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AUTOMORPHIC GREEN FUNCTIONS FOR SYMMETRIC SPACES

MASAO TSUZUKI

1. CLASSICLA CASE

Let § = {r € C|Im(r) > 0} = SLy(R)/SO(2) be the Poincaré upper half-plane,
and I" a Fuchsian group of the first kind which acts on $3 by the usual Mdbius trans-
formation. Since the volume form dx—;\gdﬂ and the Laplacian _y2(§;_2 + %) associated
with the Poincare metric 4y 2(dz? + dy?) is SLo(R)-invariant, they yield the volume from
wx and the Laplacian Ay of the Riemanian surface X = I'\$). The resolvent operator
Rs = (Ax + s(s — 1))t of the shifted Laplacian Ax + s(s — 1) is an integral operator,
whose kernel function G4(z,w) : X x X — AX — C is constructed as

(1.1) Gz, w) = Zgbf(fyz,w), (Re(s) > 1, z£w (mod I')),

~vel’

—1T(s)? z—w2y z—wl|
5 _ _ 9g: 1 — .
d)s(za’w) 47TF(28) (1 Z—w| ) 2F1 8, 8, 48; 5w

The series (1.1) is absolutely convergent if Re(s) > 1, and the convergence is locally
uniform for s and (z,w) € X x X — AX. The function ¢? is called the free space Green
function of § and Gy(z,w) the automorphic Green function of X, which has been an
important object of reserch in the analytic theory of automorphic functions ([2],[3], [4]).
Among many properties of G4(z,w), we focus on the following two.

(a) (Poisson equation) For each w € X,
(Dx.+ s(s — 1))Gu(z,w) = 8,(2).

(b) (square-integrability) Gs(z,w) € L*(X x X).
These two properties are important because they enable us to have the spectral expansion
of G4(z,w) in the space L*(X) in terms of basic wave functions, i.e., Maass wave functions
and Eisenstein series.

The aim of this article is first to provide a proper definition of automorphic Green func-

tion for a pair of a higher dimensional locally symmetric space and its modular subvariety

generalising the classical construction, and then to state the basic properties of Green
funciton generalizing (a) and (b) above.

2. GREEN FUNCTIONS

2.1. Notations and assumptions. Let ¢ be a reductive Lie group with compact center.
Let 6 and o be involutions of G such that

(1) 6 and o are commutative, i.e, fo = o#.

(2) 6 is a Cartan involution of G.
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Then K = (Y is a maximal compact subgroup of G and H = G7 is a reductive closed
subgroup of G such that H N K is maximally compact in H. We further make two
assumptions. The first is that

(3) the symmetric pair (G, H) has R-rank one,
which means there exists a vector Yy € g such that RY} is a maximal abelian subspace of
g~? N g% the vector Y, is supposed to be taken so that the eigenvalues of ad(Yy) belong
to {0, £1,£2}. For j € {0, %1, £2}, let g; be the corresponding eigenspace of ad(Y;) and
set m; = dimg(g;) and m; = dimg(g; N g™?). The second assumption is

(4) m:=2"Ymf +mf+1) € Z
Note m is the half of the R-codimension of H/H N K in G/K.

2.2. Free space Green function. Set

o — _
27,  (mg >0)

By a general theory, the set {a; = exp(tY)|t > 0} comprises a complete set of repre-
sentatives for the double coset space H\G/K and the natural smooth map H x {a;|t >
0} x K — G—HK is a submersion. Let us define a function ¢,(g) € C*(H\(G-HK)/K)

depending on a complex one parameter s by

D(Z2 )0 (2 +m)
9s(at) = Om — T(s +21)

with po = 2~ tr(ad(Yo)|g1 + g2),
Cho = {—2% (m=1),

(cosht)~(+Po), iy (ifo-, T 4 mys+ 1 —J—> , (t#£0)

? cosh®t

Nm—-1)"1 (m>1).

Proposition 1. Let Re(s) > 0. The function ¢, has the following three properties, which
characterize ¢s.
(1) Let B : g x g — R be a G-invariant symmetric R-bilinear form on g such that
—B(X,6Y) is 0-invariant and positive definite and such that B(Yy,Yy) = 1. Let
Cy be the Casimir element corresponding to B. Then

Cots(g) = (s* — p3) #slg), 9€ G- HK.
(2) If m = 1, then ¢s(a;) — logt = O(1), (¢t € (0,€)) for a small interval (0,€). If
m>1, then I.imt._;+0 tm_lq‘)s(at) =1.
(3) ¢s(ay) = Oe™BET20)) (£ > R) for a large poisitive R.

The behavior of the function ¢s(a;) for small t is described more precisely than (2):
There ezists polynomial functions {An(8)}nso and {C;(s)}joy’ such that degCy(s) =
G0 <j<m—2), deg Au(s) =n(n>0), Ay(s) = Co(s) =1 and ¢s(a:) — F(tanh®t) has
o continuous extension to a small neighborhood of t = 0, where

F(z) = %:2 %); +log z (i An(SQ)z”)

4=0 n=0
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For integer 7 > 0, we set

oll(g) = ;17 (—%%) ¢s(9), g€ G- HK, Re(s) > pe.

If r > 0, then, by the last half of the proposition above, g — ¢i;] (g) has a continuous
extension to the whole G.

2.3. Automorphic Green function. From now on we assume that our GG and the
involution o are both defined over Q. Given an arithmetic subgroup I" of G (allowed not
to be cocompact), we form the Poincaré series

stigy="Y_ o'l(vg),  Re(s)>po,r 20,

YETNH\TD

which converges in the following sense.

Proposition 2. The series gl (g9) converges absolutely and locally uniformly in (s,g) €
{Re(s) > po} x (G —THK) to yield a right K-invariant integrable function on T\G. If
r > m, then SY(g) converges absolutely and locally uniformly in {Re(s) > po} x G to
yields a right K -invariant continuous function on I\G.

Let G = SLy(R) x SLy(R) with the maximal compact subgroup K = SO(2) x SO(2) and
take the involution o : (g1, g2)  (go, g1) of G. Then the function gl (g) regarded as a two
variable funciton on I'\$ x T\ § = (I' x T)\G/K is essentially the original automorphic
Green function of X = I'\$ recalled in the first section. Thus our series gl (g) yields

a generalization of the classical construction. The next two propositions say 9?] (9) has
properties analogous to those (a) and (b) in the first section.

Proposition 8. (1) Let P¥ be the K-invariant distribution on the G-manifold T\G
defined by

<Pf, f>= / flhkYdkdh, Yfe CP(T\G).

TNH\H JK _
Fizing o Haar measure of G properly and regarding GU'(g) € LYT\G) as K-
invariant distributions on T\G as usual, we have o system of differential equations
among them:

(Co+pp -0 =81 (r>1),
(Co+pg —s*) 9 = PF.
(2) There exists a constant T = 7(G,0) € [0,2] such that G7'(g) € LP(T\G) (¥p €

[1,(1=27')™Y), ¥r 2 m—1) for Re(s) > po(1+7). If 7> 1, then G (g) is L2+
for Re(s) > po(7 + 1).

REMARK: For the definition of the number 7 see [6, p.460]. The condition 7 > 1 is not
always true especially for G of small size; in that case the validity of L**¢ condition for
rl (g) gets subtler (and more difficult to establish if true).
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If I is neat, then the double coset space X = I'\G/K acquires the structure of Riemannian
manifold from the G-invariant metric on G/K defined by B. Let Ay be the corresponding
Laplacian of X and Ax the set of eigenvalues of Ax on L2(X); it is know that A is a
countable discrete subset of [0, +oc) without accumulation points and each eigenvalue
A € Ax has finite multiplicity. For A € A, fix an orthonormal basis B(A) of the A-
eigenspace. As a corollary of Proposition 3, we have the estimation

> 1PE )P = 0™
weB(A)

Let Dx be the set of s € C such that —\ = s — p5 (3A € Ax). Then the estimation
above ensures the 1ocally-uniform convergence for s € C — Dy of the series

(21) Sdlb Z Z _ p +A 41 (p(g)

AEAX peB(X)

in the Hilbert space L?(X). If T\G is compact, then gi! 93 4o in L2(X). In general the
difference 98 s 1= M 95 ]db is discribed by the Eisenstein wave packets. By the result

of Wallach ([7]) combined with Proposition 3, we have

Proposition 4. The series (2.1) and the expression of SBEIS( ) by the Bisenstein wave
packet converge locally uniformly with respect to the variable g € X if v is sufficiently
large.

3. MISCELLANEOUS REMARKS AND APPLICATIONS

o We can obtain a Green current for the modular cycle HNI\H/HNK — I'\G/K
by the vector-valued analogue of the construction above. For the unitary case
(G,H) = (U(n,1),U(r) x U(n —r,1)), see [6],]9] .

e When (G, H) is of the group case i.e., G = G' x G’ and o{g1,g2) = (ga, 1) With
(G’ a R-rank one Lie group, our g (g) essentially equals to the Miatello-Wallach’s
series P, as was shown by [1]. Besides the group case, rank one hyperbolic spaces
is an mterestmg class of symmetric spaces satisfying our assumptions in section 2.

e “The function G! (g) is a relative version of the classical automorphic Green func—
tion’ is an impressive phrase which well summalizes the definition of our gl (9)
(for 7 = 0) in a single sentence. In the classical case, it has long been known
how to deduce the Selberg trace formula from the automorphlc Green function
(see [2], [4] for example). So it is natural to expect that our G can be used in
some way to have some kind of summation formula which may be a spacial case
of the relative trace formula of Jacquet ([5]). If R is Q-anisotropic Q-subgroup of
G, then RNT\R is compact subset of F\G Let w be an automorphic form on
RNT\R and consider the integral PEY(p) = |, rAr\R P (r)w(r) dr for automorphic
form ¢ on I'\G. (The unipotent radical of a Q-parabolic subgroup of G and its
automorphic charac! ter is an interesting possible choise for (R w) ) By Proposi-

tion 4, the termwise integration of the spectral expansion of 95 (g) is permissible
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at least for sufﬁmently large r. When I'\G is compact,

fPr ) PR (i
(3.1) /M\R {OUOLED WD PR, H;jl

AeAx (,DEB(/\)

This encodes the products of period-integrals PE(@)Pr™(p) for various wave-

functions ¢. On the other hand, if we put the defining series of g/l (g) in the left
hand side of (3.1) and further assume that we can unfold the series and integrals in
a proper way similarly to the deduction of the geometric side of the Selberg trace
formula, we would obtain another expression of the integral (3. 1) at least when
Re(s) > pp. The resulting identity expressing the integral [ RAM\R g (ryw(r)dr two
ways may be regarded as a form of relative trace formula ([5]), which would give
some information of the quantity 3 .z o) PH(Z)PEY (). Indeed, when (G, H) =
(U(n,1),U(n — 1,1)) and (R,w) is a pair of the unipotent radical of a proper
Q-parabolic subgroup of G and its automorphic character, we have an identity
relating the quantity > c sy PH(5)PE () to some average of Fourier coefficients
of cusp forms on $ for some modular group; the identity has several interesting
applications ([10]).
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