On unitarizability of certain lowest (\mathfrak{g}, K) -modules

三鳥川寿一(Hisaichi Midorikawa)

津田塾大学数学教室 (Department of Math. Tsuda College)

1 Introduction

Let $G_{\mathbb{C}}$ be a connected simply connected complex simple Lie group and G a connected noncompact simple real form of $G_{\mathbb{C}}$. We denote the Lie algebras of Gand $G_{\mathbb{C}}$ respectively by g and $\mathfrak{g}_{\mathbb{C}}$. Let θ be the Cartan involution of G and Kthe maximal compact subgroup of G. Then G is inner if θ belongs to the adjoint group of K. We shall assume G is inner. Then K contains a Cartan subgroup Bof G. Let $\mathfrak{g}=\mathfrak{k}\oplus\mathfrak{p}$ be the Cartan decomposition of \mathfrak{g} , where \mathfrak{k} is the Lie algebra of K and p is the eigenspace of θ with the eigenvalue -1. Let \hat{K} be the unitary dual of K and (π, V) a finite generated \mathfrak{g} -module. Then (π, V) is said to be a (\mathfrak{g}, K) module if dim $Hom_K(V_{\sigma}, V)$ are finite for all $(\sigma, V_{\sigma}) \in \hat{K}$, where $Hom_K(V_{\sigma}, V)$ is the space of all K-homomorphisms of V_{σ} to V. Let $\mathfrak b$ be the Lie algebra of Band Σ the root system of the pair $(\mathfrak{g}_{\mathbb{C}},\mathfrak{b}_{\mathbb{C}})$, where $\mathfrak{g}_{\mathbb{C}}$ the Lie algebra of $G_{\mathbb{C}}$. The root system Σ_K of $(\mathfrak{k}_{\mathbb{C}},\mathfrak{b}_{\mathbb{C}})$ is a subset of Σ . Let P and P_K be respectively the positive root systems of Σ and Σ_K . We assume $P_K \subset P$. Let P_n be the set of all noncompact roots in P, and assume the simple root system Ψ of P has exactely one noncompact root. For a (\mathfrak{g},K) -module (π,V) we denote by Γ_{π} the set of all P_K -dominant integral forms ν on $\mathfrak{b}_{\mathbb{C}}$ satisfying dim $Hom_K(V_{\nu}, V) \neq 0$, where (π_{ν}, V_{ν}) is a unitary simple K-module with the highest weight ν . A simple (\mathfrak{g}, K) module (π, V) is a lowest module if there exists a P-dominant integral form μ on $\mathfrak{b}_{\mathbb{C}}$ such that dim $Hom_K(V_{\mu}, V) = 1$ and $\mu - \omega \notin \Gamma_{\pi}$ for all $\omega \in P_n$. (π, V) is said to be a lowest (g, K)-module with a P-dominant data μ . Our object of this note is to give a necessary condition for the unitarizable lowest (\mathfrak{g}, K) -module with a Pdominant nonzero data μ under the assumption : \mathfrak{k} has an ideal \mathfrak{k}^* with dim $\mathfrak{k}^* \leq 3$. Let us state our main result after the following preparations. Let $(\pi_{\nu}, V_{\nu}) \in \hat{K}$, and consider a tensor K-module $\mathfrak{p}_{\mathbb{C}} \otimes V_{\nu}$, where $\mathfrak{p}_{\mathbb{C}}$ is the complexification of \mathfrak{p} in $\mathfrak{g}_{\mathbb{C}}$. Let Γ_K be the set of all P_K -dominant integral forms on $\mathfrak{b}_{\mathbb{C}}$ and Σ_n the set of all noncompact roots in Σ . For $\omega \in \Sigma_n$ we define a projection operator $P_{\nu+\omega}$ on $\mathfrak{p}_{\mathbb{C}} \otimes V_{\nu}$ by

$$P_{\mu+\omega}(X\otimes v) = \begin{cases} \int_K (Ad\otimes \pi_{\nu})(k)(X\otimes v)\chi_{\nu+\omega}(k^{-1})dk & \text{if } \nu+\omega\in\Gamma_K\\ 0 & \text{if } \nu+\omega\notin\Gamma_K \end{cases}$$

, where $X \in \mathfrak{p}_{\mathbb{C}}, v \in V_{\nu}$, dk is the Haar measure on K normalized as $\int_{K} dk = 1$ and $\chi_{\nu+\omega}(k) = (\dim V_{\nu+\omega}) trace \pi_{\nu+\omega}(k)$.

Theorem 1.1

Let g be an inner type noncompact real simple Lie algebra. We choose a positive root system P satisfying $P_K \subset P$ and its simple root system Ψ has exactly one noncompact root. Assume \mathfrak{k} has an ideal \mathfrak{k}^* with dim $\mathfrak{k}^* \leq 3$. If (π, V) is a unitarizable lowest (\mathfrak{g}, K) - module with a P-dominant nonzero data μ , then

$$\frac{2(\mu + \rho_K - \rho_n, \omega)}{|\omega|^2} \ge -1 \text{ for all } \omega \in P_n$$

satisfying $P_{\mu+\omega}(\mathfrak{p}_{\mathbb{C}}\otimes v_{\mu})\neq 0$, where ρ_K (resp. ρ_n) is one half the sum of all roots in P_K (resp. P_n).

This theorem is proved by solving a system of linear equation associated with the Clebsch-Gordan coefficients of the tensor K- module $\mathfrak{p}_{\mathbb{C}}\otimes V_{\mu}$. This method is treated by the papers of V. Bargmann [1] for $SL(2,\mathbb{R})$, L.H.Thomas [9] and J. Deximier [2] for De Sitter group (see for the related works T. Hirai [4], A.U. Klimyk and U. A. Shirokov [5]). Let Ω be the Casimir operator on G and (π, V) a lowest (\mathfrak{g}, K) -module with a P- dominant nonzero data μ . Then Ω acts on V as the scalar $|\mu + \rho_K - \rho_n|^2 - |\rho|^2$, where $\rho = \rho_K + \rho_n$. If $\dim \mathfrak{k}^* = 1$, then $(\mathfrak{g}, \mathfrak{k})$ is a hermitian symmetric pair. In [8] R. Parthasarathy gives a criterion for the necessary and sufficient condition for the unitarizability of the lowest (\mathfrak{g}, K) -module with a P-dominant data μ under the assumptions: $(\mathfrak{g}, \mathfrak{k})$ is hermitian and $\mu + \rho_K - \rho_n$ is P-regular. If $\dim \mathfrak{k}^* = 3$, then \mathfrak{g} is one of the Lie algebras $\mathfrak{sp}(n, 1)$, EII, EVI, EIX, FI and G_2 (see Table II, p354, [3]). The detailed proof of the theorem will be appear elsewhere.

In the following I summarize an outline of the proof of the main theorem.

2 Linear equation of lowest (g, K)-module

Let P be a postive root system of Σ containing P_K . Throughout of this note we assume the simple root system Ψ of P has exactly one noncompact root. Let $\alpha \in \Sigma$ and $\mathfrak{g}_{\alpha} = \{X \in \mathfrak{g}_{\mathbb{C}} : ad(H)X = \alpha(H)X \text{ for all } H \in \mathfrak{b}_{\mathbb{C}}\}$. Let $\phi(X,Y)$ be

the Killing form on $\mathfrak{g}_{\mathbb{C}}$ and $\mathfrak{g}_u = \mathfrak{k} \oplus \sqrt{-1}\mathfrak{b}$ the compact real form of $\mathfrak{g}_{\mathbb{C}}$. We choose $X_{\alpha} \in \mathfrak{g}_{\alpha}$ satisfying

$$X_{\alpha} - X_{-\alpha}, \sqrt{-1}(X_{\alpha} + X_{-\alpha}) \in \mathfrak{g}_u \text{ and } \phi(X_{\alpha}, X_{-\alpha}) = 1.$$
 (1)

Then $\phi(H, H_{\alpha}) = \alpha(H)$ for $H \in \mathfrak{b}_{\mathbb{C}}$, where $H_{\alpha} = ad(X_{\alpha})X_{-\alpha}$. Let τ be the conjugation of $\mathfrak{g}_{\mathbb{C}}$ with respect to \mathfrak{g}_{u} . We define a bilinear form (X, Y) on $\mathfrak{p}_{\mathbb{C}}$ by $(X, Y) = -\phi(X, \tau(Y)), X, Y \in \mathfrak{p}_{\mathbb{C}}$. Then (X, Y) is a positive definite hermitian form on $\mathfrak{p}_{\mathbb{C}}$. Moreover for $\alpha, \beta \in \Sigma_{n}$, $(X_{\alpha}, X_{\beta}) = \delta_{\alpha,\beta}$, where $\delta_{\alpha,\beta}$ is Kronecker's delta. Let (π, V) be a lowest (\mathfrak{g}, K) -module with a P-dominant data μ . We define a K-homomorphism φ of $V_{\mu} \oplus (\mathfrak{p}_{\mathbb{C}} \otimes V_{\mu}) \oplus (\mathfrak{p}_{\mathbb{C}} \otimes \mathfrak{p}_{\mathbb{C}} \otimes V_{\mu})$ to V by

$$\varphi(v) = v, \ \varphi(X \otimes v) = \pi(X)v$$

 $\varphi(X \otimes Y \otimes v) = \pi(X)\pi(Y)v,$

where $X, Y \in \mathfrak{p}_{\mathbb{C}}, v \in V_{\mu}$.

2.1 Lemma Let (π, V) be a lowest (\mathfrak{g}, K) -module with a P- dominant data μ . Then for $\omega \in \Sigma_n$, $X, Y \in \mathfrak{p}_{\mathbb{C}}$ and $v \in V_{\mu}$ we have

$$\varphi(P_{\mu}(X \otimes Y \otimes v)) = P_{\mu}(\pi(X)\pi(Y)v),$$

$$\varphi(P_{\mu}(X \otimes P_{\mu+\omega}(Y \otimes v))) = P_{\mu}(\pi(X)P_{\mu+\omega}(\pi(Y)v)).$$

Let $\omega \in \Sigma_n$, and assume $P_{\mu+\omega}(\mathfrak{p}_{\mathbb{C}} \otimes V_{\mu}) \neq 0$. Then the K-module $P_{\mu}(\mathfrak{p}_{\mathbb{C}} \otimes P_{\mu+\omega}(\mathfrak{p}_{\mathbb{C}} \otimes V_{\mu}))$ is simple. Moreover (see Corollary 4.5, [7]) there exist a unit vector $v_{\omega}(\mu)$ and a positive constant $c(\mu;\omega)$ such that

$$P_{\mu}(X_{-\gamma} \otimes P_{\mu+\omega}(X_{\gamma} \otimes v(\mu))) = c(\mu; \omega) |P_{\mu+\omega}(X_{\gamma} \otimes v(\mu))|^{2} v_{\omega}(\mu)$$
 (2)

for all $\gamma \in P_n$, where $v(\mu)$ is the highest weight vector of V_{μ} normalized as $|v(\mu)| = 1$. We remark that $v_{\omega}(\mu)$ is the highest weight vector of $P_{\mu}(\mathfrak{p}_{\mathbb{C}} \otimes P_{\mu+\omega}(\mathfrak{p}_{\mathbb{C}} \otimes V_{\mu}))$. We put

$$S(\mu; P_n) = \{ \omega \in P_n; P_{\mu+\omega}(\mathfrak{p}_{\mathbb{C}} \otimes V_\mu) \neq 0 \}.$$
 (3)

Let us enumerate the sets P_n and $\mathcal{S}(\mu; P_n)$ respectively by

$$P_{n} = \{\gamma_{1}, \gamma_{2}, ..., \gamma_{N}\}, \ \gamma_{1} > \gamma_{2} > ... > \gamma_{N},$$

$$S(\mu; P_{n}) = \{\omega_{1}, \omega_{2}, ..., \omega_{k}\}, \ \omega_{1} > \omega_{2} > ... > \omega_{k}.$$

We define two matrices $A_0(\lambda)$ and $B_0(\lambda)$ respectively by

$$A_0(\lambda) = (|P_{\mu+\omega_i}(X_{\gamma_i} \otimes v(\mu))|^2), \tag{4}$$

$$B_0(\lambda) = (|P_{\mu+\omega_j}(X_{-\gamma_i} \otimes v(\mu)|^2), \tag{5}$$

where $\lambda = \mu + \rho_K$. By Lemma 4.3 and Theorem 5.5 in [6] $|P_{\mu+\omega_j}(X_{\pm\gamma} \otimes v(\mu))|^2$ is a rational function in λ .

Theorem 2.1

Let (π, V) be a lowest simple $(\mathfrak{g}, \mathfrak{k})$ -module with a P-dominant data μ . Define $A_0(\lambda)$ and $B_0(\lambda)$ by (2.4) and (2.5). We put

$$\mathbf{x} = {}^{t}(x_1, x_2, ..., x_k) \text{ and}$$

 $\mathbf{b}(\lambda) = {}^{t}((\mu, \gamma_1), (\mu, \gamma_2), ..., (\mu, \gamma_N)),$

where x_i is defined by $x_i = -\varphi(c(\mu; \omega_i)v_{\omega_i}(\mu))$. Then we have

$$(A_0(\lambda) - B_0(\lambda))\mathbf{x} = \mathbf{b}(\lambda).$$

Proof. Let $\gamma \in \Sigma_n$. Since $\mu - \omega \notin \Gamma_{\pi}$ for $\omega \in P_n$, Lemma 2.1 and (2.3) imply

$$\varphi(P_{\mu}(X_{-\gamma} \otimes X_{\gamma} \otimes v(\mu)))
= \sum_{\omega \in \Sigma_{n}} \varphi(P_{\mu}(X_{-\gamma} \otimes P_{\mu+\omega}(X_{\gamma} \otimes v(\mu))))
= \sum_{j=1}^{k} \varphi(P_{\mu}(X_{-\gamma} \otimes P_{\mu+\omega_{j}}(X_{\gamma} \otimes v(\mu))))
= \sum_{j=1}^{k} |P_{\mu+\omega_{j}}(X_{\gamma} \otimes v(\mu))|^{2} \varphi(c(\mu; \omega_{j}) v_{\omega_{j}}(\mu)).$$

This implies that

$$\varphi(P_{\mu}(X_{-\gamma_{i}} \otimes X_{\gamma_{i}} \otimes v(\mu) - X_{\gamma_{i}} \otimes X_{-\gamma_{i}} \otimes v(\mu)))$$

$$= \sum_{j=1}^{k} \{|P_{\mu+\omega_{j}}(X_{\gamma_{i}} \otimes v(\mu)|^{2} - |P_{\mu+\omega_{j}}(X_{-\gamma_{i}} \otimes v(\mu))|^{2}\}(-x_{j}).$$

Since

$$\varphi(P_{\mu}(X_{-\gamma_{i}} \otimes X_{\gamma_{i}} \otimes v(\mu) - X_{\gamma_{i}} \otimes X_{-\gamma_{i}} \otimes v(\mu)))$$

$$= P_{\mu}([\pi(X_{-\gamma_{i}}, \pi(X_{\gamma_{i}})]\dot{v}(\mu))$$

$$= -(\mu, \gamma_{i})v(\mu),$$

we have $(A_0(\lambda) - B_0(\lambda))\mathbf{x} = \mathbf{b}(\lambda)$.

Let (π, V) be a finite generated $(\mathfrak{g}, \mathfrak{k})$ -module. Then (π, V) is unitarizable if there exists a positive definite hermitian form (v, w) on V such that

$$(\pi(X)v, w) + (v, \pi(X)w) = 0$$
 for $X \in \mathfrak{g}$ and $v, w \in V$.

2.2 Lemma Let (π, V) be a unitarizable lowest $(\mathfrak{g}, \mathfrak{k})$ -module with a P-dominant data μ . Define \mathbf{x} as in the above theorem. Then $x_i \geq 0$ for $i, 1 \leq i \leq k$.

Proof. By the choice of $X_{\omega} \in \mathfrak{g}_{\omega}$ (see (2.1)), we have $(\pi(X_{\omega})v, w) = -(v, \pi(X_{-\omega})w)$ for $v, w \in V$. Then by Lemma 2.1 and (2.2)

$$-x_{i}|P_{\mu+\omega_{i}}(X_{\omega_{i}}\otimes v(\mu))|^{2} = |P_{\mu+\omega_{i}}(X_{\omega_{i}}\otimes v(\mu))|^{2}(\varphi(c(\mu;\omega_{i})v_{\omega_{i}}(\mu)),v(\mu))$$

$$= (\varphi(X_{-\omega_{i}}\otimes P_{\mu+\omega_{i}}(X_{\omega_{i}}\otimes v(\mu))),v(\mu))$$

$$= (P_{\mu}(\pi(X_{-\omega_{i}})P_{\mu+\omega_{i}}(\pi(X_{\omega_{i}})v(\mu)),v(\mu))$$

$$= (\pi(X_{-\omega_{i}})P_{\mu+\omega_{i}}(\pi(X_{\omega_{i}}v(\mu))),v(\mu))$$

$$= -(P_{\mu+\omega_{i}}(\pi(X_{\omega_{i}})v(\mu)),P_{\mu+\omega_{i}}(\pi(X_{\omega_{i}})v(\mu)))$$

$$\leq 0.$$

Since $P_{\mu+\omega_i}(\mathfrak{p}_{\mathbb{C}}\otimes V_{\mu})\neq 0$, $|P_{\mu+\omega_i}(X_{\omega_i}\otimes v(\mu))|>0$ (see Corollary 3.5, [6]), and hence the lemma follows.

Solution of $A(\eta)\mathbf{x} = \mathbf{b}(\eta)$ 3

Let p be a nonnegative integer. We define a set Π_p by

$$\Pi_0 = \{\tilde{\phi}\} \text{ for } p = 0,$$

$$\Pi_p = \{(\alpha_1, \alpha_2, ..., \alpha_p) : \alpha_i \in P_K\} \text{ for } p > 1, \text{ and put}$$

$$\Pi = \bigcup_{p=0}^{\infty} \Pi_p.$$

For $I = (\alpha_1, \alpha_2, ..., \alpha_p), J = (\beta_1, \beta_2 ..., \beta_q) \in \Pi$ we define $I \star J$ by

$$I \star J = (\alpha_1, ..., \alpha_p, \beta_1, ..., \beta_q).$$

By *-operation Π is a semigruop with the identity $\tilde{\phi}$. Let $\omega \in \Sigma_n$ and η a generic point in the dual space $(\sqrt{-1}\mathfrak{b})^*$ of the real vector space $\sqrt{-1}\mathfrak{b}$. For $I \in \Pi$, we define $R(\eta; I)$, $S(\eta; I)$ and $T(\eta; I)$ as follows:

$$R(\eta:\tilde{\phi}) = S(\eta;\tilde{\phi}) = T(\eta;\tilde{\phi}) = 1$$

and for $I = (\alpha_1, \alpha_2, ..., \alpha_p) \in \Pi$,

$$R(\eta; I) = (|\eta + \langle I \rangle|^2 - |\eta|^2)^{-1},$$
 (6)

$$S(\eta; I) = \prod R(\eta; J), \tag{7}$$

$$R(\eta; I) = (|\eta + \langle I \rangle |^{2} - |\eta|^{2})^{-1},$$

$$S(\eta; I) = \prod_{J,L \in \Pi, J \star L = I, j \neq \tilde{\phi}} R(\eta; J),$$

$$T(\eta; I) = \prod_{J,L \in \Pi, J \star L = I} R(\eta + \langle J \rangle; L),$$
(8)

where $\langle I \rangle = \sum_{i=1}^{p} \alpha_i$. Let $U(\mathfrak{k}_{\mathbb{C}})$ be the universal enveloping algebra of $\mathfrak{k}_{\mathbb{C}}$. For $I \in \Pi$ we define $Q(I) \in U(\mathfrak{k}_{\mathbb{C}})$ by

$$\begin{split} Q(I) &= 1 \text{ for } I = \tilde{\phi}, \\ Q(I) &= X_{-\alpha_1} X_{-\alpha_2} ... X_{-\alpha_p} \text{ for } I = (\alpha_1, \alpha_2, ..., \alpha_p). \end{split}$$

The map $I \longrightarrow Q(I)$ is a semigroup homomorhism of Π into $U(\mathfrak{k}_{\mathbb{C}})$. Q(I) acts on $\mathfrak{p}_{\mathbb{C}}$ by $Q(I)X = ad(Q(I))X, X \in \mathfrak{p}_{\mathbb{C}}$. The selfadjoint operator $Q(I)^*$ of Q(I) is defined by

$$(Q(I)X,Y) = (X,Q(I)^*Y), X,Y \in \mathfrak{p}_{\mathbb{C}}.$$

Let $\omega, \gamma \in \Sigma_n$. We put

$$a_{\omega}(I) = 2^{\sharp I} |(Q(I)^* X_{\omega}, X_{\omega + \langle I \rangle})|^2, I \in \Pi \text{ and } \Pi(\gamma, \omega) = \{I \in \Pi : (Q(I)^* X_{\gamma}, X_{\omega}) \neq 0\},$$

where $\sharp I = p$ for $I = (\alpha_1, \alpha_2, ..., \alpha_p)$. Let $\mathbb{R}(\eta)$ be the field of rational functions in η over the real number field \mathbb{R} . For $\omega, \gamma \in \Sigma_n$ we define three rational functions $S(\eta; \gamma, \omega), T(\eta; \gamma, \omega)$ and $f(\eta; \gamma)$ by

$$S(\eta; \gamma, \omega) = \sum_{I \in \Pi(\gamma, \omega)} (-1)^{\sharp I} a_{\gamma}(I) S(\eta + \gamma; I), \tag{9}$$

$$T(\eta; \gamma, \omega) = \sum_{I \in \Pi(\gamma;\omega)} a_{\gamma}(I)T(\eta + \gamma),$$
 (10)

$$f(\eta;\gamma) = \sum_{I \in \Pi} (-1)^{\sharp I} a_{\gamma}(I) S(\eta;I). \tag{11}$$

Then $f(\eta; \gamma) = \sum_{\delta \in \Sigma_n} S(\eta; \gamma, \delta)$. We define two matrices $A(\eta)$ and $B(\eta)$ by

$$A(\eta) = (T(\eta; \gamma_i, \gamma_j) f(\eta + \gamma_j; \gamma_j)), B(\eta) = (T(\eta; -\gamma_i, \gamma_j) f(\eta + \gamma_j; \gamma_j)).$$

Since $\Pi(\gamma_i, \gamma_i) = \{\tilde{\phi}\}$ and $\Pi(\gamma_i, \gamma_j) = \phi$ for $i, j \ i < j$, $A(\eta)$ is a lower triangular matrix. Let $\mathbf{b}(\eta)$ be the column vector in $\mathbb{R}(\eta)^N$ defined by

$$\mathbf{b}(\eta) = {}^{t} ((\eta - \rho_{K}, \gamma_{1}), (\eta - \rho_{K}, \gamma_{2}), ..., (\eta - \rho_{K}, \gamma_{N})).$$
 (12)

In §4 we shall give explicitly the solution \mathbf{x} of linear equation $(A(\eta) - B(\eta))\mathbf{x} = \mathbf{b}(\eta)$ under the assumption: \mathfrak{k} has an ideal \mathfrak{k}^* with dim $\mathfrak{k}^* \leq 3$. Let μ be a P-dominant integral form on $\mathfrak{b}_{\mathbb{C}}$ and define $S(\mu; P_n)$ by (1.3). We remark that if $S(\mu; P) = P_n$, then $A_0(\lambda) = A(\lambda)$ and $B_0(\lambda) = B(\lambda)$ (see Lemma 4.3 and Theorem 5.5, [6]).

We define for each pair α and β in Σ a complex number $\langle \alpha, \beta \rangle$ by

$$<\alpha,\beta> = \begin{cases} \phi(ad(X_{\alpha})X_{\beta}, X_{-\alpha-\beta}) & \text{if } \alpha+\beta \in \Sigma \\ 0 & \text{if } \alpha+\beta \notin \Sigma \end{cases}$$

Theorem 3.1

Let $\mathbf{x} = {}^t (x_1, x_2, ..., x_n)$ be the solution of $A(\eta)\mathbf{x} = \mathbf{b}(\eta)$. Then x_i is given by

$$x_i = (\eta, \gamma_i) - \sum_{\alpha \in P_K} |\langle \alpha, \gamma_i \rangle|^2 - (\rho_K, \gamma_i), \text{ for } i, 1 \le i \le N.$$

This theorem is proved by using the following three lemmas.

3.1 Lemma We put $S(\eta) = (S(\eta; \gamma_i, \gamma_j))$ and $T(\eta) = (T(\eta; \gamma_i, \gamma_j))$. Then $S(\eta)$ is the inverse matrix of $T(\eta)$.

Since $T(\eta)$ is a lower triangular matrix, the inverse matrix of $T(\eta)$ is given explicitly by a direct calculation. Moreover by using Lemma 4.4, [6] we can prove this lemma.

3.2 Lemma Let $\gamma, \omega \in \Sigma_n$. Then we have

$$\sum_{\alpha \in P_K} |\langle \alpha, \omega \rangle|^2 + (\rho_K, \omega) + \frac{1}{2} |\omega|^2$$

$$= \sum_{\alpha \in P_K} |\langle \alpha, \gamma \rangle|^2 + (\rho_K, \gamma) + \frac{1}{2} |\gamma|^2.$$

This lemma is proved by calculating the scalar operator Ω_K on $\mathfrak{p}_{\mathbb{C}}$, where Ω_K is the Casimir operator on K.

3.3 Lemma Let $\omega, \gamma \in P_n$ and $\eta \in \sqrt{-1}\mathfrak{b}$. Assume that $\Pi(\omega; \gamma) \neq \phi$. Then for $I \in \Pi(\omega; \gamma)$

$$(\eta, \gamma) = \frac{1}{2}(|\eta + \omega + \langle I \rangle|^2 - |\eta + \omega|^2) + (\eta, \omega) + \frac{1}{2}(|\omega|^2 - |\gamma|^2).$$

Bearing in mind $\gamma = \omega + \langle I \rangle$, a direct calculation implies this lemma.

Let us now prove Theorem 3.1. We put $F(\eta) = (f(\eta + \gamma_j; \gamma_j)\delta_{i,j})$. Then $A(\eta) = T(\eta)F(\eta)$. By Lemma 3.1 $F(\eta)\mathbf{x} = T(\eta)^{-1}\mathbf{b}(\eta) = S(\eta)\mathbf{b}(\eta)$. We put $S(\eta)\mathbf{b}(\eta) = (g_1, g_2, ..., g_N)$. By (3.9) we have

$$g_i = \sum_{j=1}^{N} \{ \sum_{I \in \Pi(\gamma_i; \gamma_j)} (-1)^{\sharp I} a_{\gamma_i}(I) S(\eta + \gamma_i; I) \} \{ (\eta, \gamma_j) - (\rho_K, \gamma_j) \}.$$

For a fixed $\omega \in P_n$ we put

$$g = \sum_{\gamma>0} \{ \sum_{I \in \Pi(\omega;\gamma)} (-1)^{\sharp I} a_{\omega}(I) S(\eta + \omega; I) \} \{ (\eta, \gamma) - (\rho_K, \gamma) \}.$$

It is sufficient to prove that

$$g = \{(\eta, \omega) - \sum_{\alpha \in P_K} | < \alpha, \omega > |^2 - (\rho_K, \omega)\} f(\eta + \omega; \omega).$$

By Lemma 3.3

$$2g = \{2(\eta, \omega) + |\omega|^2\} \sum_{I \in \Pi} (-1)^{\sharp I} a_{\omega}(I) S(\eta + \omega; I)$$

$$+ \sum_{\gamma > 0} \sum_{I \in \Pi(\omega; \gamma)} \{|\eta + \omega + \langle I \rangle|^2 - |\eta + \omega|^2\} (-1)^{\sharp I} a_{\omega}(I) S(\eta + \omega; I)$$

$$- \sum_{\gamma > 0} \{|\gamma|^2 + 2(\rho_K, \gamma)\} \sum_{I \in \Pi(\omega; \gamma)} (-1)^{\sharp I} a_{\omega}(I) S(\eta + \omega; I).$$

Let $I \in \Pi(\omega; \gamma)$, and assume $\sharp I \geq 1$. Then there exist $\alpha \in P_K$ and $L \in \Pi$ such that $I = L \star \alpha$. Since

$$a_{\omega}(I) = a_{\omega}(L)a_{\omega+< L>}(\alpha)$$
 and $S(\eta + \omega; I) = S(\eta + \omega; L)R(\eta + \omega; I)$,

$$a_{\omega}(I)S(\eta + \omega; I)\{|\eta + \omega + < I > |^{2} - |\eta + \omega|^{2}\}$$

= $a_{\omega}(L)S(\eta + \omega; L)2| < \alpha, \omega + < L >> |^{2}.$

This implies that

$$\begin{split} & \sum_{\gamma>0} \sum_{I \in \Pi(\omega;\gamma)} \{ |\eta + \omega + < I > |^2 - |\eta + \omega|^2 \} (-1)^{\sharp I} a_{\omega}(I) S(\eta + \omega; I) \\ & = - \sum_{\gamma_0 > \gamma \geq \omega} \sum_{L \in \Pi(\omega;\gamma)} 2(-1)^{\sharp L} a_{\omega}(L) S(\eta + \omega; L) (\sum_{\alpha \in P_K} |<\alpha, \gamma > |^2) \\ & \text{, where } \gamma_0 \text{ is the highest root in } P_n, \\ & = - \sum_{\gamma>0} \sum_{I \in \Pi(\omega,\gamma)} 2(-1)^{\sharp I} a_{\omega}(I) S(\eta + \omega; I) (\sum_{\alpha \in P_K} |<\alpha, \gamma > |^2), \end{split}$$

here we used $\langle \alpha, \gamma_0 \rangle = 0$. By (3.11) and Lemma 3.2 we have

$$g = \{(\eta, \omega) + \frac{1}{2} |\omega|^2\} f(\eta + \omega; \omega) - \sum_{\gamma > 0} \sum_{I \in \Pi(\omega; \gamma)} (-1)^{\sharp I} a_{\omega}(I)$$

$$\times S(\eta + \omega; I) \{ \sum_{\alpha \in P_K} |\langle \alpha, \gamma \rangle|^2 + \frac{1}{2} |\gamma|^2 + (\rho_K, \gamma) \}$$

$$= \{(\eta, \omega) - \sum_{\alpha \in P_K} |\langle \alpha, \omega \rangle|^2 - (\rho_K, \omega) \} f(\eta + \omega; \omega).$$

4 Solution of
$$(A(\eta) - B(\eta))\mathbf{x} = \mathbf{b}(\eta)$$

We now assume \mathfrak{k} has an ideal \mathfrak{k}^* with dim $\mathfrak{k}^* \leq 3$. Since \mathfrak{k}^* is reductive, dim $\mathfrak{k}^* = 1$ or dim $\mathfrak{k}^* = 3$. When dim $\mathfrak{k}^* = 1$ ($\mathfrak{g}, \mathfrak{k}$) is a hermitian symmetric pair. In this case, since $B(\eta) = 0$, the solution of $(A(\eta) - B(\eta))\mathbf{x} = \mathbf{b}(\eta)$ is given by Theorem 3.1. Assume that dim $\mathfrak{k}^* = 3$, and let K^* the analytic subgroup of K corresponding to \mathfrak{k}^* . We denote the root system of ($\mathfrak{k}_{\mathbb{C}}^*$, ($\mathfrak{k}^* \cap \mathfrak{b}$) \mathbb{C}) by $\Sigma_{K^*} = \{\alpha^*\}$. where $\alpha^* \in P_K$. We have $-\gamma + \alpha^* \in P_n$ for all $\gamma \in P_n$.

4.1 Lemma Let $\gamma, \omega \in \Sigma_n$. Assume that $\mu + \omega \in \Gamma_K$ and $P_{\mu+\omega}(\mathfrak{p}_{\mathbb{C}} \otimes V_{\mu}) \neq 0$. Then

$$|P_{\mu+\omega}(X_{-\gamma} \otimes v(\mu))|^2 = \frac{|\alpha^*|^2}{2(\lambda, \alpha^*)} |P_{\mu+\omega}(X_{-\gamma+\alpha^*} \otimes v(\mu))|^2.$$

Since the Casimir operator Ω_{K^*} on K^* belongs to the center of $U(\mathfrak{k}_{\mathbb{C}})$, we can prove this lemma.

Let $\gamma \in P_n$, and put $\gamma^* = -\gamma + \alpha^*$. Then the map $\gamma \to \gamma^*$ is an involutive automorphism of P_n . This implies N is even. We put N = 2p and $J = (\delta_{i,2p-j+1})$. Then by Lemma 4.1 we have $A(\eta) - B(\eta) = (E - \frac{|\alpha^*|^2}{2(\eta,\alpha^*)}J)A(\eta)$. By using Lemma 4.1 and Theorem 3.1 we can prove the following lemma.

4.2 Lemma Assume \mathfrak{k} has an ideal \mathfrak{k}^* with dim $\mathfrak{k}^* = 3$. Then the solution $\mathbf{x} = (x_1, x_2, ..., x_N)$ of $(A(\eta) - B(\eta))\mathbf{x} = \mathbf{b}(\eta)$ is given by

$$x_i = \frac{2(\eta, \alpha^*)}{2(\eta, \alpha^*) + |\alpha^*|^2} \{ (\eta, \gamma_i) - \sum_{\alpha \in P_K} |\langle \alpha, \gamma_i \rangle|^2 + \frac{1}{2} |\alpha^*|^2 \}.$$

Theorem 4.1

Let g be an inner type noncompact real simple Lie algebra. Assume that the maximal compact subalgebra \mathfrak{k} has an ideal \mathfrak{k}^* satisfying dim $\mathfrak{k}^* \leq 3$. Let P be the positive root system which contains exactly one noncompact simple root. Then the solution $\mathbf{x}(\eta) = (x(\eta; \gamma_1), x(\eta; \gamma_2), ..., x(\eta; \gamma_N))$ of the linear equation $(A(\eta) - B(\eta))\mathbf{x} = \mathbf{b}(\eta)$ is given by the followings.

For the case dim $\mathfrak{k}^* = 1$

$$x(\eta;\gamma_i)=(\eta-
ho_n,\gamma_i)+rac{1}{2}|\gamma_i|^2.$$

For the cases dim $\mathfrak{k}^* = 3$

$$x(\eta; \gamma_i) = \frac{2(\eta, \alpha^*)}{2(\eta, \alpha^*) + |\alpha^*|^2} \{ (\eta - \rho_n, \gamma_i) + \frac{1}{2} |\gamma_i|^2 \}.$$

Let $\mu \in \Gamma_K$ and $\lambda = \mu + \rho_K$. We define $A(\lambda), B(\lambda)$ by

$$A(\lambda) = \lim_{\eta \to \lambda} A(\eta),$$

 $B(\lambda) = \lim_{\eta \to \lambda} B(\eta).$

Then $A(\lambda)$ and $B(\lambda)$ are welldefined. Moreover we have the following theorem.

Theorem 4.2

Assume that \mathfrak{k} has an ideal \mathfrak{k}^* with dim $\mathfrak{k}^* \leq 3$ and (π, V) a lowest $(\mathfrak{g}, \mathfrak{k})$ -module with a P-dominant nonzero data μ . Then $\mathbf{x} = (x(\lambda; \omega_1), x(\lambda; \omega_2), ..., x(\lambda; \omega_k))$ is the unique solution of $(A_0(\lambda) - B_0(\lambda))\mathbf{x} = \mathbf{b}(\lambda)$, where $x(\lambda; \omega_i)$ is the same as in Theorem 4.1.

This theorem and Lemma 2.2 imply Theorem 1.1.

参考文献

- [1] V. Bargmann, Irreducible unitary representations of the Lorentz group, Ann. of Math., 48(1947), 568-640
- [2] J. Deximier, Representation integrables du groupe De Sitter, Bull. Soc. Math. 89 (1961), 9-41
- [3] S. Helgason, Differential Geometry and Symmetric space, Acad. Press (1962)
- [4] T. Hirai, On irreducible representations of the Lorentz group of n-th order, Proc. Japan Acad. 38 (1962), 258-262
- [5] A.U. Klimyk and V.A. Shirokov, Representation of Lie groups SU(n, 1), IU(n) and their algebras I, preprint (1974)
- [6] H. Midorikawa, On characteristic function of the tensor K-module of inner type noncompact real simple Lie group, Tokyo Jour. Math. 26 (2003) 115-146
- [7] H. Midorikawa, On two step tensor modules of the maximal compact subgroup of inner type real simple Lie groups, Tokyo Jour Math., 27 (2004) 155-175
- [8] R. Parthasarathy, Criteria for the multiplicity of some highest weight modules, Proc. Indian Acad. Sci. (Math. Sci.) 89 (1980) 1-24
- [9] L. H. Thomas, On unitary representations of the group of De Sitter space, Ann. of Math. 42 (1940) 113-126