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ON A THEOREM OF MISLIN ON COHOMOLOGY
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INTRODUCTION

Let kG be the group algebra of a finite group G over an algebraically closed field
k of characteristic p > 0 . In 1990 [9] G.Mislin proved the following remarkable

theorem.

Theorem (Mislin). Let H be a subgroup of G. Then the restriction map in mod-p
cohomology res$, : H*(G, k) — H*(H, k) is an isomorphism if and only if H controls
strong p-fusion in G.

*If’" part in the theorem has long been known to be true. For ”Ounly if’part
Mislin’s proof uses deep results from algebraic topology. In 2001 [11] V.P.Snaith
gave an alternating proof of Mislin’s theorem which uses also topological results.
In [10] G.R.Robinson remarked that Mislin’s theorem can be obtained if one could
prove the non-vanishing of cohomology of certain types of trivial source AG-modules.

Isomorphism classes of indecomposable trivial source kG-modules are parametral-

ized as follows. Let P be a p-subgroup of G and S be a simple kNg(P)-module.

Let Mﬁg“’) be a projective cover of S as kNg(P)/P-module. Inflating M;V,g“” to
kENg(P) and taking its Green correspondent, we obtain an indecomposable trivial
source module Mgs with vertex P. And each indecomposable trivial source module
is obtained in this way.

P.Symonds in [13] proved the following result from which Mislin’s theorem is
obtained following Robinson’s remark.

Theorem (Symonds). In the notations above, H *(G,Mgs) % 0 if and only if
Cs(P) acts trivially on S.

A proof of the above theorem given by P.Symonds needs also topological methods.
My aim in this talk is to give an algebraic proof of the theorem of P.Symonds.

A.Hida [8] also obtained an algebraic proof of the above Symonds’theorem and
explained his idea in his talk at this meeting. A very elegant proof !!

In my lecture I first introduced the idea of Robinson to find an algebraic proof
of Mislin’s theorem and how his idea relates Symonds’theorem. This is included in
section 1 in this note. And then I discussed the theorem of Symonds. In the lecture
I only gave an outline of my proof of the theorem. I shall give my proof in detail in
this note.



”Only if” part of the theorem has been essentially proved by Benson, Carlson and
Robinson in [5]. In section 2 in this note we shall give a proof of ”Only if part”
following arguments by them.

For ”Ifpart we first reduce the problem to some p-local subgroup. This is done
in section 3. Our p-local subgroup is a normalizer of some elementary abelian p-
group. Then we use the idea of Symonds in {12] to find a nonzero cohomology
element. There he made use of the Lyndon-Hochschild-Serre spectral sequence and
some result on the action of Aut{E) on the cohomology algebra H*(E, k), where E
is an elementary abelian p-group. He needed also a result of Duflot [6] on the depth
of cohomology algebras of groups with central elementary abelian groups. For these
results there has been given algebraic proofs (see for example [2],[4] and [7]) and we
believe that our proof of the theorem is an algebraic one.

1. ROBINSON’S IDEA

In this section let H be a subgroup of G and assume that res§ : H*(G, k) —
H*(H, k) is an isomorphsm. We first remark the following.

Lemma 1.1. H contains a Sylow p-subgroup of G.

Proof. Consider an H-injective hull of kg; 0 — kg 3 kg 16— L — 0. We obtain
the following long exact sequence '

— HYG, k) & HY(G, kg 1€) — H™(G, L) —» H™(G, k) £ H™Y(G, ky 1€) =

Identify H™(G, kg 1¢) with H™(H, kg) by Eckmann-Shapiro. Then it follows that
the map f, coincides with the restriction map res¥. By our assumption we have
H™G, L) for n = 0. By a theorem of Benson- Carlson-Robinson (Theorem 2.4
5]), H*(G, L) = 0 for all n, where H™ is Tate’s cohomology. In particular, resy
H (G, kg) — H™(H, kg) is an isomorphism. Any non zero element in H(G, k)
represents the almost split sequence terminating at kg and it is well known that the
sequence does not split as a sequence of kH-modules if and only if H contains a
Sylow p-subgroup of G. Thus the lemma is proved. O

Assume that H contains a Sylow p-subgroup of G and H does not control p-fusion.
Then there exists a p-subgroup P of H such that Ng(P) 2 Co(P)Ng(FP). Choose P
maximal with this property, then Cq(P) = Z(P)x Oy (Cq(P)) and Co(P)Nu(P)/P
is a strongly p-embedded subgroup of Ng(P)/P. Set C = Cg(P)Ng(P). Then
ke tNe@P)= k & M for some kNg(P)-module M. Each indecomposable summand
of M has the form MHS" with Ce(P) C KerS. (ke 19) dnam)= kg 77
oU = kg Vo) gU’" = kg @ M @ U’ for some kNg(P)-modules U, U'. By a
theorem of Burry-Carlson, kg 1¢= ke & MFg ® V with Ker S D Cg(P).

Now Symonds’theorem implies that H(G, M§) # 0 and we can conclude that
H*(H,k) = H*(G,kx 1°) 2 H*(G,k) and the "only if’ part of Mislin’s theorem
follows.
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2. PrOOF OF "ONLY IF” PART

Let P be a p-subgroup of G and S be a simple kNg(P)-module. And let M§,
be an indecomposable kG-module with vertex P and with trivial source described
in introduction. In these notations we shall prove the following.

Theorem 2.1. H*(G, M§;) =0 if Ca(P) acts nontrivially on S.

We argue following a proof of Proposition 5.3 in [5]. If Cg(P) acts nontrivially
on S, then there exists a p’-elemnt y # 1 in Cg(P) such that y acts nontrivially
on S. Thus there exists a one dimensional submodule My of S|, p On which

y acts nontrivially. Then MOTNG(P ) has a summand isomorphic to Mp N""(P ) be-

cause My1VeP) is a projective kNg(P)/P-module and Homyny(py( Mo o ), S) =
Homyyyx p(Mo, Sy p) # 0. Therefore M = Mgs appears in summand of M1©
and H*(G, M) < H*(G, Myt®). Now the result follows by Lemma 5.1 in [5].

3. Proor or "IF” PART

Let H be a subgroup of G and P be a p-subgroup of H. Then the module M g .
where k = ky, (p) is the trivial KNy (P)-module is called a Scott module of H with
vertex P and we shall denote it by ScE. It is well known that Scf is a unique trivial
source module of H with vertex P which contains &y.

Throughout this section let M = Mgs where P is a p-subgroup of G and S is
a simple kNg(P)-module on which Cg(P) acts trivially. Notice that the condition

that Cg(P) acts trivially on S is equivalent to the condition that M{pc (py has a

direct summand isomorphic to SCPCG(P). In this section we shall give a proof of

?if’ part of the theorem by induction on |P|. We divide our proof in several steps.

Lemma 3.1. Let Q be a subgroup of P such that Cp=(Q) C Q for any z € G with
P* 2 Q. Then My, g)ca(q) has a direct summand isomorphic to ScNP Eg%c"@)

Proof. We shall prove the lemma by induction on [P : @]. If @ = P, then the
result clearly holds. Assume that @ # P and set R = Np(Q). Then R 2 Q. If

P* O R for an element z € G, then Cp<(R) C Cpe(Q) € @ C R. So R satisfies
the assumption in the lemma. By induction M|y, gcqr) has a direct summand

isomorphic to SeyriH ™. As Np(R) N RCe(R) = RCp(R) = R, Scz ™ i

a summand of (Sc NPE RgCG(R)Nch( gy Thus Mlgc, ) has a summand 1somorphic

to SCRCG(R) and there exists an indecomposable direct summand My of Mpc,0
such that Milpc,(g) has a summand isomorphic to ScRCG . We shall show that

M is isomorphic to SCRCG . A vertex of M; contains B. On the otherhand M;
is P* N RCs(Q)- pro;ec’mve for some ¢ € G. Hence P** N RC;(Q) 2 R for some
a € RC(Q). P* N RCe(Q) = RCp=(Q) = R and therefore a vertex of M; is
R. Set H = RC;(Q) N Ng(R). H = R(Ng(R) N Cs(Q)). We shall claim that
Ng(R) N Ce(Q)/Cq(R) is a p-group. Let y € Ng(R) N Cg(Q) be a p'-element.
Then (y) x @ acts on R by conjugation and (y) centralizes Cr(Q) as Cr(Q) C Q.



By Thompson’s A x B Lemma, (24.2 in [3]), y centralizes R and our claim follows.
Now let M; be the Green correspondent of M; with respect to (R, RCq(Q), H).
As Mylge,(r) has a summand isomorphic to ScﬁCG(R), so has Mol gc,r)- As Mo
is R-projective and H/RCg(R) is a p-group, My itself is a Scott module Sc¥ and
therefore M, is a Scott module Scﬁc‘;@). O

Let E; be an elementary abelian subgroup of P of maximal rank. Among the
conjugates EY of E; with Ef C P, choose Fy so that [Cp(Ep)| is maximal. Set
Qo = Cp(Ey). Let P* D Qg be a conjugate of P such that |Npa(Qo)| is maximal.
Now set Q = Q%7 and E = E¢ . Then E C P and Q = Cp(E). In these notations
we have the following.

Lemma 3.2. The following statements hold.

1. B =0(Q), that is, each element in Q of order p is contained in E.
2. @ satisfies the assumption in Lemma 2.1.
3. Np(Q) = Np(E). And if P* 2 Q, then [Np=(E)| < |Np(Q)|.

Proof. As E is conjugate to E1, F is also of maximal rank in P. Hence the statement
(1) follows. By our choice of E, |Cp(E)| = |Cp(Ep)|. So |Cp(E)| is also maximal.
fP°DQforz € G, then P2 Q" and Cp(E* ) 2 Q. By maximality of
|Cp(E)|, Cp(E*"") = Q%" and therefore Cp=(E) = Q. Thus Cp=(Q) C Cp=(E) =
@. Thus the statement (2) follows. Np(F) normalizes Cp(E) = @ and therefore
Np(E) C Np(Q). By (1) E is a characteristic subgroup of @ and Np(Q) € Np(E).
If P D Q for an element z € G, then as in the above it follows that Cp=(E) = @
and Np«(Q) = Np=(E). Now by maximality of |Np(Q)|, we have that |[Np(Q)| >
|Np=(Q)| = |Np=(E)| and the statement (3) follows. O

For E C P and Q = Cp(E) chosen as in the above, Ng{(Q) C Ng(E) by Lemma
2.2.(1). And by Lemma 2.1 and Lemma 2.2.(2) there exists an indecomposable
direct summand M, of M|y, such that Mily.(g)ics(q) has a direct summand

isomorphic to Scmg;%(@-

In the rest of this section , £ C P,Q = Cp(E) and the kNg(E)-module M; will
be those satifying the above conditions. We have the following.

Lemma 3.3. A vertez of My is Np(Q). Milgyp) s {72 € Ng(E)}-projective

and has a direct summand isomorphic to Mg)%(E), for some simple kNggym)(Q)-
module T on which Ca(Q) acts trivially.

Proof. A vertex of M; contains Np(Q). On the otherhand M; is P* N Ng(E)-
projective for some z € G. So P**NNg(E) 2 Np(@Q) for some a € Ng(E). Then by
Lemma 2.2.(3) P**N Ng(E) = Np=a(E)} = Np(Q) and it follows that a vertex of M
is Np(Q). For z € Ng(E), Np(Q)* N Cg(E) = Cp(E)* = Q°. Hence Milgyp) is
{Q°; 2 € Ng(E)}-projective. As Mily,(g)cq(q) has a direct summand isomorphic to

SNP@Ce(@  there exists an indecomposable direct summand My of Midg, (g such

Np(Q)
that Molooa(g) has an indecomposable direct summand isomorphic to chog(cg)_
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Such an indecomposable trivial source kCq(E)-module with vertex @ is isomorphic
to the module described in the lemma. O

In proofs of the following two lemmas we shall use the idea of Symonds in [12].
Lemma 3.4. Assume that G = Cg(E). Then H*(G,M) # 0

Proof. Co(P modE)/Cg(P) is a p-group as E is central in G. So as a kG /E-module,

M satisfies the assumption in the theorem for G/E. By induction we may assume

that [*(G/E, M) # 0. We examine the Lyndon-Hochschild-Serre spectral sequence
EPY = HP(G/E, HY(E,M)) = H™(G, M)

Let n be the lowest degree with H"(G/E, M) # 0. As E is central in G, for each g,

a kG/E-module HY(E, M) is isomorphic to a direct sum of some copies of M (or 0).

Hence H™(G/E, HY(E, M)) = 0 for m < n. Thus E%° # 0 and H*(G, M) #0. O

By Lemma 2.3 and Lemma 2.4 H*(Cg(E), M) # 0. Using this fact we shall
examine H*(Ng(F), M) in the following two lemmas.

Let 7 be the rank of E. Set E = {(ay,-- ,a.) and o; € H'(E, k) = Hom(E, k) be
the element dual to a;. Then letting §; = 6{%) we have the polynomial subalgebra
k|B., -+ ,B,] in H*(E, k), where 3 is the Bockstein map. Using Evens’ norm map,
we obtain homogeneous elements (3, - - - , (- € H*(Cg(E), k) such that resCG( (G) =
B7" where p* is the p-part of |[Ce(E) : E|. Set R = k[, ,() C H*(CG( ), k)
and Ry = resCG(E)(R) The elements {; can be constructed in the prime field F,.
We however do not know whether R can be taken Ng(F)-invariant although Ry is
Ng(E)-invariant. We remark the following fact.

For z € NG(E) write B = >_5_1 Xijfj, where \; € Fp. Then by our choice of (;,

we have that reseo ¥ (¢z — > i1 M) = 0. So resQG(E (¢F —225-1 Xij¢;) is nilpotent
for each Ng(E)-congugate Q¥ because (;(Q) = E. Soreplacing Q s by its suitable p-
powers, we can assume that res y(E)(C’” D iy XijG) = 0 for any QY. The kNg(E)-
module M; defined in Lemma 2 3is {Q¥;y € Ng(E)}-projective as kCg(E)-module.
Therefore for any element v € H*(Co(E), My), we have v - ¢F = v+ (35 M)
Thus when we consider multiplications of the elements in R on H*(Cg(E), M;) ,we
may assume that R has an Ng(F)-action which coincides with that on Ry.

Lemma 3.5. Assume that G = Ng(E). Then res§_ g t1Z. z/(H*(Co(E), M)) # 0.

Proof. By a result of Evens (Theorem 10.3.5 [7], see also [6] and [1]), H*(Ce(E), M)
is free over the polynomial algebra R defined in the above. Let n be the lowest degree
with H*(C(E), M) # 0. By minimality of n, H*(Cg(E), M)NH*(Ce(E), M) =0,
where [ is the ideal in R of elements of positive degree. So a k-basis of H*(Cg(E), M)
can be extended to a free R-basis of H *(C’G(E), M) and we can conclude that
H™(Ce(E),M) - R = H(Cg(E), M)®:R. As is remarked in [12], Ry contains a
free submodule Fy as G/Ce(F)-module. Set F = R (res3¢ ™)~ (F,). Then by the
above remark it follows that that H*(Cg(E), M) - F & H"(Cg(E), M)®F is G-
invariant and H*(Cg(E), M)-F = H*(Cg(E), M)®Fp as G/Cg(E)-modules. Thus



H*(Cg(E), M) also contains a free G/Cq(FE)-module. So there exists an element
v € H*(Cg(E), M) such that 0 # Y, cc/cum 7 = 188Gg(5) Te0m (7)- 0

For a subgroup A C Cg(F) with A 2 E, take a maximal subgroup E; of F such
that E; O AN E. Using the isomorphism AE/A = E/ANE and the epimorphism
EJANE — E/E,;, we have an element n(A4) € Inf(H?(AE/A, k)) C H*(AE, k) such
that res4®(n(A)) € H%(E, k) is not nilpotent and res4®(n(A)) = 0. Using Evens’
norm map, set 7(A4) = normi%(E) (n(A)) € H*(Cg(E), k). By Mackey formula 7(A)
also satisfies the above conditions for 7(A). And set p(A) = [T enpimcoE T(4A)" €
H*(Cg(E), k). Finally set p = [[, p(A) € H*(Ca(E), k), where the product is
taken over the set of subgroups A of Cq(E) with A 2 E. p is Ng(E)-invariant.
It holds that resiG(E)(p) = 0 for any subgroup A C Cg(F) with A 2 E and
ress®®)(p) € H*(E, k) is not nilpotent. Notice that p is regular on H*(Ca(E), M)
where M, is the kNg{E)-module in Lemma 2.3 because E is central in Cg(F) and
My is a trivial source module with kernel containing E.

Lemma 3.6. Assume that G = Ng(E). Then there ezists an element o € H*(G, M)
such that resg(cr) # 0 and resG(a) = 0 for any subgroup A C G with A 2E.

Proof. Set C = Cg(E). By Lemma 2.5 there exists v € H*(C, M) such that 0 #
resStr(y). Set a = trg(y - p) € H*(G,M). We shall show that « satisfies the
assumptions in the lemma.

For a subgroup A of € , 1es§(@) = 16§60y - £) = Y yeengya (thnaresfa (7
p)?). As p is G-invariant, resS,((7 - p)*) = resgna(v*)resGaa(p). If A 2 E, then
CNA 2 E and therefore res§(a) = 0. Again by the fact that p is G-invariant
resg(a) = resGtrG(y - p) = (resGtr&(v)) - p # 0 because p is regular on H*(C, M).
If res§(a) = 0, then resg.(a) = 0 for all z € G. Then as Ml¢ is {Q%z € G}-
projective, it follows that resg(a) # 0 which is not the case. O

Now we can complete a proof for ”If” part of the theorem of Symonds.
Theorem 3.7. If Ca(P) acts trivially on S, then H*(G, Mgg) # 0.

Proof. Let M be the kNg(E)-module in Lemma 2.3. Then by Lemma 2.6, there
exists an element a € H*(Ng(E), M) such that reng(E) (o) # 0 and resﬁG(E)(a) =0
for any subgroup A C Ng(E) with A 2 E. As M is a direct summand of Mn,my
we can regard a € H*(Ng(E), M) for which the same conditions as in the above hold.
We shall show that resgtrﬁg( py{a) # 0. For an element z € G ,if Ng(EYNQ® 2 E,
then E° = E as 2,(Q) = E and hence z € Ng(E). Thus for z ¢ Ng(E), we have

that res%gég:m(am) = (resngmrl(a))x = 0. Now Mackey formula says that

resgtry_ p(@) = reng(E)(a) # 0. 0
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