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Functional equations of Spherical functions

on p-adic homogeneous spaces

Yumiko Hironaka
(Waseda University)

80 Introduction

Let G be a reductive linear algebraic group defined over &, and X be an affine algebraic variety defined
over k which is G-homogeneous, where and henceforth k stands for a non-archimedian local field of
characteristic 0. The Hecke algebra H{G, K) of G with respect to K acts by convolution product on
the space of C*®(K\X) of K-invariant C-valued functions on X, where K is a maximal compact open
subgroup of G = G{k) and X = X(k).

A nonzero function in C*°(K\X) is called a spherical function on X if it is a common H(G, K )-eigen
function.

Spherical functions on homogeneous spaces are an interesting object to investigate and a basic tool to
study harmonic analysis on G-space X. They have been studied also as spherical vectors of distinguished
models, Shalika functions and Whittaker-Shintani functions, and have a close relation fo the theory of
automorphic forms and representation theory. When G and X are defined over Q, spherical functions
appear in local factors of global objects, e.g. Rankin-Selberg convolutions and Eisenstein series (e.g. [CS],
[F1, [ES3], [Jal, [KMS), [St1)).

The theory of spherical functions also have applications to classical number theory, for example
when X is the space of symmetric forms, alternating forms or hermitian forms, spherical functions can
be considered as generating functions of local densities, and have been applied to obtain their explicit
formulas {cf. [HS1], [HS2], [H1]-[H3]).

To obtain explicit expressions of spherical functions is one of basic problems. For the group cases,
it has been done by I. G. Macdonald and afterwards by W. Casselman by a representation theoretical
method (cf. [Ma], [Cas]). There are some results on homogeneous cases mainly for the case that the space
of spherical functions attached to each Satake parameter is of dimension one (e.g. [CS], [KMS], [Of}).
On the other hand; the author has given an expression of spherical functions of dimension not necessary
one based on the data of the group G and functional equations of spherical functions (JH2, Proposition
1.9]). Hence the knowledge of functional equations is important to obtain explicit expressions of spherical
functions.

We have investigated functional equations of spherical functions individually in a series of papers
((HS1], [H1], [H4]). Here we will show a unified method to obtain functional equations which is appli-
cable to more general cases under the condition (AF) below, and explain that functional equations are
reduced to those of p-adic local zeta functions of small prehomogeneous vector spaces. This method is a
generalization of one in [H4, §3] used for the spherical homogeneous space Sps.

In order to state our main results, we prepare some notations.
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First, we introduce a notion of type (F) for a connected linear algebraic group H and an affine algebraic
variety Y on which H acts, where everything is assumed to be defined over k. We denote by X(H) the
group of k-rational characters of H, which is a free abelian group of finite rank. We set Xo(H) for the
subgroup consisting of characters corresponding to some relative H-invariants on Y, where a rational
function f on Y defined over k is called relative H-invariant if it satisfies, for some ¢ € X(H),

flg-y)=v(fly), gel

When fi(y), 1 < < n, are relative H-invariants on Y defined over k and the characters corresponding to
them form a basis for Xo(H), we say the set { fi(y) | 1 <14 < n} is basic, then every relative H-invariant
on Y defined over k is given in the following form:

n
C~Hfi(y)e*', cek, e €l
i=1

We say (H,Y) is of type (F) if it satisfies the following conditions:
(F1) Y has only a finite mumber of H-orbits. (Then Y has only one open H-orbit Yer.)

(F2) For y € Y\Y?, there exists some ¢ in X(H) whose restriction to the identity component of the
stabilizer Hl, is not trivial.
(F3) The index of Xo(H) in X(H) is finite.

(F4) A basic set of relative H-invariants on Y can be taken from regular functions on Y.

Hereafter, let G be a connected reductive linear algebraic group defined over &, K a maximal compact
open subgroup of G, B a minimal parabolic subgroup of G defined over k satisfying G = KB = BK. The
group B is not necessarily a Borel subgroup. For an algebraic set, we use the same ordinary letter for the
set of k-rational points, e.g. G = G(k), B = B(k). We denote by | | the absolute value on & normalized
by |r| = g~!, where 7 is a prime element of k and ¢ is the cardinal number of the residue class field of .

Let (B,X) be of type (F), { fi{z)| 1 <i < n} a regular basic set of relative B-invariants, and ¥; €
Xo(B) the character corresponding to f;(z) for each ¢, where n = rank(X(B)). The open B-orbit X
decomposes into a finite number of open B-orbits over £, which we write

XPk) = || X
weJ(X)

Forz € X, s € C* and u € J(X), we consider
(23 8) = / £k - o) dk, (0.1)

K
where dk is the normalized Haar measure on K, € € Q" determined from the modulus character éof B

by the relation
T 1)
=1

L

i~ §4(b), beB,

and

st ifre X,

0 otherwise.

(0:2)

The right hand side of (0.1) is absolutely convergent if Re(s;) > —€;, 1 < i < n, analytically continued
to a rational function of ¢**,...,¢°", and becomes an H(G, K)-common eigenfunction on X (cf. [H2,
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§1]). Hence wy(z;s) is a spherical functions on X, and for generic s they are linearly independent for
u € J(X).

Let W be the relative Weyl group of G with respect to T, where T is a maximal k-split torus
contained in B. The group W acts on s € C™ through the canonical action on X(B) and the identification
X(B) @z C = C* If (B,X) is of type (F), there should be functional equations between w,(z; s)’s with
respect to the action of W. In this present paper, we will show the functional equation between s and
we(s) for a simple root o in case there is a representation p like (0.3) below.

For a simple root «, let P be the standard parabolic subgroup P} in the sense of [Bo, 21.11]. We
consider a k-rational representation p : P — Ry x{GLz) satisfying

0 1
p(P) = Ry /x(GL2) or Ry ji(SLa), plwa) = < 1 0 ) )
pHB2) CB, p(P(O)) D Ry yk(SL2)(0), (0.3)
where &' is a finite unramified extension of &, Ry is the restriction functor of base field, w, € Ng(T)
is a representative of the reflection in W attached to «, and B, is the Borel subgroup of p(P} consisting
of upper triangular matrices.
Chevalley groups are typical examples which have p as above for & = k/ {cf. [Sf1, §4.1]).
Now we assume that
(AF) (B, X) is of type (F) and there is a k-rational representation p satisfying (0.3) for a simple root c.
For each u € J(X), set J, = {ve J(X)| P- X, = P-X,}. Denote by e the group index [¥(B) :
Xo(B)] and by d the extension degree of k'/k. Then, our main results are the following.
Theorem 1 We have the following functional equation:

1— q-—2d—Ei €85

wy{z; 8) = T ST Er x Z Yur(8) - w3 wa(s)), (0.4)
vEJy
where Yy, (s) s are rational functions of ¢%F,...,qg% ande; € NU{0}, 1 £ i < n are determined explicitly

( e = deg, fi(z,v) below ).
Fix an element z, € X, and dencte by PP, the stabilizer of 2, in P. The group p(P,) x Ry /x(GL1)
acts on V = Ry, (Ma1) by (g,7) - v = gor~!, where we consider (p(P,) x Ry 5(GL1), V) is realized

. 1
in (GLyg X GLg,Magg). Let vy € ( 0 ) €V = V(k) & My (k). There are regular relative (P x

Ry sk (G Ly))-invariants {fz(:c, v) ‘ 1<i< n} on X x V satisfying f;(z, vo) = fi(z) for each ¢ (cf. §1).
The following theorem shows that the above functional equations are reduced to those for ”small”

prehomogeneous vector spaces.

Theorem 2 (i) The space (p(Py) x Ry x(GL1),V) is a prehomogeneous vector space defined over k
with open orbit p(Py,)uo Ry jp(GL1), which decomposes over k as

(0(Pu)voRy /5(GL1)) (k) = || p(Pupu)uok’™,
ved,
where p, € P satisfying p,;* - 2, € X,.
(ii) The zeta integral of the above prehomogeneous space has the following functional equation over k:

/V Fv(d)(v) Iﬂ%v)}j& dv="3 Yuu(s) /V $(v) ]f(mu,v)

we{s)+e
veJy v

dv, ¢eSV).
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Here € and vy, (s) are the same as in Theorem I, dv is the normalized Hoar measure on V,
k03
« 3 I

!f(mu,’u) S ety ﬁ(wu’v)lsi ifve p(Pup,,)'uok/x

0 otherwise,

and the Fourier transform Fy{(¢) is defined by

Folo)o) = [ atwowstwiz,  o=( % ¢ ),

where n is an additive character on k' of conductor O:.

(iti) The identity component of p(Pu) X Ry /k(GL1) is isomorphic to Ry yp(GLy X GLy) over the
algebraic closure of k.

The above results explain how functional equations of spherical functions occur and how to calculate
them. If there is a representation p as in (0.3) for each simple root, then we will obtain functional
equations for w,(z; s) with respect to the whole Weyl group, which are reduced to those of p-adic local
zeta functions of small prehomogeneous vector spaces isomorphic to Ry x(GL1 x GLy, May) over the
algebraic closure of k. Then, we could expect to have explicit expressions of spherical functions by using
a method introduced in [H2, §1].

One would be able to consider in this line spherical functions on homogeneous spaces given by Cheval-
ley groups and their involutions as typical cases, which would be discussed in forthcoming papers.

81 Preliminaries
Set X = X%V and P = Px Ry 5 (GL1), where V = Ry (Mz,1) defined over k, and consider the following
P-action on X:

(p,8) - (z,9) = (p-z, p(p)ot ™), (p,t) €P, (z,v) €X. (1.1)

Here we identify &’ with its image by the regular representation in My(k) and realize Ry /x(GLz2) (resp.
V) in GLog(k) (vesp. Mg a(k)), where d = [&' : k] and k is the algebraic closure of k. We note here that
we may identify as P = P x GLy(K') and V = &'*.

We regard B as a subgroup of P by the embedding

B - P, b+ (b,p(b)1), (1.2)
where p(b); € Ry ;1(GL1) is the upper left d by d block of p(b) € Ry /1 (GLg). Then, one can identify B
as the stabilizer subgroup of P at v = ( (1) ) in V =V(k). |

Lemma 1.1 We have the following isomorphism:

£(B) = 2(P) x X(Rp 1(GL1)) — X(B) (1.3)
(s, 92) —  [p+— P1(p)a(p(P)1)]
Proposition 1.2 (i) The space (P,X) is of type (F). _ B
(i) The set of open B-orbits in X corresponds bijectively to the set of open P-orbits in X by the map
B-z+— P-(z,v).
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Now let {}i(a:, v) ‘ 1<+ n} be the basic set of relative P-invariants, which are regular on X and
satisfy fi(z) = fi{z,vo) for each 4. We denote by +; the character corresponding to ﬂ-(m, v) and ¢; = {/L B
for each 4, and by X,, the P-orbit corresponding to X, for each v € J(X).

Denote by S(X) and S(X) the spaces of Schwartz-Bruhat functions on X and X, respectively. For
s € C" and u € J(X), we consider the following integrals

(s s) = /X () @) dz, (6 € S(X)),
G (3 5) = /X q?(x,@-[f(x,u)!i“ dodv,  (3e8(X)),

where dz is a G-invariant measure on X, dv is a Haar measure on V, ¢ € Q™ and |f(z)|,, are the same
o~ 8 —
as in the definition {0.1), and l flz, v)t is defined similarly for X,,. The above integrals are absolutely
U

convergent for Re(s;) > —¢;, 1 <14 < n, and analytically continued to rational functions of ¢*, 1 <4 <.
It is easy to see that

wulz;8) =v(K - 2)71 - Qu(chs; s), (zx € X), (1.4)
where ch,, is the characteristic function of K -z in S{X) and v{K - z) is the volume with respect to the
above measure dz.

We see the relation between Q,(d; s) and Qy(; s) in the following.

Proposition 1.3 Let 5 = ¢ ® chymy where ¢ € S(K\X), chypmy is the characteristic function of
V{p™) in S{V) and p™ = 7™ 0. Then for any u € J(X),

-m(2d+3; ei(sites))
—2d-37; ei(site;) X Qu(g; ).

Qu(é;S):C' 1_g

Here e; = deg, ﬁ(m,v) for each i, ¢ is o constant depending only on the normalization of measures, in
particular it is independent of the choice of u.

82 Functional equations

Take an. additive character n on k' of conductor 7¢Oy, and define the partial Fourier transform F (<z~5) for
¢ € S(X) by

F@)(z,v) = /V n(vow)d(z, w)dw, o= ( _01 é) (2.1)

We consider the following distributions on S(X)

Tu,s ((;7‘5) = ﬁu($> ‘9)’ T':,s((;) = TH,S(f(é))ﬁ

and calculate their behaviour under the action of P = P x GLy(k'), which is given for (p,t) € P and
¢ € S(X) by

(p’t)a(x’v) = a((pvt)“]. ’ ((IT,’U)) - g(p_l . x,p(p)‘lfvt}, (I,U) € ‘i:

We consider ¢ € %(P) under the isomorphism %(B) = %(P) by Lemma 1.1. We may identify X(B)®z
C = X(P) ®z C = C", on which the Weyl group W acts through the natural action on X(B).
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Lemma 2.1 For (p,t) € P and ¢ € S(X), we have

() Tus (P99) = wathpt)- [§(p,1)
@ Ti.("93) = @bt [

x Ty 5(9),
we{s)

x Tk (8),

where,
k13

li(p, t)r =11

i=1

84

$i(p, 1)

If (H, Y) is of type (F), then essentially by (F1) and (F2), it satisfies also the following property (F5)
(see [Sf2, Lemma 2.3, Corollary 2.4]). Let {%;] 1 <4 < n} be the set of characters corresponding to a
basic set of relative H-invariants taken as regular.

(F5) There is a finite set (L) of linear congruences of type

n
27/ —1
Zmi3i~)\€l———Z, m; €74, AeC
i=1 Iqu

which satisfies the following: If T is a nonzero distribution whose support is contained in Y\Y*? and
satisfies

T(°¢) = ¥1° (9) - T(¢), d€S(Y) geH,
then s satisfies a relation in (L).

By a result of Igusa on relative invariant distributions on homogeneous spaces(lg, Prop. 7.2.1] and the
property (F5), we have the following.

Proposition 2.2 There exist rational functions vy, (s) of @, ..., g which satisfy the following iden-

tity:
T: @) = S AL wa (@), 68X (2.2)
vEJy
Hence we obtain
Theorem 2.3 There exist rational functions v, (s) of g%, ...,q %, which satisfy the following functional

equation :

Ou(F(@)e) = S 1(s) Bu(fwals)),  deSX).

veJy

Let normalize dv on ¥ to be self dual with respect to the inner product (v, w) — n{*vow). Then

Corollary 2.4 For any ¢ € S(K\X), we have

1— —2d—Y, ei(si+es)
Qu(¢; ) = 1— q'%d“zi ei(wa(8)iter) X Z Yuu(8) - (s wals)),

veJy

where )
’Yuv(s) = ql( +3 ealsitEa)) ’7'31/(5)1

which is independent of the choice of the character n on k'
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By Corollary 2.4 and the relation (1.4), we get
Theorem 2.5 For any x € X, we have

1— q~’)d 3o, eif(siter)
1— q—2d~2i ei(wals)ites)

wy{z;8) =

X > Yu(s) - wulz; wal(s)):

vEJy

Remark 2.6 The set J(X) can be often naturally identified with a subgroup of the finite abelian group
. :
k)" /1T#:(B), (2.3)
i=1

where [, ¥;(B) is regarded as a subgroup of T’ = (k*)". Then, it is natural to consider whole zeta
distributions and spherical functions with character in the following. Let U be J(X) or its subgroup
containing J,, which is canonically identified with a subgroup of (2.3). Taking a character x of U, we set

Ty X S) ZX wu(:c 3)7 ¢7X7 ZX Q'u ¢s

uel uEU

Q(dix;s) = x(w)Qu(3s ). (2.4)

wEU
Then we have the following formula instead of Theorem 2.5, we have

1— q—zd—zi 24(si+€4)

wlz; x;8) = =T ROy X ZAxg(s)w(x;é;wa(s)), (2.5)
. gl
where {
AX&(S) = ﬂ( ) Z X(U)f(y)’yw(s), ’Yuy(S) =0 unless v S Ju,
u, veEU
and so

x.£€U

For example, when X is the space of nondegenerate symmetric forms of size n, J(X) = (kx / ka)”,
and when X is the space of nondegenerate hermitian forms of size n over a quadratic extension &’ of k,

the group (k’x /Nk,/k(k’x)>n appears.

§3 Small prehomogeneous vector spaces

In this section we look at the (p(Py) X Ry /k(GL1))-space V = Ry /i (Ms:) for z € X°P. We recall that
P, is the stabilizer of P at fixed x,, € X, for each u € J(X).

Lemma 3.1 (i) For any u,v € J(X), take p, € B satisfying p, - 2, = x,. Then the map
P, x Rk:’/k(GLl) x V — Py X Rk'/k(GLl) X V, <p7 7y 'U) i (pvpp;ly’r,p(pu)’u)

gives an isomorphism of prehomogeneous vector spaces (p(P,) X Ry y1(GL1), V) and (p(Py) X Ry /(G L1), V).
If v € J,, we may take p, € P and then the above isomorphism is defined over k.
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(ii) The set of k-rational points of the open orbit in (p(B.) X Ry k(G L1),V) decomposes as

(p(Pu)vo Ry j(GL1)) (k) = u A\ Vi = p(Pupy)uok’™, (3.1
vedy -

where p, € P satisfying p, ' - T4 € Xy

For ¢ = ¢1 ® ¢ with ¢y € S(X) and ¢ € S(V), we have

F@) = 6 8 Fylda), Fvlda)w) = jv (tvow) ba(w)duw.

By Theorem 2.3, we obtain

Theorem 3.2 The prehomogencous vector space (P, x GL1,V) has the following functional equation:

= Y e [ 60 |Flm ]

vedy,

~(8)+e

/va(@(v) 1?(%,@)]2 ) o (YpeSV),

where the gamma factors 7, (s) are the same of those for ﬁu(gg, s*) in Theorem 2.4.

Remark 3.3 (1) If we take the character 7 to be of conductor ' and normalize dv as vol{V{0)) =
then each 77, (s) coincides with v, (s) in Theorem 2 in the introduction.
(2) The identity in Theorem 3.2 can be rewritten as follows:

~ 4;+Eq
/ Fo @) [ [Fw o)™ av
zEI+ “
We (8):—84 wa (s)ites v
= ][ fulz.)l Y AL ¢<v Fil@urv) dv ("¢ S(V)),
i€lp vEJy i€l v

{i I degvﬁ(x,v) = 0} and I, = {z 1 deg, fi(m,v) > O}.

where I

Remark 3.4 Here we consider the similar situation as in Remark 2.6. Let uo € J and assume that the
index set Jy = J,,, can be canomcally identified as a subgroup of (2.3). For simplicity, we write zg instead

of z,,. For each character x € To and ¢ € S(V), set

Qltins) = 3 xaldis),  waldis) / #(v) | Flwo, )] do.
vEJp
Then we have by Theorem 3.2
Qv (Fv (4 = Y AW Ewal) Ay = gy 2 XL,

EEJO u,w€Jo
and so

wz,xs):ﬁ—wly 3 X A (9),

x,6€70

and A/ . (s) coincides with A,e(s) if U = Jp in Remark 2.6.
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The existence of the functional equations as above gives the following.

Theorem 3.5 For the prehomogeneous vector space (p(Py) X Ry ;x(GL1),V), the identity component of
p(Pu) X Ry i (GL1) is isomorphic to Ry i (GIn X GLy) over the algebraic closure k of k.

Remark 3.6 By Theorems 3.2 and 3.5, the calculation of the gamma factors 7., (s) in §2 is reduced
to that for the small prehomogeneous vector spaces {p(Py) X Ry /x(GLy),V), for which the connected

component of the groups are isomorphic to Ry /x(GL1 X GL1) over k.
The set of isomorphism classes of k-forms of GL; xGL; corresponds bijectively to Hom(Gal(k/k), GLa(Z)).
(cf. [PR, §2.2.4]).

84 ‘Examples

In the following examples, minimal parabolic subgroups are nothing but Borel subgroups. For Examples
4.1 and 4.2, (B, X) satisfies the assumption (AF) for each simple root, and explicit formulas of spherical
functions have been calculated based on [H2, Proposition 1.9], where the necessary condition to apply it
is essentially that (B,X) is of type (F). For Example 4.3, we give functional equations with respect to
the whole Weyl group.

For a matrix z, we denote by d;{z) the determinant of the upper left 7 by 4 block of z.

4.1. Spy x (Sp1)*-space Spy (cf. [H4])
Let G = Spe x (Sp1)?, X = Spa, where

Sp2={xESL4‘t£L‘JCU:J}, J——(_Iz 12>ESL4,

where (Sp;)? = (SL3)? is embedded into Spy by

(2a) (5=

and the action is given by

g-z=gqz'g, g=(g1,92) € G, z X
We take the Borel subgroup B = By x By of G as

x
0

0

By = C Spg, By = C (Spl)%

0 *
* % * *

Then, a set of regular basic relative B-invariants on X and corresponding characters are given by

T31 ifi=1 ( bibs ifi=1

) - 32 1f€:2 ) _ b1b4 lf’l =2
f@(l') L31T47 — T32L41 ifi=3 d’z(b) - b1b2b3b4 ifi=3
T31%43 — 241733 ifq—= 4, \ bibz ife= 4,
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b3
by
b ’ |

where z = (#;;) € X and b = ( )€ B, and

b2

XP={zeX| filz) #0, 1<i<4}, XPhk)= || Xu, JX)=k/E
: ue J(X)

XU:{wEX

g=1

|
£
i~ e o)

4 0
[T =e mod ()] 55 - |5 ?ll

For the simple root « attached to

set

P:Paz{(bl,bz)e@r

S *
b].:(O = )65}92, bzéﬁz},

and define
p:P— GLy, (b1,bgy) — 8.

The above P coincides with P; in [H4], (B, X) satisfied the condition (AF), and we see the following.
1. The relative P-invariants satisfying 3‘;(3:, vo) = fi(z) are given by

Taivl Fxave ifi=1

7 _ L3oU1 + T4oV2 ifei=2 o . U1
filz,v) = folz) fio3 xv(zzg)ex,v—( vy )EV.
fa(z) if i = 4,

2. The small prehormogeneous vector space are isomorphic to (GL, x GL4y,YV) over k.
3. If we change the variable s into z by
21 =81+ 83+ 83+ 84, =83+ 54, 23=851+83 24 = 83 + S3,

we have wa(z> = (212, 21,23, 24).
For XEk-W2 and € = (—%,...,—%), set
w(:c;x;s) = /Kx(f(k . 9:)) if(k i I)ls+s dk,

s+€

¥

O (gi:5) = | x(Flar, o) |Flas,0)

where f(z,v) = [Tiy fi(z,v). By using Tate’s formula ([Ta, §2]) we have the functional equation for
Qv (#; x; 8), hence we obtain the functional equation for w(z; x; 8):

w(m; x5 8) = v(x; 8) - w(%5 X5 wals)),
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where «(x; 8) can be calculated explicitly, and if & is odd residual characteristic it is given by

1

1— 53
q—S1—Sz—-l H ———————-X(Tr)q_sv_z if X(Ox) =1
Ws) = Toammmr XY e Lo x(meT T

gsite: if x(O0%) #1.

In a similar way we can obtain the functional equations for other simple roots, and using these data,
the explicit formula of w(z; x; s) has been obtained when % has an odd residual characteristic. For details
see [H4], where z is the same as before though we shift the variable s by ¢ here.

4.2. The space of unramified hermitian forms (cf. [H2, §2])

Let k' /k be an unramified quadratic extension, * be the involution on k¥’ with fixed field &, and consider
the space of hermitian matrices X = {z € GL,(¥) | z* = z}. Here we denote by y* = (y};) € Mam (k')
for y = (yi;) € Mma(¥k'). The action of G = GL, (k') on X is given by g-z = gzg* for g€ G and z € X.

We realize G = Ry 3(GLy) and X defined over k such that G = G(k) and X = X(k) as follows, by
taking u € @ for which &' = k(y/u) and O = Of/u],

i bi = v
9ij = ( Zj o ) € My(k), Vw},

Qg4

T = 1 0 oo 1 0 Vi
23 g -1 J 0 ~1 3 sJ (-

B= {(bij) € Gi by; = 0( in My (%)) unless i > j},

G

{ (9ij)1<i,j<n € GLan (k)

X = {(xij)ls@ujsszGLZn(E)

Take the Borel grocup B as

then B = B(k) consists of lower triangular matrices in G.

The set { fi(z) = dai(z) | 1 <i < n} is a set of basic relative B-invariants on X, ;(b) = da;(b) is the
character on B corresponding to f;{z), X? = {z € X| fi(z) #0, 1 <i < n}, and

XP= || Xu JX)={0, 1}

ueJ(X)
Xu={zeX|v(filx))=ur +-+u; (mod?2),1<i<n},
Zy = Diag(n™, ..., 7%) € X,

where v, ( ) be the additive valuation on k.

For the simple root corresponding to the transposition (@,a+ 1), 1 <o <n—1, set
P =P, = {(py) € G| piy =0(c My(k)) unless i > j or (i,5) = (¢, + 1)},
and define

p M P — Rk’/k(GLQ)y (pij)1<1.,j<n — ( pﬂl+1,0:+l '“pa+1,a ) .
T —Pa,a+1 Do,

Then (B, X) satisfies the condition (AF), and we see the following.
1. The relative P-invariants satisfying f;(z, vo) = fi(z) are given by fi(z,v) = fi(z) unless i = o, and
Jal#:) = fat1(2)!(00) Ma(@)(ov)".

Here o is the same as before, and M,(z) is the lower right 2 by 2 block of the inverse of the upper
right (o + 1) by (o + 1) block of z.
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2. For any u € J(X), Jy = {v € J(X) | Va + Vat1 = Ua + Ust1 (mod 2)}, and
Fal@u,v) = it F s (e Ny (01) o 740 Ny g (02)) -

3. The small prehomogeneous vector spaces are isomorphic to (Ho x GL1(kK'}, V) or (Hy x GL, (K"}, V)

overk,whereHﬁ-z{geGLg(k’) g-(l Wi):(l ﬂ_i)},z'z(),l.

Let x» be the character on kX given by x,(7) = —1 and x.{0O%) = 1, set f(z) = [[}=; fi(z), and
modify the spherical function as follows.

w(z;s) = /K XalFk-2)) I f (k- 2)" dk,  e=(-1,...,-1,
If we change the variable s into z by
$i=-z+zip, (1<i<n—1),  8n=—2n,

then W acts on z by the permutation of indices, and we have

qza_H - qza—l

w(z;2) = P X w(z; wa(2)),

moreover we see that v
g7 +qg=
l I et X Wi 2)
qu — qz,;—‘l
1<i<j<n

is S, -invariant and holomorphic. Further using these facts, the explicit formula of w(z; z) has been
obtained ([H2, Theorem 1]), where the variable z is the same as before.

Remark For the case of symmetric forms, the situation is similar to this case, where k' = k and
J(X) = (k*/k*2)". But functional equations are much more complicated (cf. [H1-IIL, 2-adic] and (4.7)
below), and any explicit formula of spherical functions is not known for general n.

4.3. The space isomorphic to SO(2n)/5(0(n) x O(n))

For symmetric matrix A of size m and v € My, we use the symbol Alv] = *wAv, which is symmetric
of size n, and define O(A) = {g € GL,, | Alg] = A} and SO(A) = O(A) N SLy,. Set

Hn%(f” é"), G =SO(H,), G=G(k), K=G(O).

Take a non-degenerate integral symmetric matrix T of size n, and set
1 ‘ T
YIYT: T = z EMZn,’n Hn[ﬁ:]:T ST = 1 5
2

X =Y/H, H = O(T),
which are G-homogeneous by the left multiplication. Since Yy is isomorphic to Y for h € GL (k), we
may assume that T is diagonal.
Since the stabilizer subgroup of G at z7H € X is isomorphic to S(O(T) x O(I)), X is isomorphic to
S0(2n)/S{O(n) x O(n)) over %. Spherical functions on this space with respect to the Siegel parabolic
subgroup have a close relation to Siegel’s singular series, which we will discuss in another paper([SH]).
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Let take the Borel subgroup of G by

B = { ( 8 tbiz ) €G ] b is upper triangular of size n} ,

For simplicity of notation, we write the element zH of X (resp. zH of X)) by its representative in Y (resp.
Y). For any element 2 € Y we denote by xy its lower n by n block.
Forz e Y, set

filz) = di(@2 T 22), ¥i(B)=(b1---b:;)"%, 1<i<n,

where b; is the i-th diagonal component of b € B for each 7. Then, { fi{z) | 1 <¢ <n} is a basic set of
regular relative B-invariants on X, f;(z) corresponds to ¢; for each 4, and £ = (—3,...,—3,0) € Q™.
Further we see

X? — {zH € X| fi(z) 0, L Si<n},

XoP = U Xu; J(X) — (kX/ka)n—l 7
u€J(X)
Xu“—-{Z'HGX! fi(x) =u U (mod kXZ)’ 1§i§n—1}.

For the simple root 7 attached to

175—2
0 1
w. — -1 @
T 175_2 y
0 1
-1 0
set
P=P, =BUBw,B,
then
P p € GL, .o, upper triangular,
a O 0 b a b a v 1 a b
0 o ¥ 0 (c d)EGLZ’(c' d’):ad~bc<cd)
P = 5T X U '
0 o 7 0 u€B, uy =1(1 <4< n),
c 0 0 d uij:0(1§i<j§n—2)
We define

p: P— GLz, p= (pz‘j) N ( Pn—1,n—1 Pn—1.2n ,
DP2n,n—1 Pen,an

then it is clear that p satisfied the condition (0.3), and we see the following.

1. For z € Y, denote by 21 (resp. 2) its (2n — 1)-th row vector (resp. n-th row vector), and set

-M@=h4@%<Z>TIUE@%



37

which is well-defined for zH € X. The relative P-invariants satisfying f(z,vo) = f;(x) are given by
B Filz) f1<i<n—2
filz,v) =4 *wD(z)v fi=n—1
2 () falz) - (tvD(z))’  ifi=mn,
and

det D(z) = fo-o(@)fr1(@)fa(2)
= (detT)u1 - Un_2 (mod k**) on X,.

2. The small prehomogeneous vector spaces are isomorphic to (O(2) x GL, V) over k.

3. If we change the variable s into z by

1 1
8y = —E(Zi - z’i+1)> (1 S S - 1), Spn = _§Zn: (41)
we see
’UJT(S) = (51, i3 8p=3y8p—2 t 8p—1 + 8n; Sn—1, —Sn—1 — 3n)
s wo(2) = (21, Zne2y —Zns —Zn—1)-

Hereafter, we assume that % has an odd residual characteristic or 2 is a prime element in k. We
consider a modified zeta integral as follows. For u € J(X), a character x of k*/ k%2, ¢ € S(K\X) and
seCn

, e ~ s+e
Axs) = [ o) xFte o) |Feo)| T ded
Xy X V{(O)
Then, we have
Q¢ x:5)

- /XU o) 11 1)

x/ x(tvD(z)v) |tvD }s”“lﬂsn_% dv
V(0)

ST 1 ()7 (o) e

n—2
¢ 1 2, "
e fx #(z) - Hl @Y faea @) 1)
x(® (D{(z); X; 8n—1 + 235 )dz,
where ¢; = (1 — q7?) f dv. Here, for a nondegenerate symmetric matrix y of size 2, a character x of
V(O)
BX/k*? and t e C

Py x;t) = fGL © x(d (- 9)) i (k - )% dk

is a spherical function on the space Sym34(k) = {y € GLa(k) | ty = y} and satisfles a functional equation
of the form

¢ (z;x:t) = |det a]’ - Yaora (0 1) X CP (@ x5 1), (4.2)
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where ~,(x,t) depends ouly on u € kX /k*? and is calculated explicitly(cf. [H1-II, 2-adic], (4.7) below).
Hence we obtain

1— q2sn..1+4snvl

Qlx68) = T =i Yo (X n1 + 280) X 0,85 w-(s), (4.3)

where u, = (det T)u; « - up—2 € k*/k*2. On the other hand, in a similar way to the proof of Proposi-
tion 1.4, we get

u --'u — ’
D, Yeldins)=c g fg_lzsn-llsln)ul XD x(€) Quel(dss), (4.4)
LekX Jkx2 gekx [kX2

where u€ = (ui, ..., un_2, umg) € J(X). By (4.3) and (4.4), we obtain for u € J(X) and ¢ € S(K\X)

2(019) = T W Yo D xO Quless)

xekx/kxz EEk> k%2

= ¥ (mz X(E) Vo (X 8n-1 + 2Sn)) X Quxe (65 wr(5))- (4.5)

£

For each w, € W corresponding to the transposition (e, a4+ 1) with 1 <o < n—1, we obtaln the
functional equation in a similar way: for v € J(X) and ¢ € S(K\X)

Quldss) = > m 3 x(OY(X550) | X Queat(d5wals)), (4.6)
gekX /X2 ’ xek%/Ex2

where

{ UgUa+1 ifOtS’l’Z*Q
Up =

Up—1 fa=n-—1, )
u * £= (ul)"'7u€l‘11£7uozuoz+1£7ua+2>"')u'n—l) 1fa§n—2
¢ (ulv"')un—27§) fa=n-—1

Since the Weyl group W is generated by w, and w,, 1 < o < n — 1, using (4.5) and (4.6), we have
the following functional equation of wy,(x; s) = w(z; z), where the relation of s and z is given by (4.1), so
W acts on 2z as the transposition of z, and zg41.

Theorem 4.1 Forz € X, u € J(X) and 0 € W, we have

x»c"(z Z L (x5 2 wu(x; z)-
veJ(X)

iL Zn
2 2

Here Iy, (x; 2) s are rotional functions of q ., 2, satisfy cocycle relations

Luv(oo’;2) = Z Tyu(o,0'(2))  Tplo’s2), o0’ €W,
peJ(X)
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and are given for wy and wy by
[kx_zlk><—2']'X(un43Vn—1) A, (g B2ty iy =y, 1<i<n—2
Fur/(w'r;z) =

0 otherwise,

Zo:_‘za:+1) ifui:Viui“%‘aaa—l_L
2

__1__ . .
[kx:kXZ]X(Va) Tica> (X) and Unliart = VaVail ifcz <n-2

Fuu(wa; Z) =
0 otherwise,
o<
Uy = (detT)'u,1 e Up_g,  Yeas = { Za’u?—H Zg ;2_? (6 kX/kx2)v

For convenience, we note here the value of «y,(x, t) for the case of odd characteristic (cf. [H1-II §4] or
[H-IIT §4]): for u € k*/k*? and x € k¥ /k*?

o) (4.7)
1+ x(u)g~%
1 if x(0O%) =1, v (v)=0 (mod 2), (%“)': -1
(1+x(m)g™*$)(1 — x(m)g~*5)
(1= x(m)g~ " 5)(1+ x(m)g **H)

x(u) - q if up(u)=1 (mod2)

1

I

i (0%) =1, Uﬂ(u) =0 {(mod 2), ('_p—u)

1—qg— t—1 ]
Q(l _ qq——2t+1 ) if x(OX) #1, ve(u) =0 (mod 2).
\
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