The transitivity of Conway's M_{13}

東北大学大学院・情報科学研究科 中嶋 康博 (Yasuhiro Nakashima)

Graduates School of Information Sciences, Tohoku University

1 Introduction

Mathieu groups M_{11} , M_{12} , M_{23} and M_{24} are the only nontrivial 4-transitive permutation groups, and M_{12} , M_{24} are the only nontrivial 5-transitive permutation groups. Conway introduced a set of permutations M_{13} on 13 letters, which contains Mathieu group M_{12} , and he claims that M_{13} is 6-transitive in some sense.

Martin and Sagan [2] generalized the concept of transitivity for a set of permutations. For a partition λ of a positive integer n, a subset D of the symmetric group S_n is said to be λ -transitive if there exists r > 0 such that for any partitions P, Q of shape λ , $\sharp \{\tau \in D \mid P^{\tau} = Q\} = r$. In particular, D is $(n-t,1,\ldots,1)$ -transitive if and only if D is t-transitive.

Conway's M_{13} is not (7,1,1,1,1,1)-transitive according to this definition, so Martin and Sagan raised a question to determine the full transitivity of M_{13} .

In this paper, we give a recursive definition of the elements of M_{13} , and answer the question of Martin and Sagan.

2 Construction of M_{13}

Let $\Omega := \{0, 1, ..., 11, \infty\}$ be the set of points of a projective plane P of order 3, and $\Omega_{12} := \Omega - \{\infty\}$. For $a \in \Omega_{12}$ we define a permutation on Ω by $\sigma(a) := (\infty \ a)(b \ c)$ where $\{\infty, a, b, c\}$ is the line of P, determined by a, ∞ , and set $\sigma(\emptyset) = \sigma(\infty) = id_{\Omega}$. Recursively, for an integer k such that $k \geq 2$ and $a_1, a_2, \ldots, a_k \in \Omega$ such that $a_1 \neq a_2 \neq \cdots \neq a_k$, define

$$\sigma(a_1, a_2, \dots, a_k) := \tau(\infty \ a_k^{\tau})(b^{\tau} \ c^{\tau})$$

where $\tau = \sigma(a_1, \ldots, a_{k-1})$ and $\{a_{k-1}, a_k, b, c\}$ is the line determined by a_{k-1}, a_k . Note that $\sigma(a)$ is the move a|bc, and a triangular permutation in the sense of [1] is of the form $\sigma(a, b, \infty)$. The sets M_{13}, M_{12} are defined as

$$M_{13} := \{ \sigma(a_1, \dots, a_k) \mid k \in \mathbb{N}, \ a_i \in \Omega, \ a_i \neq a_{i+1} \ (1 \le i \le k-1) \},$$

$$M_{12} := \{ \tau \in M_{13} \mid \infty^{\tau} = \infty \}.$$

The next proposition is useful to describe the elements of M_{13} .

Proposition 1. Let $a_1, \ldots, a_k, b_1, \ldots, b_l \in \Omega$ be such that $a_1 \neq \ldots \neq a_k \neq \infty \neq b_1 \neq \ldots \neq b_l$. Then

$$\sigma(a_1,\ldots,a_k,\infty,b_1,\ldots,b_l)=\sigma(b_1,\ldots,b_l)\cdot\sigma(a_1,\ldots,a_k,\infty).$$

Proof. We prove by induction on l. Let

$$\rho = \sigma(b_1, \dots, b_{l-1}),$$

$$\pi = \sigma(a_1, \dots, a_k, \infty),$$

so $\sigma(a_1,\ldots,a_k,\infty,b_1,\ldots,b_{l-1})=\rho\pi$ by the inductive hypothesis. Suppose that the line determined by b_{l-1},b_l is $\{b_{l-1},b_l,c,d\}$. Then

$$\sigma(a_{1}, \ldots, a_{k}, \infty, b_{1}, \ldots, b_{l}) = \rho \pi(\infty b_{l}^{\rho \pi})(c^{\rho \pi} d^{\rho \pi})
= \sigma(b_{1}, \ldots, b_{l})(\infty b_{l}^{\rho})(c^{\rho} d^{\rho})\pi(\infty b_{l}^{\rho \pi})(c^{\rho \pi} d^{\rho \pi})
= \sigma(b_{1}, \ldots, b_{l})\pi(\infty^{\pi} b_{l}^{\rho \pi})(c^{\rho \pi} d^{\rho \pi})(\infty b_{l}^{\rho \pi})(c^{\tau} d^{\rho \pi})
= \sigma(b_{1}, \ldots, b_{l}) \cdot \sigma(a_{1}, \ldots, a_{k}, \infty).$$

The following propositions are obvious.

Proposition 2. If i is an integer such that $1 \le i \le k$ and $x \in \Omega - \{a_i\}$, then

$$\sigma(a_1,\ldots,a_k)=\sigma(a_1,\ldots,a_i,x,a_i,a_{i+1},\ldots,a_k).$$

Proposition 3. For $a, b \in \Omega_{12}$ such that $\{a, b, \infty\}$ is contained in a line,

$$\sigma(a,\infty) = \sigma(a,b,\infty) = id_{\Omega}.$$

With these propositions, we prove the following theorem.

Theorem 4. M_{12} is the group generated by triangular permutations, and

$$M_{13} = \coprod_{a \in \Omega} \sigma(a) M_{12}.$$

Proof. Let $\alpha = \sigma(a_1, \ldots, a_k)$. Then $\alpha \in M_{12}$ if and only if $a_k = \infty$. For i in $\{1, \ldots, k-1\}$, if $a_i \neq \infty$ then we insert ∞, a_i between a_i and a_{i+1} by Proposition 2. So by Propositions 1 and 3, α is written as a product of triangular permutations.

If $a_k = \infty$, then $\alpha \in M_{12}$. Otherwise, Proposition 2 implies

$$\alpha = \sigma(a_1, \ldots, a_k, \infty, a_k)$$

so $\alpha \in \sigma(a_k)M_{12}$ by Proposition 1.

3 Transitivity of M_{13}

An integer tuple $\lambda = (\lambda_1, \dots, \lambda_k)$ is called a partition of a positive integer n if $\lambda_i \geq \lambda_{i+1} \geq 0$ and $\sum_{i=1}^k \lambda_i = n$. A partition $P = (P_1, \dots, P_k)$ of the set $\Omega_n := \{1, \dots, n\}$ is said to have shape $\lambda = (\lambda_1, \dots, \lambda_k)$ of n, if $|P_i| = \lambda_i$.

Definition 5. Let n be an integer and D be a set of permutations on Ω_n . For a partition λ of n, we say that D is λ -transitive if there exists r > 0 such that for any partitions P, Q of shape λ , $\sharp \{\tau \in D \mid P^{\tau} = Q\} = r$.

For example, a permutation group G is t-transitive on Ω_n if and only if G is $(n-t,1^t)$ -transitive, where 1^t means $\underbrace{1,\ldots,1}_t$. We first prove the following

general result.

Lemma 6. For each $i \in \Omega_{n+1} = \{1, \ldots, n+1\}$, let a_i be a permutation on Ω_{n+1} such that $i^{a_i} = n+1$, and G be a permutation group on $\Omega_n = \{1, \ldots, n\}$. If G is $(n-t, 1^t)$ -transitive on Ω_n and

$$D=\bigcup_{i\in\Omega_{n+1}}a_iG,$$

then D is a $(n-t+1,1^t)$ -transitive set on Ω_{n+1} .

Proof. For t-tuples $X=(x_1,\ldots,x_t), Y=(y_1,\ldots,y_t)$ of distinct elements of Ω_{n+1} , we define

$$D_Y^X := \{ \tau \in D \mid X^\tau = Y \}.$$

First, we suppose that Y contains n+1, for example, $y_1=n+1$. Then $D_Y^X\subset a_{x_1}G$, and $\{x_k^{a_{x_1}}\mid 2\leq k\leq t\},\{y_k\mid 2\leq k\leq t\}\subset\Omega_n$. By the $(n-(t-1),1^{t-1})$ -transitivity of G on Ω_n ,

$$|D_Y^X| = \sharp \{g \in G \mid (x_k^{a_{x_1}})^g = y_k \ (2 \le k \le t)\}$$
$$= \frac{|G|}{n \cdot (n-1) \cdots (n-(t-2))}.$$

Next, we assume that n+1 does not appear in Y. For an integer i such that $1 \leq i \leq t$, if $a_i g \in D_Y^X \cup a_i G$ then $i \notin X$ and $\{x_1^{a_i}, \ldots, x_t^{a_i}\}, Y \subset \Omega_n$, so by the $(n-t, 1^t)$ -transitivity of G on Ω_n ,

$$|D_Y^X| = \sum_{i \in \Omega_{n+1} - X} \sharp \{g \in G \mid (X^{a_i})^g = Y\}$$

$$= |\Omega_{n+1} - X| \cdot \frac{|G|}{n \cdot (n-1) \cdots (n-(t-1))}$$

$$= \frac{|G|}{n \cdot (n-1) \cdots (n-(t-2))}.$$

By this lemma, we see that M_{13} is $(8, 1^5)$ -transitive. We will show that M_{13} is not (7, 6)-transitive.

If M_{13} is (7,6)-transitive, then for any 6-element sets P,Q of Ω_{13} ,

$$\sharp \{ \tau \in M_{13} \mid P^{\tau} = Q \} = \frac{|G|}{\binom{13}{6}} = 720.$$

It is known that M_{12} leaves the set of hexads invariant (see [1] for details). We define $H := \{h^{\sigma(a)} \mid a \in \Omega, h : \text{hexad}\}$. If $h = \{1, 2, 3, 4, 5, 6\}$ then $h^{\sigma(7)} = h^{\sigma(8)}$ and

$$|H|<|\Omega|\cdot 132=\binom{13}{6},$$

so there is a 6-element set P that is not contained in H. Taking Q as a hexad, we obtain

$$\sharp \{ \tau \in M_{13} \mid P^{\tau} = Q \} = 0.$$

Therefore M_{13} is not (7,6)-transitive.

We need to introduce the dominance order on partitions of n, in order to state a result of Martin and Sagan [2]. For two integer partitions $\lambda = (\lambda_1, \dots, \lambda_k), \mu = (\mu_1, \dots, \mu_l)$, we define

$$\lambda \leq \mu \iff \sum_{i=1}^{j} \lambda_i \leq \sum_{i=1}^{j} \mu_i$$
, for any positive integer j

where $\lambda_i = 0$ for $i \geq k$ and $\mu_i = 0$ for $i \geq l$.

Theorem 7 (Martin and Sagan [2]). If a set D is λ -transitive and $\lambda \leq \mu$, then D is μ -transitive.

Using this theorem, we can determine the transitivity of M_{13} .

Theorem 8. Let $\lambda = (\lambda_1, \ldots, \lambda_k)$ be a partition of 13. Then M_{13} is λ -transitive if and only if $\lambda_1 \geq 8$.

Proof. If $\lambda_1 \geq 8$ then $\lambda \geq (8, 1^5)$. Since M_{13} is $(8, 1^5)$ -transitive, M_{13} is also λ -transitive by Theorem 7. Suppose M_{13} is λ -transitive for some λ with $\lambda_1 \leq 7$. Then M_{13} is (7,6)-transitive by Theorem 7 again since $\lambda \leq (7,6)$. This is a contradiction.

References

- [1] J. H. Conway, M_{13} , Surveys in combinatorics, 1997 (London), pp. 1–11, London Math. Soc. Lecture Note Ser., 241, Cambridge Univ. Press, Cambridge, 1997.
- [2] W. J. Martin and B. E. Sagan, A new notion of transitivity for sets of permutations, to appear in J. London Math. Soc.