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(g, K )-modules

= 5J11%— (Hisaichi Midorikawa)
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1 Introduction

Let G¢ be a connected simply connected complex simple Lie group and G a
connected noncompact simple real form of Ge¢. We denote the Lie algebras of G
and G respectively by g and ge. Let 8 be the Cartan involution of G and K
the maximal compact subgroup of G. Then G is inner if § belongs to the adjoint
group of K. We shall assume G is inner. Then K contains a Cartan subgroup B
of G. Let g = @ p be the Cartan decomposition of g, where € is the Lie algebra of
K and p is the eigenspace of § with the eigenvalue —1. Let K be the unitary dual
of K and (m, V) a finite generated g-module. Then (m, V) is said to be a (g, K)-
module if dim Homg(V,, V) are finite for all (o,V5) € K, where Homg(V,,V)
is the space of all K-homomorphisms of V, to V. Let b be the Lie algebra of B
and ¥ the root system of the pair (gc, be), where gc the Lie algebra of G¢. The
root system Lg of (B¢, be) is a subset of X, Let P and Pk be respectively the
positive root systems of & and Xk. We assume Px C P. Let P, be the set of all
noncompact roots in P, and assume the simple root system ¥ of P has exactely
one noncompact root. For a (g, K)-module (r,V) we denote by T, the set of
all Px-dominant integral forms v on be satisfying dim A omg(V,,V) # 0, where
(w,,V,) is 2 unitary simple K-module with the highest weight v. A simple (g, K)-
module (7, V) is a lowest module if there exists a P-dominant integral form p on
be such that dim Homg(V,, V) =1 and p—w & Iy for allw € P,. (w,V) is said
to be a lowest (g, K )-module with a P-dominant data p. Our object of this note is
to give a necessary condition for the unitarizable lowest (g, K)-module with a P-
dominant nonzerc data p under the assumption : ¢ has an ideal &* with dim€* < 3.
Let us state our main result after the following preparations. Let (m, V) € K,
and consider a tensor K-module pc ® V., where pc is the complexification of p in
gc. Let 'k be the set of all Px-dominant integral forms on be and ¥, the set of
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all noncompact roots in ¥. For w € X, we define a projection opertator P, on
pc®V, by

 Je(Ad @ m)(R)(X @ v)Xutw(kdk  ifr 4w e Tk
P"*“’(X@”)_{ 0 ifv+w¢lx

, where X € pe,v € V,, dk is the Haar measure on K normalized as |, ik =1
and x,+o(k) = (dim V, 1. )tracem, 1. (k).

Theorem 1.1

Let g be an inner type noncompact real simple Lie algebra. We choose a positive
root system P satisfying Py C P and its simple root system ¥ has exactly one
noncompact root. Assume t has an ideal ¥ with dim¥ < 3. If (m,V) is a
unitarizable lowest (g, K )- module with a P-dominant nonzero data u, then

2(p + pr = pPr, W)
jwl?

> —1forallwe P,

satisfying Py (pc ® v,) # 0, where px (resp. p,) Is one half the sum of all roots
in Py (resp. B,).

This theorem is proved by solving a system of linear equation associated with
the Clebsch-Gordan coefficients of the tensor K- module pc ® V,,. This method
is treated by the papers of V. Bargmann [1] for SL(2,R), L.H.Thomas [9] and
J. Deximier [2] for De Sitter group (see for the related works T. Hirai [4], A.U.
Klimyk and U. A. Shirokov [5]). Let © be the Casimir operator on G and (m, V)
a lowest (g, K)-module with a P- dominant nonzero data gu. Then Q acts on
V as the scalar |1+ px — pnl? — |p|%, where p = pg + p,. If dim¥* = 1, then
(g,¥) is a hermitian symmetric pair. In [8] R. Parthasarathy gives a criterion for
the necessary and sufficient condition for the unitarizability of the lowest (g, K)-
module with a P-dominant data p under the assumptions: (g, t) is hermitian and
W+ px — pn 18 P-regular. If dim &* = 3, then g is one of the Lie algebras sp(n, 1),
EIILEVI,EIX,FI and G, (see Table II, p354, [3]). The detailed proof of the
theorem will be appear elsewhere. :

In the following I summarize an outline of the proof of the main theorem.

2 Linear equation of lowest (g, K)-module

Let P be a postive root system of ¥ containing Px. Throughout of this note
we assume the simple root system ¥ of P has exactly one noncompact root. Let
a € Yand go = {X € gc:ad(H)X = oH)X forall H € bc}. Let ¢(X,Y) be



the Killing form on g¢ and g, = ¢®+/—1b the compact real form of gc. We choose
Xa € g, satisfying

Xo = Xcas Vo1(Xa + X_0) € gu and ¢(Xa, X_o) = 1. (1)

Then ¢(H, H,) = «(H) for H € bc, where H, = ad(X,)X_o. Let 7 be the
conjugation of ge with respect to g,. We define a bilinear form (X,Y’) on pc by
(X,Y) = —¢(X,7(Y)),X,Y € pc. Then (X,Y) is a positive definite hermitian
form on pc. Moreover for o, 3 € 5, (X, Xg) = bap, Where d, 5 is Kronecker’s
delta. Let (m, V) be a lowest (g, K )-module with a P-dominant data y. We define

& K-homomorphism ¢ of V, & (pe ® V) ® (pc @ pc ® V) to V by
pv)=v, p(X@v) = w(X)v
| AX Y ®@v) = w(X)r(Y)v,
where X, Y € pg, v € V..

2.1 Lemma Let (7,V) be a lowest (g, K)-module with a P- dominant data f.
Then for w € ¥, X,Y € pc and v € V,, we have

CP(PM(X RY ®v)) = P}L("F(X)W(Y)U%
(Pu(X ® Puy(Y ®0))) = Pu(m(X)Puru(w(Y)v)).

Let w € B, and assume P, .(pc ® V) # 0. Then the K-module P.(pc ®
P, o(pc ® V,)) is simple. Moreover (see Corollary 4.5, [7]) there exist a unit
vector v, (u) and a positive constant ¢(y; w) such that

PAX +® P#"f'W(X’Y ®u(w))) = cl; W Pt Xy ® U(/—”))F”w(“) (2)

for all v € P, where (i) is the highest weight vector of V, normalized as {v(u)| =
1. We remark that v, () is the highest weight vector of Pu(pe ® Putw(bc ® V,))-
We put

S(p; Po) = {w € Paj Puru(pec ® V) # O} (3)
Let us enumerate the sets P, and S(y; P,) respectively by

Py = {v,7 N 1> > >N,
S(H/, Pn) = {wl,wg,,..,wk}, Wy > Wy > ... > Wg.
We define two matrices Ap{)\) and Bg(A) respectively by
AN = (| Purey (X @ 0(m))), (4)
BO()‘) - (Ipﬂ-i—wj(x—’n X 'U(p‘)lz)’ (5)
where A\ = p + px. By Lemma 4.3 and Theorem 5.5 in [6] [Py, (X1, ® v(w))|? is

a rational function in A.
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Theorem 2.1
Let (m,V) be a lowest simple (g,¥)-module with a P-dominant data . Define
Ao{)\) and Bo(A) by (2.4) and (2,5). We put

x = %z,%3,..,2) and
b(/\) = t((#7’yl)7(M”YQ),”'7(I’L’7N))?

where z; is defined by z; = —@(c(p; w;i)vw, (). Then we have
(Ao(X) = Bo(A))x = b(A).
Proof. Let v € £,. Since u —w ¢ I'; for w € P,, Lemma 2.1 and (2.3) imply

‘P(P;L(X—”r ®X,® v(w))) :
= Z (P(PM(X—‘Y ® Pu+w(X1 ® U(ﬂ))))

WEDp

— Z PPNy ® Puyu;(Xy @ v(1))))

= Y [P, (Xy @ v()) Peo(ep w5 vy (1)-

i=1

This implies that
W(P#(X—% ® X’Yi ® U(P") - X’T'Z ® X—-’Yz ® U(lu)))

k
= D (B (X ® 0()* = | Pty (X @ v(p)*}H(=25)-

ji=1
Since
(p(P“(X_%. ® X, ® v(p) ~ Xy ® Xy @ 'U(»U')))

= P(m(X_, 7(X,)0(1))
= —(u,y)v(n),

we have (Ag(A) — Bo(A))x = b(A).
Let (7r,V) be a finite generated (g, ¢)-module. Then (7, V) is unitarizable if
there exists a positive definite hermitian form (v, w) on V such that

- (r(X)v,w) + (v, 7(X)w) =0for X € gand v,w € V.

2.2 Lemma Let (7, V) be a unitarizable lowest (g, €)-module with a P-dominant
data u. Define x as in the above theorem. Then z; > 0 for 4,1 <1 < k.
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Proof. By the choice of X, € g., (see (2.1)) , we have (7(X,)v, w) = —(v, 7(X_o)w)
for v,w € V. Then by Lemma 2.1 and (2.2)
~2i] Py (X, @ V)P = [Pt (X, ® 0(1)* (001t widves (1)), v (1))
= (P(X s ® Pt (X ® v(11))), v(1)
= (Pa(m(X ) Pty (m( X Ju(1)); v(w))
(1 ) P (1 Xer(1))), 9(12)
= ~(Puran (1 X J0())s Proaos (7 (X Jo (1))
< 0.

Since Py, (pc ® Vi) # 0, [Puve(Xu, ® v(w))] > 0 (see Corollary 3.5, [6]), and
hence the lemma follows.

3 Solution of A(n)x = b(n)

Let p be a nonnegative integer. We define a set II, by

HO = {(5} fOI' P= 01
I, = {{on,02,..,00) % € Py} for p> 1, and put

0 O,

p=0

For I = (o, 02,0 Op), J = (B1, B2, By) € I1 we define I x J by
IxJ= (al,...,ap,ﬁl,l..,ﬁq).

By x-operation II is a semigruop with the identity ¢. Let w € T, and 7 a generic
point in the dual space (+/—1b)* of the real vector space v/—1b. For I € II, we
define R(n;I), S(n; I) and T'(n; I) as follows:

R(n: @) = S(m; @) = T(m:é) = 1

and for I = (a1, 02, ..., ) € 1L,

R D) = (In+<I>P-In"7 (6)

S(m; 1) = | L (7)
JLeM JxL=I,j#é

) = ][ Ro+<JI>L) (8)

J,LellJ+L=I
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where < I >= Y"F , a;. Let U(fc) be the universal enveloping algebra of ¥¢. For
I € 11 we define Q(I) € U(kc) by

QU) = 1forI=4¢,

QU) = X_aX 0. X_o, for I =(ag,,...,0).
The map I — Q(I) is a semigroup homomorhism of IT into U(€c). Q(I) acts on
pe by QX = ad(Q(I))X, X € pc. The selfadjoint operator Q(I)* of Q(I) is
defined by

(Q(I)Xa Y) = (X: Q(I)*Y): X: Y e Pc.
Let w,v € 3,. We put
a{I) = QﬁII(Q(I)*Xw:Xw+<I>)|27] € Il and
O(y,w) = {Iel:(QU) Xy, Xo) # 0},

where §7 = p for I = {ay, 0o, ...,a,). Let R(n) be the field of rational functions in
n over the real number field R. For w,y € ¥, we define three rational functions

S(n;v,w), T(n;v,w) and f(n;7) by

Smivw) = Y (~1DWa,(D)Sh+v1), (9)
IeH(yw)

Tyv,w) = Y a(DT(n+7), (10)
Te{vw)

fmv) = Y (¥ e, (DS I). (11)

Then f(n;7) = Y sex. S(n;7,6). We define two matrices A(n) and B(n) by

A() = (T (v, ) F (0 +v55%)), Bn) = (T —vi, 1) F (0 + v3575))-

Since (v, %) = {¢} and T(v, ;) = ¢ for 4,5 i < j, A(n) is a lower triangular
matrix. Let b(n) be the column vector in R(n)" defined by

b(n) =" (0 — px, M) (1~ pr,72)s - (1 — Py YN))- (12)

In §4 we shall give explicitely the solution x of linear equation (A(n) — B(n))x =
b(n) under the assumption: ¥ has an ideal & with dim¥& < 3. Let 4 be a P-
dominant integral form on bc and define S(u; P,) by (1.3). We remark that if
S(u; P) = P, then Ay(X) = A(A) and By(A) = B(A) (see Lemma 4.3 and Theorem
5.5, [6]).

We define for each pair o and f in ¥ a complex number < o, § > by

] ¢lad(Xo)Xpy Xa-p) fa+B€X
<a’ﬁ>_{ 0 fa+B¢s
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Theorem 3.1
Let x =' (21, %o, ..., zn) be the solution of A(n)x = b(n). Then z; is given by

zi= () — 3 I<am> = (g, ), fori,1 <i< N.
a€Py
This theorem is proved by using the following three lemmas.
3.1 Lemma We put S(n) = (S(n;v,7;)) and T(n) = (T(n; v, 7;)). Then S(n) is
the inverse matrix of T'(n).

Since T(n) is a lower triangular matrix, the inverse matrix of T'(n) is given
explicitely by a direct calculation. Moreover by using Lemma 4.4, [6] we can prove
this lemma.

3.2 Lemma Let v,w € ¥,. Then we have

1
Z 1 <o,w > ’2+ (px,b))“‘!“-z-‘CUIQ

a€ Py

= Z | <o,y > 2+ (pr,7) + %Mz-

a€Pyg
This lemma is proved by calculating the scalar operator 0k on pc, where Qg is

the Casimir operator on K.

3.3 Lemma Let w,vy € P, and 7 € v/—1b. Assume that II{(w;y) # ¢. Then for
I € Tl{w; ) '

(03) = 5+t < T> P = fnt )+ (0) + 5l = 1),

Bearing in mind v = w+ < I >, a direct calculation implies this lemma.

Let us now prove Theorem 3.1. We put F(n) = (f(n+7;:7;)8:). Then A(n) =
T(n)F(n). By Lemma 3.1 F(n)x = T(n)™'b(n) = S(n)b(n). We put S(n)b(n) =*
(g1,92, ...,9n)- By (3.9) we have

_ N
gi=> 10 >, (“D¥a, (D)8 + DKM ) — (oxsm)}-
=1 IeH(viv)

For a fixed w € P, we put

g=>{ Y (=DWWa(D)Sn+w DH ) - (ox, M}

>0 ITel(w;y)
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It is sufficient to prove that

g={(nw)— Y |<aw> P~ (o w)}f(n+ww).

cePr
By Lemma 3.3
{2(n,w) + WP} Y (~D¥au(N)S(n +w;])
+ };I g: {tnlefw <I>[—n+wP-Da, (DS +wl)
- :;ﬂevf; :—)2(,0;{, }]e§ | )S(n+w; I).

Let I € TI(w;~), and assume {7 > 1. Then there exist @ € Px and L € II such
that I = L % «. Since

a,(I) = au(L)aus<r>(a) and S(n +w; I) = S(n + w; L)R(n + w; 1),
au(D)S(n+w; il +ot < 1>~ n+wl’}
= a,(L)S(n+w;L)2] < a,wt < L >> .
This implies that

Y Alntwt <I>F-n+ofH=1)"al{D)Sh+w)

>0 Iell{wiv)
= = 3 % o-nafL)S e LD [ <ar> )
Yo>v2w Lell{w;v) o€ Py

, where =g is the highest root in £,

- *Z S 21 (DS +w (Y [ < ey > 1)

¥>0 Iell{w,y) a€Pg

here we used < @,y >= 0. By (3.11 ) and Lemma 3.2 we have

9 = () gkl rue - Y (e

>0 [ell{wyy)

< SmtwiD{ Y 1< a7 > P+ skl + (o)

a€Pg

{nw) =Y | <aw> P = (ox,0)} f(n+ww).

o€ Py

il



4 Solution of (A(n) — B(n))x = b(n)

We now assume £ has an ideal £* with dim £ < 3. Since £* is reductive, dim&* = 1
or dim¥* = 3. When dim ¥ =1 (g, ) is a hermitian symmetric pair. In this case,
since B(n) = 0, the solution of (A(n) — B(n))x = b(n) is given by Theorem 3.1.
Assume that dim #* = 3, and let K* the analytic subgroup of K corresponding to
¥*. We denote the root system of (£, (€* Nb)c) by Lg+ = {a*}. where o € Px.
We have —y + a* € P, for all y € F,.

4.1 Lemma Let v,w € %,. Assume that y+w € g and P, ,(bc ® V,) # 0.
Then

Bural(X @ v = g P*)I P (Xeysar ® ()

Since the Casimir operator Q. on K* belongs to the center of U(fc), we can
prove this lemma.

Let v € P,, and put 4* = —y + o*. Then the map v — 7" is an involutive
automorphism of P,. This implies N is even. We put NV = 2p and J = (55— i)
Then by Lemma 4.1 we have A(n) — B(n) = (£ 2‘(; ‘L*)J)A(n) By using Lemma
4.1 and Theorem 3.1 we can prove the following lemma.

4.2 Lemma Assume t has an ideal & with dim?®* = 3. Then the solution x ="
(z1,29,...,zn) Oof (A(n) — B(n))x = b(n) is given by

pom 2 ()~ 3 < o> P 5la’h

2(n, ) + | |? 55

Theorem 4.1
Let g be an inner type noncompact real simple Lie algebra. Assume that the

maximal compact subalgebra ¥ has an ideal ¥ satisfying dim¢* < 3. Let P be the
positive root system which contains exactly one noncompact simple root. Then
the solution x(n) =* (x(n; 1), 2(m; 72), ..., £{n; Yw)) of the linear equation (A(n) —
B(n))x = b(n) is given by the foﬂowmgs.
For the case dim¥* =1

z(m; ) = (0= Pa> 1) + -;-l’le-

For the cases dim &* = 3

w(n;%)———zm’?)’ ]) 12{(7? P Vi) + 5 l%l}
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Let u € I'g and A = p + px. We define A(A),B(A) by

AN = lim A(y),

n—A

B(\) = lim B(n).

N+
Then A(X) and B()\) are welldefined. Moreover we have the following theorem.

Theorem 4.2

Assume that t has an ideal ¥ with dim ¥ < 3 and (r, V) a lowest (g, t)-module
with a P-dominant nonzero data p. Then x =' (z(X;w;), z(\;ws), ..., Z(X;we)) is
the unique solution of (Ag{\) — Bo(A))x = b()), where (A, w;) is the same as in
Theorem 4.1.

This theorem and Lemma 2.2 imply Theorem 1.1.
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