
(i) We suppose that

2N2w>% ’ [r(g)].

(1.9) fuoll vy < (_'(;;(_ T'(N)

Then, the problem (KS) has a global weak solution (u,v) and
sup [|u(t)|| Lo mry < C(N)
£>0

(i) We assume the same assumption as Theorem 1.4 (ii) and suppose that

(1:10) Juollrmy > (

22N-1) . N2-% -w%>% 1 [I‘(%’-) -F(J—Vz;l)} 5
ax r(%) T'(N-1)
Then, in the case of v = 0, a weak solution (u,v) of (KS) blows up in a finite time.

Moreover, in the case of v > 0, we suppose that (1.10) is satisfied and v << A*™ or
b .y << 1. Then, a weak solution (u,v) of (KS) blows up in a finite time.

Remark 1 When we take m = 1 and N = 2, formally, we obtain

(1.11) luollzrrey < (2 ;12;%) ' [11:8;] B ggc
and

2.9.51% T -l"%- T
(1.12) luollzsey > (2 jx )'r(11) ] (1%(1)( )] _ i_x

We will use the simplified notations:

D e =1 ler@ey (1<r<o), [-de:= [ dz.
2) Qr:=(0,T)xR",
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3) When the weak derivatives Vu, D%y and u; are in LP(Qr) for some p > 1, we say that
ue W2(Qr), ie.

Wal@Qr) = {ue LP(0,T; W (RN) N W'*(0,T; L"(RY));

[ullwzr(gp = llullze@ry + [Vellzar) + 1D*ullwaory + el zoier) < 00}-

2 Preliminary Lemmas

The following representation is one from elliptic theory. (see E.M.Stein [39, Ch V Sec
6.5].)

Let N >3, 1 <p<ooand f € LP(R") and consider the following problem:
(E) -Az+z=f forzeRVN.

Then the function z(z) € LP(R") given by
(21) ) = [ Gle—1)-w) dy

is the strong solution of (E) in RY, i.e., that (E) is satisfied almost everywhere,
where G(z) is the Bessel potential which can be express as
N-3
2

o0 2
- ~la| ~lals . s
(2.2) Clx) = e /0 el (s 2) T ds

with the constant vy given by

W= 2(2#)%2-1‘(%).

For G(z), we obtain the following lemma.
Lemma 2.1 It holds that for z,y € RN (z # y),
(2.3) z-VG(z) < —(N-2)-G(z) <0,
Proof of Lemma 2.1) ‘
We differentiate (2.2) with respect to z, then for  # 0 it holds that

2. N-3

z e s
2.4 VG(@) = -y e / ~fels s+ 8T
(2.4) (z) N 7] e | e (1 + ) (s + 5 ) ds.

By (24),
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For N > 3, the integration by parts yields that

0o de-—kv{s 82 N-8

z-VG(z) = ny.e—lzl/o .(1+s).(5+_§.) * ds

(2.5) = —W: e ! /000 elele %[(1 +5) - (s + %) :

It is seen that

Lo (+5)7] - (o) g9 L4

(2.6) > (N - 2)(s+ 2) T

Substituting (2.6) into (2.5),

z-VG(@z) < —(N—-2)-9y5-e *wl/we-lx“-(ﬁ%)T ds = —(N—2)-G(x).

Thus the proof of Lemma 2.1 is completed. Q.E.D.

The following lemma is shown by Hélder’s inequality.

Lemma 2.2 (the moment inequality) Letp > 1 and |ziPf € LY(R"). Then,

[iserela < ([ @)™ ([ i@l er )

The following lemma, due to M. Nakao, gives us a version of Gagliardo-Nirenberg inequal-
ity. (see Nakao[33, Lemma 3].)

m

Lemma 2.3 (Nakao[33]) Letm > 1, u € L%(R™) with ¢ > 1 and u=EF
with r > 0.

If ¢ > 2= and

* ¢ HY(RM)

1< <psx when N =1,
1<g<g<oo when N = 2,
1< g <o <@V yhen N >3,

then there eTists a positive constant C, depending only on q1,qa,7, N such that

2z
(2.7) ol < CTFFullb? - V™57 i
where .
r+m-—1 1 1 1
b= '(a‘;) T T rim=1
N 2 2(11

and C, has at most a polynomial growth in ¢; and g¢,.
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3 Approximated Problem

In order to justify the formal arguments, we introduce the following approximated
equation of (KS):

uet(z,t) = V- (V(us + €)™ — XU - V'Ue), (z,1) € RY x (0,7), e (1),
(KS). 0 = Av,— . +aou,, (z,t) e RY x (0,T), ---(2),
ue(mvo) = 'U'Oa(m); T E ]R,N,

where ¢ is a positive parameter and (uo,v.) is an approximation for the initial data
(ug,v0) such that

(A.1) 0 < up. € W22(RY), | for all p € [1,00], foralle € (0,1],
(A.2) |lugellze < luolle, for all p € [1,00], forall e € (0, 1],
(A.3) ||Vuoellzz < [[Vuol|r2, for all e € (0, 1],

(A.4) ug. = up, strongly in LP(RY) as e — 0, for some p > max{2, N}.

We call (u.,v.) a strong solution of (KS), if it belongs to W2! x W2'(Qr) for some
p > 1 and the equations (1),(2) in (KS), are satisfied almost everywhere.

The following convergence is given in {41]: For any fixed positive number there exists
a subsequence {u., } such that

(3.1) Ue, — U weakly in L2((0,T); L*(RY)),
(3.2) ul = u™ strongly in C((0,T); L% (RY)),
(3.3) Vulr — Vu™ weakly in L2((0, T); L*(R™)),
(3.4) Ve, =V strongly in C((0,T); LE (RM)),
(3.5) Vue, = x=Vv  weakly in L*(0,T; L*(RM)).
(see (4.11), (4.14) and (4.15) in section 4 in [41] .)

4 Proof of Proposition 1.1

As for the proof of Proposition 1.1, we refer to [44].

5 Proof of Theorem 1.2

We multiply (1) in (KS), by u.™* and integrate over R".
1 d
rodt

(5.1) = —m(r—1) /‘um_lu"QIVUEIQ dr + (r — 1)x/u€Vv€ Ul 2V, da

(5.2) = (7+m—1)/lw‘5 [2 1 -X/uszvE dz.

— [lue iz
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Substituting (2) of (KS). :Av. = v, — au. into (5.1) and noting that u. and v, are
non-negative,

dm(r — L)r

63 gl € s

/]Va ]2d$+ ax - ('r'—l)/u;‘“dw.»

From Lemma 2.3

(5.4) luellzrn < G flue] 13 Ve | i
where
r+m-—1 1 1
b = 2 .(1—“’1)'3__ T+m—1
N 2 2

for

r € [max(1,m — 3),00] _ fFN=1 m>1,
(5.5) T € [max(l,m - 3),00) if N=2, m>1.

rE [max(l,mw?),-}y«%?-"—"—)-——l), oo) if N>3, m>1.

26 1
It is easy to verify that —1~(—T—_|_-—1)- 2ifm > 2~ % Therefore, by Young’s inequality,
2mr
(56) ax - HU‘EHLH-l S Cm,r + m“vus “L2
if r satisfies (5.5) and m > 2 — 3,

N

where C,, . is a positive number depending only on m, o, x, 7, N, |lugellz: and has at most
a polynomial growth in r. This number Cy,, will have different values in different places.

Again, from Lemma 2.3,

61 el < (Tl (v ET) for r2mo,
where
r+m-—1 1 1
=T '(1“F)'1_1+r+m-1
N 2 2
and C, has at most a polynomial growth in 7.
Since r_ie:%j—l_ < 2 bym>1—%,and r > 1, Young’s inequality and (5.7) yield
2m(r — 1) rimol
. Ty & /s e 2 M

(68 el < (T+m_1)2/1w ?do + Cn,
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By combining (5.15) and (5.8) with (5.3),

d 2m(r — 1) f rimol
ey, < —F— L e ° d Conyr
dt “uSHL — (T‘ +m— 1)2 fvu ‘ T + y

(59) < —Julze + Cor-
Hence, for r in (5.5),
(5.10) Sﬁggilus(t)llm < uollzr + Cmyr =t Rr.

From (2) in (KS),, for any p € [1, 00), there exists a constant C, = C,(a,,p)
sup | Voe(t)lomyy < Cpsup|fuepoeyy < Cp- Ry,
£>0 £>0
Sup [|Ave (8)[| omyy < asup [[ve(t)] e + v 5up fJute ()| Lo e,
>0 £>0 £>0
< (a+7) St;lg el emmy < (@ +7)R,.

Hence, Gagliaxdo—Nireﬁberg inequality yields that

N(N41)

5up Vo) gy < o sup 90, T -sup o |55 0
N(N+1)
(5.11) < ON(R;"‘N+‘5+2+Rg+“‘; +15+2) = My, < oo,

where Cy = Cy(N).
We are now going to obtain the time global L**(R")-bound for v, by using (5.10) and
(5.11).

From (5.1) and Young’ inequality,

L 2
r gl
4
2m(r — 1) R -1 ~
: - - r+l-m
(6.12) < (r+m—1)2flvu€ | dr + ~ — X Mw/ da.
By Lemma 2.3,
(5.13) lellzrnm < CF |3 - [ Vus N i
where
9 r+m-—1 . (g B 1 1
8 2 r r+1—m) _1__1+r+m—1
N 2 r
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for
(5.14) r € [max{m,3(m—1),2},00]  N=1, m>1,

) r € [max{m,3(m —1),2},00) if N>2, m>1.

] . 205 -(r+1—m o
It is easy to verify that 37’ ( — ) < 2and (r+1—m)(1—93)-r+m_’1'f93(r1+1_m) <r
by m > 1. Therefore, Young’s inequality yields that

r—1 0 tl 2m(r — 1) rmel o

(5.15) ——- Mg lluellsiln £ Cnp+ Copllucllls + mﬂv% ol

if r satisfies (5.14) and m > 1.

Substituting (5.15) into (5.12),

616) Ly < 20D

rtm—1
< “m/iVuE 2 ]2 dr + Cm,r““a”i% + Chp-

Moreover, substituting (5.8) into (5.16),

d
d—t”ue

By using (5.17), the Moser’s iteration technique yields the L>(RY)-bound for u, globally
in time which is independent of €. (see Alikakos [1].)

In consequence, the L>°(RR")-bound for u, globally in time is obtained. By (3.1)-(3.5)
and the convergence argument which is used in [41], we complete the proof of Theorem
1.2. QED.

(5'17) WZr + lluellz- £ Cm,r““s“;{y + Crpr-

6 Proof of Theorem 1.3-(ii)

As for the proof of Theorem 1.3-(i), we refer to [27] and [41].

The finite time blow-up was first formally obtained by [4] for Neumann problem. They
consider the second equation as 0 = Av + u and gave a proof by using Riesz potential.
Then, we [?] gave a rigorous complete proof for the Cauchy problem (KS) (with the
absorption term in the second equation) using the Bessel potential. Those results were
obtained independently each other. In this paper, we give a proof of the blow-up of
solution for (KS) using the Bessel potential.

We show the crucial inequality for the weak solution of (KS) in the following proposition:

Proposition 6.1 (the L™ apriori estimate) Let m > 1, a,x > 0, v > 0, and (ue,v)
be a strong solution of (KS). in W2 x W2 (Qr) and suppose that the non-negative
functions ug € L' N L™(RY). Then the strong solution (uc,v.) of (KS). satisfies

2 [ +or a2 [u@)-n do

(6.1) < f (o + €)™ do— X / Yo - Ve dz for £ € (0,T).

m—1
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Proof of Proposition 6.1 )

m(ue +¢&)™ !

( . T ])_ - X'Ue)
and integrate over R”. However, for the sake of simplicity, we multiply (1) in (KS). by
(mu;”“l

m—1

To give the rigorous proof, we should multiply (1) in (KS). by (

— Xve) and integrate over R”. Then we get

m—1i

/uﬁ(n;ug“‘ll — X’UE) drx = —/ (Vu;” — Ug * XWS) V(’;ue_ > —X’UE) dx
(6.2) = —/u- 1V(mﬂz 121{:"‘1 - xva)

We now follow the argument in [32].

2
de < 0.

: dr 1 m
(6.3) The left-hand side of (6.2) = a—;(m/ue dz x/ua Ve dm) +J,

where

J = X/ue-vgtdw.

Substituting (2) of (KS). : u. = é( - Av, + ’y’us) into J, we have

_ x4 S
J = S dtf(\V'ugl + yuZ) dz.

Moreover, by (2) of (KS).,
ijue sy, dr = /(]VUE[2 —l—'yvz) dx.

Thus, we observe that

(6.4) J = —g-%fus-ﬂedx.

By substituting (6.4) into (6.3), we obtain
) _d 1 m X
(6.5)  the left-hand side of (6.2) = E(E——I /ue dz — 5 /uE « Vg dw).
We denote W(t) by
6.6 W) = —— [urde—2 [ v, do.
(6.6) (t) — ul dz 2/us Ve dT

Then from (6.2), (6.5) and (6.6),

(6.7) %W(t) dz = -—/ug-



51

By integrating (6.7) with respect to the time variable from 0 to ¢,

W(t)+/(:/RNus

Thus we establish the following a priori estimate for W (t).

) |
dedt < W(0).

V(mri lu;”“l B XUE)

W) < W(0)
(6.8) _ ;Z_l:uu%nfm—g / o, - Vo, dz.

From (6.8), we find the following estimate:

. .
(6.9) —— u;“dw—%fuams(t)dz < ml_lfug‘;da:w%/u%-u%dz.

m—1
o 1 . m(u, + €)™ !
From the similar argument by multiplying (1) in (KS). by (——T—— — Xve), we
obtain
= [ e do =% [ w0 d
—— | (e e)" dv -3 . . x
1
< — j(u05+€)m dz — %/uge-vg,_. dz forte (0,7).
Thus we complete the proof of Proposition 6.1. Q.E.D.

The following lemma is a key tool which is essentially due to theorem 1.3, which reads:

Lemma 6.2 Let N > 3, 1l <m <2—-2% oa,x>0 v =1, and (u,v) be the weak
solution of (KS) corresponding to the initial data ue and suppose that ug is non-negative
everywhere. Assume that [uo(z)|z|? dz < +o00. and (u,v) be the weak solution of (KS)
corresponding to the initial data uy and suppose that ug is non-negative everywhere. Then,

Sg.ﬂt(}j,t)[mlz dr < +oo for 0 <t < Tpay : the maximal existence time of solution,

and it hold that

/u(t) gl dz — /UO of? de

(6.11) < 2Nt-/ (ug‘—@w_é—l)—x‘ug-vg dr  forte (0,T).
RN

Proof of Lemma 6.2 ) As for the proof of (6.10), we refer to [44]. We are now going to
prove (6.11).

By virtue of the integration by parts and the converge in (3.1)-(3.5), it holds that

] ulf) - |of? do — / uo - |af? dz

(6.12) < 2/t/Num(s) + xu(s)Vu(s) - ¢ dzds fort € (0,T).
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(see [44] in detail.)
Using any fix number 6 > 0,

/u(t) z)? de ~ /ug Ne|? dx

< 2/0t/(Num(s)~5-u(s)v(s)) + (Xu(s}Vv(s)-x+5-u(s)v(s)) dzds
(6.13) for t € (0,T).

From Proposition 6.1, we observe that

(6'14)/1@' (Um(S) - (_m__—z_l)z . u(s)v(s)) dr < /

N (uﬁ” -~ w . ’lLo’Uo) dz.
R

2

. . _ N(m-1)
Using (6.14) and taking by 6 = —55—%,

/ Num(s) — 8- uls)u(s) do
= N [ () - - u() de
- N / (un(s) - Q“Egll’ﬁ-u(s)v(s)) da
(6.15) <N/ (ug"—@;z”—x-uovo) dz.

We are now going to estimate the second term on the right-hand side of (6.12). We
use the following representation of v:

(6.16) v(z,t) = a/G(m - y)uly, t)dy.

Using (6.16) and § = ﬁﬁi’zz:ﬂ,

X/u-Vv‘md$+N(m—l)xfuvdw
N{m-1)

= ax//u(a:,s)u(y, s)(:z:-VG(:v —y)+ 3 -Gz —y)) dxdy
ay . ‘
= 5 f /u(:c,s)u(y, s) - ((93 —y)-VG(z—y)+ N(m-1) Gz — y)) dzdy.
By Lemma 2.1 and the assumption m < 2 ~ % in Theorem 1.3,
x/u-Vv-a: dm—{—N(m—l)x/uv dx

< -%K ((N —2)— N(m— 1)) f/u(w, s)u(y, s) - G(z — y) dzdy
< 0.
(6.17)
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Combining (6.17) with (6.13),

/u(t) |z dz — /uo -|z)? dz

(6.18) < ZN-t/N(uB”—(ﬁ—_imuomo) dz  forte (0,T).
R

Thus we complete the proof of Lemma 6.2. Q.E.D.

Proof of Theorem 1.3-(ii) )

We are going to prove Theorem 1.3 by contradiction.
Suppose Tmax = 00, that is, the weak solution of (KS) is solvable globally in time.
Then, from Lemma 6.2, it follows that

(6.19) M(t) < M(O)+2N~t/N (ug‘—@—:—;—l—)—&ug-vg) dr=: H(t) fort>0.

By virtue of (H1) in Theorem 1.3 i.e., that k :== — [ » (u{{‘ - WUO . v()) dz > 0,

(6.20) H({t) = =2N -k < 0 fort>0.

Hence, the equation H(¢) = 0 has a solution T, = “@ and M(t) =0 at ¢t = T,. This
contracts M(t) > 0 for ¢ € (0, 00). Thus we conclude that Tiax < 00. On the other hand,
by Proposition 1.1, we can extend the maximal existence time of the weak solution for
(KS) as long as |[u(t)||z~ is bounded. Hence, we observe that the weak solution of (KS)
blows up in a finite time. Thus we complete the proof of (ii) in Theorem 1.3. As for (i)
in Theorem 1.3, we refer [40] and [41]. Q.E.D.

7 Proof of Theorem 1.4 and 1.5

As for the proof of Theorem 1.4 and 1.5, we refer to [45].

8 Keller-Segel model with a power factor in drift
term

We rewrite the first equation of (KS) by substituting the second equation: Av =v—u
(with o = 7y = 1) as follows: ‘

(E) w = AU —Vu-Vo—ulv = Au™ — Vu - Vv —uv + u’.

Since this equation (E) has three terms: wu;, Au™ and u?, the first equation in (KS) is
- analogous to the following equation with ¢ = 2.

= Ay™ + ul N
(PS) { Uy = AuU™ + u zeR"Y, t>0,

u(z,0) = uo(z), = €RN.
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It is well known that the critical exponent ¢ = m+ % divides the situation of the global
existence and non-existence of the solution to the above equation (PS). This exponent is
called as the Fujita exponent [10]. Indeed, when ¢ > m+ %, it can be globally solvable for
small initial data. When ¢ < m+ % and ¢ =m+ %, it was proved that (all) non-negative
solutions of (PS) blow up in a finite time without any restriction on the size of the initial
data. (see for example [11], [13], [21] and [26]).

As for the case of ¢ > 2, we obtained the following theorem in [27] and [43].

Theorem 8.1 (time global existence of 7 = 0 case) Let 7 = 0, ¢ > 2 and suppose
that ug s non-negative. Then

(i) when m > g — £, (KS) has a global weak solution (u,v).

(ii) Whenl<m < g — %, we also assume that the initial data is sufficiently small, i.e.,
HuO[[LN ) vy << 1, then (KS) has a global weak solution (u,v).

Moreover, it satisfies a uniform estimate, i.e., that in both cases (i) and (ii), there
exists Ky = Ki(||luoll -y, m, ¢, N) such that

®1) s (fu)lprwe + [0@lpan) <K for all v € [1,00]

In addition, in both cases (i) and (ii), there ezists a positive constant Ky = Ka(||uo|| 12~y
m,q,N) such that

(8.2) sup vl p@yy < Ko

We assume that the initial dota is sufficiently small, i.e., for any fized number £ >
N(qz—m) (> 1),

(8.3) o pegry << 1.

then (KS) has a global weak solution (u,v) and the weak solution satisfies

d N(qg—m)
84)  sup(l+ )" (u®)llogwwy + [vOlun) <00 for 7€ [HLT 00).

where N .
d=— (1—-«»), oc=N{m-1)+2.
o T
Moreover, the weak solution satisfies
(8.5) £745 |u(z,t) — G(z, b |luol prmmy)| = 0 ast— oo

uniformly with respect to x in the set |z| < Rts, where § and R are any fized positive

constant and
-1 =
/ (A2 jaP) ™ dm,
RN 2mo +

— i "‘]. 1:3‘2 ml—l
8.6 : == Z _m .
(8.6) G(x,t; M) (A e )+ .

M

l
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Thus, we observe that the critical exponent m = ¢ — % of (KS) is equal to the Fujita’s
exponent for (PS) with ¢ = 2. Consequently, we can see that the critical exponent be-
tween the existence and non-existence of the solutions for (KS) and (PS) is same as each
other.
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