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Abstract

This note is a summary of the results in the preprints [2], [3] and [4] which are the
joint works with Thomas Britz.

1 Introduction

The most celebrated result to connect coding theory and design theory is undoubtedly
the Assmus-Mattson Theorem [1]. It offers a sufficient condition for the codewords of a
given weight in a linear code over a finite field to form a simple ¢-design. Consequently,
it has been used to construct t-designs from linear codes; for instance, 5-designs are in {1]
obtained from the extended Golay code, the extended ternary Golay code, and other codes.

The MacWilliams identity [8] for the weight enumerator of a linear code over a finite
field plays an important role in the proof of the Assmus-Mattson Theorem. Recently [2], we
proved a matroid theoretical analogue of this identity. In [3], we apply this MacWilliams
identity for matroids in order to establish the matroid theoretical analogue of the Assmus-
Mattson theorem. We prove the Assmus-Mattson theorem for subcode supports of linear
codes in [4].

Our matroid theoretic terminology essentially follows that of Whitney [13], Tutte [11],
Oxley [10] and Welsh [12].

2 Notation and Terminology

We begin by introducing matroids, as in [10]. A matroid is an ordered pair M = (E,TI)
consisting of a finite set F and a collection Z of subsets of E satisfying the following three
conditions:

(I1) peT.
(I2) fI€Zand I'C I, then I' e T.
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(I3) If I; and I, are.in T and || < |I3|, then there is an element e of I — I; such that
Il Ueel.

The members of Z are the independent seis of M, and a subset of E that is not in 7 is
called dependent. A minimal dependent set in M is called a circuit of M, and a maximal
independent set in M is called a base of M. For a subset X of E, we define the rank of X

as follows: |
p(X)=max{]Y| : YCX, YeI}

The cﬁual matroid M* of M is defined as the matroid, the set of bases of which is
{E—-B : Bisa baseof M}.
When we denote the rank of M* by p*, the following is well-known:
pH(X) = 1X| = p(M) + p(E - X).
For a matroid M = (E,Z) and a subset T' of E, it is easy to check that
M\T=(E-T,{ICE~-T:I1cTI})

is a matroid which is called the deletion of T' from M. The contraction of T from M is given
by
M/T = (M*\T)".
For an m X n matrix A over Iy, if E is the set of column labels of A and T is the set of
subsets X of E for which the multiset of columns labeled by X is linearly independent in
the vector space Fy, then M[A] := (E,Z) is a matroid and is called a matroid of A over F,.

For a vector @ = (21,...,%,) € Fy and a subset D C Fy, we define the supports of =
and D respectively as follows:

supp(z) = {i |z # 0},
Supp(D) U supp(z).

£eD

A t-(v, k, p) design is a collection B of k-subsets (called blocks) of a set V with v points,
such that any t-subset of V' is contained in exactly u blocks. In [1], E. F. Assmus, Jr. and
H. F. Mattson, Jr. proved the following result, which is thus widely known as the Assmus-
Mattson Theorem (cf. [T]).

Theorem 2.1 Let C be a linear code on E over F, with minimum nonzero weight d, and
let d* denote the minimum nonzero weight of CL. Let w = n when g = 2 and otherwise let
w be the largest integer satisfying

defining wt similarly. Suppose there is an integer t with 0 < t < d that satisfies the following
condition: the number of indices i (1 <1 < n —t) such that Aci(i) # 0 is at most d — .
Then for each i with d < i < w, the supports of codewords in C of weight i, provided there
are any, yield a t-design. Similarly, for each j with d* < j < min{w*,n —t}, the supports
of codewords in C of weight j, provided there are any, form a t-design.
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3 Main Results

For any subset T' C E and a matroid M, let M.T denote the contraction M/(E — T)
and let M|T denote the deletion M\(E — T'). The characteristic polynomial p(M;\) of a
matroid M on the set F is given by the sum

p(M; ) = Z(_l)iTIAP(E)*p(T),
TCE

where p is the rank function of M.
The characteristic enumerator of a matroid M on a set E is given by

WA z,y) = Y p(M.T; NPTyl

TCE

= ZAM(’L A —Z z

=0
where Ay (i, A) = ZTE@) p(M.T;)). Then we proved the following MacWilliams type
identity in [2].

Theorem 3.1 If M is a matroid on the set E, then
)\p(M)WM* (’\a‘rsy) = WM(’\7 T+ (’\ . l)yvz - y)v (1)
and fori=0,1,...,n,
j . .
XD A (6, ) A T,
e ZMJ,; - () (0 )

Let IF be a (not necessarily finite) field, and let F[z] denote the ring of polynomials in
an indeterminate z with coefficients in F. Furthermore, define G := F[z] — {0,1}. For a
matroid M on E with at least one cocircuit, we define for positive integers ¢ and £,

Rae = {i€{l,...,n—t} © Aye(i,2) #0};

dy = min{]X]| : X is a cocircuit in M};
Cui = {X : X isacocircuit of M with |X| =i}
Hy; = {X : X is a hyperplane of M with |X| = i}
em = max{i : nosubset X € ( ) contains two distinct cocircuits of M}.

Using the above theorem, we have a generalization of the Assmus-Mattson theorem for
matroids.

Theorem 3.2 Let M be a matroid on E with at least one circuit and one cocircuit, and
suppose that t (0 <t < dp) is an integer with [Ry;,| < dyy — t for some A € G such that

1. fordlT € (‘?) andl=1,...,n—t, Ay-r(l,)) =0 whenever Ap-(I,A) =0.
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Then for m = min{ep-,n —t},
cM,dM: e acM,eMa CM*,dM. g 1CM*,m’ %M,n«eMa s 7%M,n-—dMa ?{M*,n-m; R a%M*,n—dM*
each forms a t-design.

Example 3.3 The binary affine matroid M = AG(3,2) , represented by the binary matrix

10000111
01001011
00101101}’
0001111080

has minimal cocircuit size dy = 4, and the characteristic enumerator of M* (and of M) is

Wi (A 2,5) = (A — 1)(A® = 7A% + 214 — 21)y* + 8(A — (A — 2)(A — 4)zy’
+28(A — 1)(A — 2)z%y® + 14(A — D)z'y* + z®.
so [Rirsl = [{4}] = 1 < dy — 3. By letting A be an indeterminate (resp., by setting A := 2),

Condition 1 in Theorem 3.2 is satisfied for \ and ¢ = 3. Hence, Cpr4 and Hps4 each form a
3-design.

Let C be an [n, k] code over F,. Let 7,7 be integers with 1 <r < k and 1 <4 < n, and
define

D,(C) = {D : D is an r-dimensional subcode of C};
S, (C) = {Supp(D) : DeD,(C)};
S$:(C) = {Xe&(C) : |X|=1};

4,(C) = d, =min{[X]| : X €S (0)}.

~ For an r with 1 < r < k, the 7-th support weight enumerator Ag) (z,y) of C is defined as
follows:

Ag) (z,y) = Z Air)mn—a‘yi,
>

where
AP = AD(C) = {D : Supp(D) € &,.:(C)}]-

Using Theorem 3.1 and Theorem 3.2, we have the Assmus-Mattson type theorem for
subcode supports of linear codes.

Theorem 3.4 Let C be an [n,k,d] code over Fy and let m be an integer with 1 < m <
min{k,n ~ k}. Suppose thatt (0 < ¢ < d) is an integer with

{ie{d:,...,n—t} : Ay-(3,q™) # 0} < dp — 1.
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If each S,;(C) form t-designs and 15,:(C)| = A"(C) whenever A(C) # 0, for all r
1<r<m=1) end alli (d, < i < dms1), then each 8pi(C) (dy < & < dpy1) forms
a t-design. Moreover, if each S,;(C*) form t-designs and |S, ;(C*)| = Agr) (C*) whenever
AJ(»T)(C’J') #0, forallr (1 <r<m-1)and all j (d&f < j < dh,), then each S, ;(C*H)
(dh < j < dpj,y) form t-design.

From this theorem, we have the following result for doubly-even self-dual codes of length
24, 32 and 48.

Corollary 3.5 Forn = 24, 32 or 48, let C be a binary doubly-even self-dual [n,n/2,4|n/24|+
4] code. then each S, ;(C) forms a t-design as follows:

length n | m | support weights ¢ t-designs
24 2 12 5-(24,12,660)
24 2 14 5-(24, 14, 8008)
54| 2 16 5-(24, 16, 65598
%4 |3 14 5-(24, 14, 4290)
24 | 3 15 5-(24, 15, 40040)"
32 2 12 3-(32,12,385)
33 | 2 14 3.(32,14,10192)
s |2 8 5-(48, 18, 13328)
48 2 20 5-(48, 20, 581400)
8 | 2 2 5-(48, 22, 15853068)
*by computer search
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