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1 Introduction
This is a written version of the two lectures I gave at RIMS, January, 2005,
which contains mainly the results from my joint work with David Ginzburg

and Stephen Rallis. I would like to thank Professor Masaaki Furusawa for
his warm invitation and for the wonderful conference, and thank Professor
Horish Saito for his hospitality. The work is partly supported by NSF grant
DMS-0400414.

Let us start with the simplest $\mathrm{L}$-function, which is the well-known Rie-
mann zeta function

$\zeta(s)=\sum_{n=1}^{\infty}\frac{1}{n^{s}}$ .
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It is known that $\zeta(s)$ converges absolutely for the real part of $s$ greater than
one, has a meromorphic continuation to the whole complex plane $\mathbb{C}$ , and
satisfies a functional equation which relates $s$ to 1 $-s$ . Any information
about $\zeta(s)$ in the vertical strip $0\leq Re(s)\leq 1$ will be sensitive, mysterious,
important, etc.

More generally, we consider automorphic $\mathrm{L}$-functions attached to auto-
morphic representations.

Let $G$ be a reductive algebraic group defined over a number field $k$ . Let
$LG$ be the Langlands dual group of $G$ . Let $\pi$ be an irreducible, unitary,
cuspidal, automorphic representation of $G(\mathrm{A})$ , where A is the ring of adeles
of $k$ and $\rho$ be a finite-dimensional complex representation of $LG$ . According
to Langlands, the automorphic $\mathrm{L}$-function attached to the pair $(\pi, \rho)$ is given
by the following Euler product

$L(s, \pi, \rho)=\prod_{v}L(s, \pi_{v}, \rho)$

if we write $\pi=\otimes_{v}\pi_{v}$ .

Theorem 1.1 (Langlands). For any given pair $(\pi, \rho)$ given as above, the
automorphic $L$-function $L(s, \pi, \rho)$ converges absolutely for the real part of $s$

large.

Conjecture 1.2 (Langlands). For any given pair $(\pi, \rho)$ given as above,
the automorphic $L$ -function $L(s, \pi, \rho)$ has meromorphic continuation to the
whole complex plane $\mathbb{C}$ and satisfies a functional equation which related to $s$

to $1-s$ .

It follows that there is a positive real number $S_{0}$ , such that $L(s, \pi, \rho)$ will
be sensitive, mysterious, and important when $s$ lies in the vertical strip

$\frac{1}{2}-s_{0}\leq Re(s)$ $\leq\frac{1}{2}+s_{0}$ .

Remark 1.3. (1) The Langlands conjecture has been verified for many cases,
by either the Langlands-Shahidi method or by the Rankin-Selberg method. See
[GSh88] and [BmpOS] for detailed discussions.

(2) if $\pi$ is generic, $\mathrm{i}.e$ . has a nonzero Whittaker-Fourier coefficient, then
it follows from the generalized Ramanujan conjecture that $s_{0}=1$ . It was
proved in [Sh88] that one can have $s_{0}=2$ for generic cuspidal automorphic
$\pi$ . See [Sh88] for a detailed discussion.

(3) It seems that $s= \frac{1}{2}$ is the most sensitive point for $L(s, \pi, \rho)$ .
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We will discuss in more detail about the nonvanishing of $L( \frac{1}{2}, \pi, \rho)$ in
terms of the representation theory of automorphic forms. In other words, I
want to find how much one will be able to tell about the structure of the
representation $\pi$ in terms of the nonvanishing of $L( \frac{1}{2}, \pi, \rho)$ .

1.1 Residual representations

From Langlands’ theory of Eisenstein series ([L76] and [MW95]), the non-
vanishing condition of certain automorphic $\mathrm{L}$-functions is equivalent to the
condition for the existence of a residue of certain Eisenstein series,

For simplicity of discussion, we may assume that $G$ is quasi-split or even
split over $k$ . Let $P=MN$ be a standard maximal parabolic $\mathrm{f}\mathrm{c}$-subgroup of
$G$ . Let $K= \prod_{v}K_{v}$ be a standard maximal compact subgroup of $G(\mathrm{A})$ such
that

$G(\mathrm{A})=P(\mathrm{A})K$

is the Iwasawa decom position of $G(\mathrm{A})$ .
Let a be an irreducible cuspidal automorphic representation of $M(\mathrm{A})$ .

Consider $V_{\sigma}$-valued smooth functions $\phi_{\sigma}$ over $G(\mathrm{A})$ satisfying following prop-
erties :

(1) for a fixed $g\in G(\mathrm{A})$ ,
$k\mapsto\phi_{\sigma}(gk)$

generates a finite-dimensional representations of $K\mathrm{i}$

(2) for a fixed $.\mathit{0}\in G(\mathrm{A})$ ,
$m\mapsto\phi_{\sigma}(mg)$

is a smooth vector in $V_{\sigma}$ and the function $\phi_{\sigma}$ satisfies

$\phi_{\sigma}(ng)=\phi_{\sigma}(g)$

for all $n\in N(\mathrm{A})$ .

Define
$\Phi(g;s, \phi_{\sigma}):=\phi_{\sigma}(g)\exp<s+\rho_{P}$ , $H_{P}(g)>$

where $\rho_{P}$ is the half of the sum of all positive roots with respect to the center
of $M$ , the parameter $s$ is normalized as in [Sh88], and $H_{P}$ is the Harish-
Chandra map with respect to $P$ . Then we define Eisenstein series of $G(\mathrm{A})$
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attached to the cuspid al datum $(P, \sigma)$ as

(1.1) $E(g;$ s,
$\phi_{\sigma}):=\sum_{\gamma\in P(k)\backslash G(k)}\Phi(\gamma g;s, \phi_{\sigma})$

.

Theorem 1.4 (Langlands ([L76] and [MW95]). For any given cuspi-
dal datum $(P, \sigma)$ , the Eisenstein series $E(g;s, \phi_{\sigma})$ converges absolutely for
the real part of $s$ large, has meromorphic continuation to the whole complex
plane $\mathbb{C}$ (with finitely many poles at the positive real line after suitable nor-
malization), and satisfies a functional equation relating the value $s$ to the
value $-s$ .

Remark 1.5. It is expected that the struc rure of the residual representa-
tions of $E(g;s, \phi_{\sigma})$ at a real number $s_{0}>0$ should have direct relations with
the struc rure of the cuspidal datum $(P, \sigma)$ . However, this is not completely
known.

From the Langlands theory of the constant terms of Eisenstein series, the
poles of Eisenstein series can be detected in terms of explicit calculation of the
constant terms of the Eisenstein series. The constant term of the Eisenstein
series $E(g;s, \phi_{\sigma})$ along a standard parabolic subgroup $P’$ is always zero unless
$P’=P$ ([MW95], 1.7). In this case the constant term can be expressed as

(1.2) $E_{P}(g;s, \phi_{\sigma})$ $=$ $\oint_{N(k)\backslash N(\mathrm{A})}E(ug;s, \phi_{\sigma})dn$

$=$ $\Phi(g;s, \phi_{\sigma})+\mathcal{M}(w_{0}, s)(\Phi(\cdot). s, \phi_{\sigma}))(g)$

where $w_{0}$ the longest Weyl element in the representatives of the double coset
decomposition $W_{M}\backslash W_{G}/W_{M}$ of the Weyl groups.

It follows from the Langlands theory of Eisenstein series that $E(g;s, \phi_{\sigma})$

has a pole at $s=s_{0}$ if and only if the term $\mathcal{M}(w_{0}, s)(\Phi(\cdot;s, \phi_{\sigma}))$ above has
a pole at $s=s_{0}$ for some holomorphic (or standard) section $\Phi(g;s, \phi_{\sigma})$ as
defined before. Following the standard argument, if we consider factorizable
sections

$\Phi(\cdot;s, \phi_{\sigma})=\otimes_{v}\Phi_{v}(\cdot;s, \phi_{\sigma_{v}})$ ,

then we have

$\mathcal{M}(w_{0}, s)(\Phi(\cdot;s, \phi_{\sigma}))=\prod_{v}\mathcal{M}_{v}(w_{0}, s)(\Phi_{v}(\cdot;s, \phi_{\sigma_{v}}))$
.
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By the Langlands-Shahidi theory ([L71], [Sh88]) we have

(1 . 3) $\mathcal{M}(w_{0}, s)=\frac{\prod_{l}L(ls,\sigma,r_{l})}{\prod_{l}L(ls+1,\sigma,r_{l})}\cdot\prod_{v}N_{v}(w_{0}, s)$ ,

where $N_{v}(w_{0}, s)$ is the normalized intertw ining operator

$N_{v}(w_{0}, s)= \frac{1}{r(s,\pi_{v},\sigma_{\mathrm{e})},w_{0})}$ . $\mathcal{M}_{v}(w_{0}, s)$ .

Here the function $r(s, \tau_{v}, \sigma_{v}, w_{0})$ is equal to

$\frac{\prod_{f}L(ls,\sigma_{v},r_{l})}{\prod_{l}L(ls+1,\sigma_{v},r_{l})\prod_{l}\epsilon(ls,\sigma_{v},r_{l},\psi_{v})}.$ .

By a conjecture of Shahidi [Sh90] , it is expected that $N_{v}$ ($w_{0}$ , s) $(\Phi_{v}(\cdot;s, \phi_{\sigma_{v}}))$

is holomorphic and nonzero for $Re(s)\geq 0$ if $\sigma_{v}$ is tempered. It has been
checked for many cases when $\sigma_{v}$ is tempered and generic, and when $G$ is a
classical group ([CKPSS04]).

By assuming Shahidi’s conjecture on $N_{v}(w_{0}, s)(\Phi_{v}(\cdot;s, \phi_{\sigma_{v}}))$ , we know
that the existence of a pole at $\mathrm{s}$ $=s_{0}$ of $E(g;s, \phi_{\sigma})$ is equivalent to the
existence of a pole at $s=s_{0}$ of the product of L-functions

$\prod_{l}L(ls, \sigma_{J}.r_{l})$
.

Following from Shahidi ([Sh88]), if a is generic, then the L-function
$L(s, \sigma, r_{f})$ is holomorphic for $Re(s)>1$ . If we write

$\prod_{l}L(ls, \sigma, r_{l})=L(s, \sigma, r_{1})L(2s, \sigma, r_{2})\prod_{l\geq 3}L(ls, \sigma, r_{f})$
.

It follow $\mathrm{s}$ that $\prod_{l\geq 3}L(ls, \sigma, r_{l})$ is holomorphic for $Re(s) \geq\frac{1}{2}$ . Then the
existence of a pole at $s=s_{0}$ of the product of L-functions

$\prod_{l}L(ls, \sigma, r_{l})$

is equivalent to either that $L(s, \sigma, r_{1})$ has a pole at $s=1$ (Case (1))or that
$L(s, \sigma, r_{1})$ does not vanish at $s= \frac{1}{2}$ and $L(s, \sigma, r_{2})$ has a pole at $s=1$ (Case
$( \frac{1}{2}))$ .
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Remark 1.6. One expects that Case (1) and Case $( \frac{1}{2})$ should not occur at
the same time, but $\iota t$ is possible for both not to occur. For classical groups
and generic $\sigma$ , this follows from the explicit Langlands functorial lifting from
classical groapps to the general linear group. In particular, the structures of a
related to these two cases are essentially different.

1.2 Model-comparison

In the previous subsection, the existence of the residual representation

(1.4) $\mathcal{E}_{s_{0}}(g;\phi_{\sigma}):={\rm Res}_{s=s_{0}}E(g;s, \phi_{\sigma})$

is characterized in terms of the existence of a pole at $s=s_{0}$ of the product
of L-functions

(1.5) $L(s, \sigma, r_{1})L(2s, \sigma, r_{2})$

assuming that a is generic. The question in this subsection is to ask how
to describe the structure of the residual representation $\mathcal{E}_{s_{0}}(g;\phi_{\sigma})$ in terms of
the structure of the cuspidal support $\sigma$ , or vise versa. From a representation-
theoretic point of view, structures of representations are usually characterized
by means of certain invariants attached to the representations. For auto-
morphic representations, it is natural to consider period integrals in order to
distinguish automorphic representation from each other. By reciprocity, that
an automorphic representation has a certain nonzero period is equivalent to
that the automorphic representation has a certain model. For example, it
has a Whittaker model if the representation is generic.

When consider two automorphic representations which are related via a
certain kind of transfers, say, Langlands functoriality, theta correspondence,
or endoscopy lifting, it is natural to expect the two automorphic represen-
tations should share certain compatible models. This should be viewed as
a version of the Langlands functoriality principle. In reality, one may ex-
pect an explicit formula which relates a certain model for one representation
to a certain model for the other representation. This is what we called
Model-comparison identity. Such an idea is not really new. One can find
such model-comparison identities in the constructive theory of automorphic
forms, such as the Langlands theory of constant terms of Eisenstein series,
the Langlands-Shahidi method and the Rankin-Selberg method to study au-
tomorphic $\mathrm{L}$-functions, explicit theta correspondences, the descent method
(backward liftings) of automorphic forms, relative $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ formula method, etc
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We consider in the following the relation between the cuspidal datum
$(P, \sigma)$ and the residual representation $\mathcal{E}_{s\mathrm{o}}(g;\phi_{\sigma})$ of $G(\mathrm{A})$ . It is the simplest
case of Langlands functoriality from $(M, \sigma)$ to $(G, \mathcal{E}_{s0}(g;\phi_{\sigma}))$ . The problem
is: for a given $(M, \sigma)$ and the value $s_{0}$ , to find a suitable spherical subgroup
$H$ of $G$ , an automorphic representation $\tau$ of $M\cap H$ , and an automorphic
representation $\mathcal{E}_{0}(h;\phi_{\tau})$ of $H(\mathrm{A})$ , such that there exists an identity which
relates the period (called the outer period) of $\mathcal{E}_{s_{0}}(g;\phi_{\sigma})$

(1.6) $\oint_{H(k)\backslash H(\mathrm{A})}\mathcal{E}_{s_{0}}(h;\phi_{\sigma})\mathcal{E}_{0}(h;\phi_{\tau})dh$

and the period (called the inner period) of a

(1.7) $\int_{M\cap H(k)\backslash M\cap H(\mathrm{A})}\phi_{\sigma}(x)\phi_{\tau}(x)dx$ .

A Theorem one wishes to prove is

Theorem 1.7. The nonvanishing of outer period (L6) is equivalent to the
nonvanishing of inner period (1.7).

Remark 1.8. Since the Langlands functoriality from a to $\mathcal{E}_{s_{0}}(g;\phi_{\sigma})$ is noth-
ing but the ‘parabolic induction’, it is $nat$ rural to find the data $(H, \tau, \mathcal{E}_{0}(h;\phi_{\tau}))$

through the Frobenius reciprocity law. More precisely, one has to study the
orbital aecomposition

$P\backslash G/H$

and possible quasi-invariant distributions attached to each of the orbits. Note
that the Rankin Selberg method for automorphic $L$-functions uses the Zariski
open orbit! However, in the model-comparison $s$ rudy, one pays more attention
to the other lower dimensional orbits, the closed orbits in particular.

Of course, one has to regularize the period integral to deal with the conver-
gence problem. One can apply the Arthur’s truncation method to one of the
residual automorphic forms in the integrand. Other methods of regularization
may also apply, see [LR04] for instance.

Remark 1.9. Some very interesting cases have been rreated by this approach
and have some striking consequences.

(1) The first case was $st$ rudied by Jacquei and Rallis in [$JR\mathit{9}\mathit{2}J$ . In this
case, $G=\mathrm{G}\mathrm{L}_{2n}$ , $M=\mathrm{G}\mathrm{L}_{n}\mathrm{x}$ $\mathrm{G}\mathrm{L}_{n}$ , $H=\mathrm{S}\mathrm{p}_{2n}$ , and $M\cap H=\mathrm{G}\mathrm{L}_{n}^{\triangle}$ , the
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diagonal embedding into M. The representation $\tau$ is one-dimensional and
the representation $\mathcal{E}_{0}(\cdot$ ; $\phi_{\tau})$ is the trivial representation of $H(\mathrm{A})$ .

(2) The following three cases was uniformly treated by the author in

$[\mathrm{J}98\mathrm{a}]$, which was for the first time to connect the model-comparison method
with the Langlands-Shahidi method and to connect the (inner) period to the
special value of certain $L$-functions without help of the Rankin-Selberg integral
formula for automorphic L-functions.

$(\mathit{2}i)G=G_{2}$ ($k$ -split), $M=\mathrm{G}\mathrm{L}_{2}$ (attached to the short root), $H=\mathrm{S}\mathrm{L}_{3}$

(naturally embedded in $G_{2}$), and $M\cap H$ is GLi (one-dimensional torus).

$(\mathit{2}\mathrm{i}i)G=B_{3}$ ($k$ -split), $M=A_{1}\rangle\zeta B_{1;}H=G_{2}$ (naturally embedded into $B_{3}$ ,
and $M\cap H$ is $A_{1}^{\triangle}$ (diagonally embedded into $M$).

$(\mathit{2}i\mathrm{i}i)G=D_{4}$ ($k$ -split), $M=A_{1})\langle A_{1}\mathrm{x}$ $A_{1}$ , $H=G_{2}$ (embedded into $D_{4}$

via triality), and $M\cap H$ is $A_{1}^{\Delta}$ (diagonally embedded into $M$). This
last case gives alternative proof of a conjecture of Jacquet for the split
period case.

(3) The case $(F_{4}, D_{4})$ was consid erecl in [GJOl].
(4) The case $(\mathrm{S}\mathrm{p}_{4n}, \mathrm{S}\mathrm{p}_{2n}\mathrm{x} \mathrm{S}\mathrm{p}_{2n})$ was studied in $[(_{\mathrm{J}}^{\gamma}RSg_{J}of$ .

Remark 1.10. From the above arguments, it follows that the nonvanishing
of the inner period in (1.7) implies the existence of the pole at $s_{0}$ of the
product of $L$-functions in (1 . 5). The converse to this statement is known as
a version of the conjecture of Gross-Prasad type ([GP92], [GP94], $fGJR\mathit{0}\mathit{4}]$,
and $[GJR])$ . We will discuss this issue in the next section,

2 Rankin-Selberg L-functions
In this section, we discuss in more detail how to apply the general ap-
proach described in the previous section to the case of the Rankin-Selberg
$\mathrm{L}$-functions $L(s, \pi_{1}\mathrm{x} \pi_{2})$ , where $\pi_{1}$ , $\pi_{2}$ are irreducible cuspidal automor-
phic representations of $\mathrm{G}\mathrm{L}\mathrm{n}(\mathrm{A})$ , $\mathrm{G}\mathrm{L}_{m}(\mathrm{A})_{7}$ respectively. This automorphic
$\mathrm{L}$-function has been studied by many people in [JPSS83], [Sh84], [MW89],
and [CPS04], and the following properties have been proved among others:

(1) $L(s, \pi_{[perp]}\mathrm{x}\pi_{2})$ converges for $Re(s)>1$ and has meromorphic continuation
to the whole complex plane $\mathbb{C}$ ;
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(2) $L(s, \pi_{1}\mathrm{x} \pi_{2})$ has a possible simple pole at $s=1$ , and it has a simple
pole at $s=1$ if and only if $\pi_{2}\cong\pi_{1}^{\vee};$

(3) the functional equation of $L(s, \pi_{1}\cross \pi_{2})$ relates the value $s$ to $1-s$ , and
if both $\pi_{1}$ and $\pi_{2}$ are self-dual, then $L( \frac{1}{2}, \pi_{1}\mathrm{x} \pi_{2})$ is a real number.

We are interested in a characterization of the nonvanishing of the central
value $L( \frac{1}{2}, \pi_{1}><\pi_{2})$ . We recall first the global integral from [CPS04]. Assume
that $n>m$ . Define a unipotent subgroup $Y_{n}$ , $m$ to be

$Y_{n,m}:=\{y=(\begin{array}{ll}I_{m+1} *0 n\end{array})|n\in N_{n-m-1}\}$

where $N_{n-m-1}$ is the standard maximal upper triangular unipotent subgroup
of $\mathrm{G}\mathrm{L}_{n-m-1}$ . Define a character of $Y_{n,m}$ by

$\psi_{n,m}(y):=\psi_{0}(n_{1,2}+\cdots+n_{n-m-2,n-m-1})$

where $\psi_{0}$ is a given nontrivial additive character. For an automorphic form
$\varphi_{\pi_{1}}$ in the space of $\pi_{1}$ , we define the $\psi_{n,m}$-Fourier coefficient of $\varphi_{\pi_{1}}$ by

$\mathcal{F}^{\psi_{n,m}}(\varphi_{\pi 1})(g):=\oint_{Y_{n,m}(k)\backslash Y_{n_{l}m}(\mathrm{A})}\varphi_{\pi_{1}}(yg)\psi_{n,m}^{-1}(y)dy$.

It is clear that $F^{\psi_{n,m}}$ $(\varphi_{\pi_{1}})(g)$ is automorphic over $\mathrm{G}\mathrm{L}_{m}(\mathrm{A})$ via the embedding

$x\in \mathrm{G}\mathrm{L}_{m}\mapsto(\begin{array}{ll}x 00 I_{n-m}\end{array})$ $\subset \mathrm{G}\mathrm{L}_{n}$ .

From [CPS04] , one knows

$\mathit{1}_{\mathrm{G}\mathrm{L}_{m}(k)\backslash \mathrm{G}\mathrm{I}(\mathrm{A})}^{\mathcal{F}^{\psi_{\mathfrak{n},m}}(\varphi_{\pi_{1}})(x)\varphi_{\pi_{2}}(x)|\det x|^{s-\frac{1}{2}}dx=\mathcal{Z}_{S}(s,\varphi_{\pi_{1}},\varphi_{\pi_{2}})\cdot L^{S}(s,\pi_{1}\mathrm{x}\pi_{2})}.\lrcorner m$

where $S$ is the finite subset of local places, including the archimedean places,
where one of $\pi_{1}$ , $\pi_{2}$ , and $\psi$ is ramified. After establishing the complete local
theory of the Rankin-Selberg convolution, one expects that the central value
$L( \frac{1}{2}\rangle\pi_{1}><\pi_{2})$ does not vanish if and only if the following period

(2.1) $\oint_{\mathrm{G}\mathrm{L}_{m}(k)\backslash \mathrm{G}\mathrm{L}_{m}(\mathrm{A})}\mathcal{F}^{\psi_{n,m}}(\varphi_{\pi_{1}})(x)\varphi_{\pi \mathrm{z}}(x)dx$
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does not vanish.
When both $\pi_{1}$ and $\pi_{2}$ are self-dual the Langla ds principle of functoriality

asserts that $\pi_{1}$ and $\pi_{2}$ are lifted from classical groups. In such a situation, the
central value $L( \frac{1}{2}, \pi_{1}\mathrm{x}\pi_{2})$ is expected to have connection with period integral
over classical groups. Such periods may have more interesting arithmetic
meanings.

2.1 A classification
In the following we assume that both $\pi_{1}$ and $\pi_{2}$ are self-dual We first classify
the tensor product $\pi_{1}\otimes\pi_{2}$ in terms of the Langlands principle of functoriality.

Let yr be an irreducible, unitary, self-dual, cuspidal, automorphic repre-
sentation of $GL_{n}(\mathrm{A})$ . Then $L(s, \pi\otimes\pi^{\vee})$ has a simple pole at $s=1$ . Since
the tensor product $\mathrm{L}$-function $L(s, \pi\otimes \pi^{\vee})$ can be expressed as a product of
the exterior square $\mathrm{L}$-function and the symmetric square L-function:

$L(s, \pi\otimes\pi^{\vee})=L(s, \pi, \Lambda^{2})L(s, \pi, S^{2})$ ,

one and only of the $\mathrm{L}$-functions $L(s, \pi, \Lambda^{2})$ and $L(s, \pi, S^{2})$ has a simple pole
at $s=1$ .

We call $\pi$ sympiectic (or orthogonal) if the exterior square L-function
$L(s, \pi, \Lambda^{2})$ (or the symmetric square $\mathrm{L}$-function $L$ ( $s$ , $\pi$ , $S^{2}$ ), resp.) has the
pole at $s=1$ . This gives a classification of irreducible self-dual cuspidal
automorphic representations $\pi$ of $\mathrm{G}\mathrm{L}_{n}(\mathrm{A})$ .

Theorem 2.1 (Jiang-Soudry [JS03]). If $L(s, \pi, \Lambda^{2})$ has $a$ (simple) pole
at $s=1$ , then each local component $\pi_{v}$ of $\pi$ is symplectic, $i.e$ . the local Lang-
lands parameter for $\pi_{v}$ factorizes through $\mathrm{S}\mathrm{p}_{n}(\mathbb{C})$ , the dual group of $\mathrm{S}\mathrm{O}_{n+1}$ .
Note that in this case $n$ must be even.

Remark 2.2. This was a conjecture of Prasad and Ramakrishnan in $[PR\mathit{9}\theta]$.
For other classical groups, it is our work in progress.

Now we apply the above classification to the tensor product $\pi_{1}\otimes\pi_{2}$ , which
can be ciassihed as follows:

$\bullet$ Case (O). $\pi_{1}$ and $\pi_{2}$ are either both orthogonal or both symplectic.

$\bullet$ Case (S). One of the $\pi_{1}$ and $\pi_{2}$ is orthogonal and the other is sym-
plectic.
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These two cases are essentially different when we consider problems related
to $L( \frac{1}{2}, \pi_{1}\cross \pi_{2})$ , since $\pi_{1}\otimes\pi_{2}$ is orthogonal (or symplectic) (conjecturally)
in Case (O) (or in Case (S)), resp.)

In Case (O), we understand the possible pole of $L(s, \pi_{1}\rangle\langle\pi_{2})$ at $s=1$

and the ‘functoriaT relation between $\pi_{1}$ and $\pi_{2}$ . But, it is mysterious to find
a ’reasonable’ period relating to $L( \frac{1}{2}, \pi_{1}\mathrm{x} \pi_{2})$ since $\frac{1}{2}$ may not be critical in
motivic sense. However, in Case (S), $\pi_{1}\otimes\pi_{2}$ is symplectic. it was proved
in [LR03] and [Lp03] that

$L( \frac{1}{2}, \pi_{1}\cross \pi_{2})\geq 0$

based on the functorial relations between generic cuspidal representations of
classical groups and $GL$ ([CKPSS04], [GRSOI], [K02], and [JS03]), and based
on the spectral theory of automorphic forms. It is a very interesting question
to characterize the nonvanishing of the central value $L$ ( $\frac{1}{2}$ , $\pi_{1}\cross$ i2) in Case
(S),

Assume $\pi_{1}$ is symplectic. This implies $n=2r$ is even ([KOO]). Then $\pi_{2}$

must be orthogonal This leads two different cases:

$\bullet$ Case (SI) if $m=2l$ ;and

\bullet Case (S2) if m $=2l+1$ .

By means of the automorphic descent construction of Ginzburg, Rallis and
Soudry, we find, in Case (Si), periods defined over orthogonal groups,
which is of the generalized Gelfand-Graev type, and in $\mathrm{n}$ Case (S2), periods
defined over symplectic groups or metaplectic groups, which is of the Fourier-
Jacobi type.

To define the periods of the Fourier-Jacobi type (Case (S2)) we have to

introduce Fourier-Jacobi coefficients of automorphic forms. For simplicity,
I discuss only in detail the periods of the generalized Gelfand-Graev type
(Case (SI)).

Theorem 2.3 (Ginzburg-Rallis-Soudry [GRSOI], [S02]). If $\pi_{1}$ is sym-
plectic as defined above, there exists an irreducible generic cuspidal automor-
phic representation 4 of $\mathrm{S}\mathrm{O}_{2r+1}(\mathrm{A})(n=2r)$ s.t $\pi_{1}$ is a weak Langlands

functorial lift from $\sigma$ . if $\pi_{2}$ is orthogonal and $m=2l$ as above, there ex-
ists an irreducible generic cuspidal automorphic representation $\tau$ of $\mathrm{S}\mathrm{O}_{2l}$ $(\mathrm{A})$

s.t $\pi_{2}$ is a weak Langlands functorial lift from $\tau$ . if $\pi_{2}$ is orthogonal and
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$m=2l+1$ as above, there exists an irreducible generic cuspidal automorphic
representation $\tau$ of Sp $2l(\mathrm{A})s$ . t. $\pi_{2}$ is a weak Langlands functorial lift from

$\tau$ .

It is proved in [CKPSS04] ([JS03], $\lfloor\lceil \mathrm{K}02]$ for $\mathrm{S}\mathrm{O}_{2n+1}$ ) that these weak
liftings are all strong Langlands functorial liftings.

2.2 Periods
We may assume that $r\geq l$ . We denote that $G_{r}:=\mathrm{S}\mathrm{O}_{2r+1}$ and $H_{l}$ $:=\mathrm{S}\mathrm{O}_{2l}$ .
We introduce a standard unipotent subgroup

$V_{r,l}:=\{v(n, x, z)=(\begin{array}{lll}n x z I_{2l+1} x^{*} n^{*}\end{array})\}\subseteq G_{r}$

where $n\in N_{r-l)}$ which is the standard upper triangular unipotent subgroup
of $\mathrm{G}\mathrm{L}_{r-l}$ . Define a character $\psi_{r,l}$ of $V_{r,l}(\mathrm{A})$ by

$\psi_{r,l}(v):=\psi_{0}(n_{1,2}+\cdots+n_{r-l-1,r-l})\psi_{0}(x_{r-l,l+1})$ .

It is clear th at $q/J_{r,l}$ is trivial on $V_{r,l}(k)$ . Denote the normalizer of $V_{r}$ , $l$ in $G_{r}$ by

$M:=N_{G_{r}}(V_{r_{v}^{l}},)\cong GL_{1}^{r-l}\rangle\langle SO_{2l+1}$ .

Th en the connected component of the stabilizer of $\psi_{r,l}$ in $M$ is isomorphic to
$H_{l}$ .

When $r\leq l$ . similar notations can be introduced, and we omit the details.
For $\varphi_{\sigma}\in V_{\sigma}$ and $\varphi_{\tau}\in V_{\tau}$ , define $\psi_{r,l}$-Fourier coefficient of $\varphi_{\sigma}$ to be

$\mathcal{F}^{\psi_{r}},{}^{t}(\varphi_{\sigma})(h):=\int_{V_{r,l}(k)\backslash V_{r,l}(\mathrm{A})}\varphi_{\sigma}(vh)\psi_{r,l}(v)^{-1}dv$ ,

and the period is defined as follows:

(2.2) $P_{r,l}( \varphi_{\sigma}, \varphi_{\tau}, \psi_{r,l}):=\oint_{H_{l}(k)\backslash H_{l}(\mathrm{A})}F^{\psi_{r,l}}(\varphi_{\sigma})(h)\varphi_{\tau}(h)dh$ .

Remark 2.4. This period is also called a period of generalized Gelfand-
Graev type. One can also relate the above definition with the unipotent orbit
corresponding to the partition $[2l+1,1^{2(r-l)}]$ of $2r+1$ . See [JS05] for detailed
discussion, for instance.
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One of the main results related to the central value

$L( \frac{1}{2}, \sigma \mathrm{x} \tau)=L(\frac{1}{2}, \pi_{1}\mathrm{x} \pi_{2})$

is the following theorem.

Theorem 2.5 ([GJR04],[GJR]). If the period $\prime \mathrm{p}_{r,l}(\varphi_{\sigma}, \varphi_{\tau}, \psi_{r,l})$ is not idert-
tically zero on the space $V_{\sigma}\otimes V_{\tau}$ , then $L( \frac{1}{2}, \pi_{1}$ x$\pi_{2})$ is nonzero.

This theorem for Case (SI) is proved in [GJR] and for Case (S2) is
proved in [GJR04] . The proof follows the general argument sketched in \S 1.
The key point is to consider the following two Eisenstein series:

(1) the Eisenstein series $E(g:s, \phi_{\pi_{1}\otimes\tau})$ on $\mathrm{S}\mathrm{O}_{4r+2l}$ attached to the cuspidal
data $\pi_{1}\otimes\tau$ of $\mathrm{G}\mathrm{L}_{2r}\mathrm{x}$ $\mathrm{S}\mathrm{O}_{2l}$ ;

(2) the Eisenstein series $E(g;s, \phi_{\pi_{1}\otimes\sigma})$ on $\mathrm{S}\mathrm{O}_{6r+1}$ attached to the cuspidal
data $\pi_{1}\otimes\sigma$ of $\mathrm{G}\mathrm{L}_{2r}\mathrm{x}$ $\mathrm{S}\mathrm{O}_{2r+1}$ .

Proposition 2.6 ([GJR04],[GJR]). The Eisenstein series $E(g;s, \phi_{\pi_{1}\otimes\tau})$

has a possible simple pole at $s= \frac{1}{2}$ . The residue, denoted by $\mathcal{E}_{\frac{1}{2}}$

$(g;\phi_{\pi_{1}\otimes\uparrow})$ ,

zs nonzero if and only if $L( \frac{1}{2}, \pi_{1}\rangle\langle\tau)$ is nonzero, The Eisenstein series

$E(g;s, \phi_{\pi_{1}\mathrm{x}\sigma})$ has a simple pole at $s=1$ , and the residue is denoted by
$\mathcal{E}_{1}(g;\phi_{\pi_{1}\mathrm{X}\sigma})$ .

Then the ’outer’ period is given by

$\mathcal{P}_{3r,2r+l(\mathcal{E}_{1}(\cdot;\phi_{\pi_{1}\mathrm{x}\sigma}),\mathcal{E}_{\frac{1}{2}}(\cdot;\phi_{\pi_{1}\otimes\tau}),\psi_{3r,2r+l})}$ .

The ’specialization’ of Theorem 1.7 to this case is the following theorem.

Theorem 2.7 ([GJR04],[GJR]). The nonvanishing of outer period

$\mathcal{P}_{3r,2r+\iota(\mathcal{E}_{1}(\cdot;\phi_{\pi_{1}\mathrm{X}\sigma}),\mathcal{E}_{\frac{1}{2}}(\cdot;\phi_{\pi\}\otimes\cdot r}),\psi_{3r,2r+l})}$

is equivalent to the nonvanishing of the inner period $P_{\tau,l}(\varphi_{\sigma}, \varphi_{\tau}, \psi_{r,l})$ .

Hence, following the argum ent in 51, we prove Theorem 2.1. Conversely,
one expects to show that the nonvanishing of the central value A $( \frac{1}{2}, \pi_{1}\mathrm{x} \pi_{2})$

implies the nonvanishing of a certain period of type (1.7). This is an analogue
of the Gross-Prasad conjecture ([GP92] and [GP94]). We proved some special
cases as stated below.
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Theorem 2.8 ([GJR 04],[GJR]). Assume that $r\geq l$ with $l\leq 1$ . If
$L( \frac{1}{2}, \pi_{1}><\pi_{2})$ is nonzero, then there are $\sigma’$ ancl $\tau’s.t$ . the period $\mathcal{P}_{r,l}(\varphi_{\sigma’}, \varphi_{\tau’}, \psi_{r,l})$

is not identically zero on the space $V_{\sigma’}\otimes V_{\tau’}$ , where $\sigma’$ is an irreducible cusp-
idal automorphic representation of $\mathrm{S}\mathrm{O}_{2r+1}’$ (an inner form of $\mathrm{S}\mathrm{O}_{2r+1}$) which
is nearly equivalent to $\sigma$ , and $\tau’$ is an irreducible cuspidal automorphic rep-
resentation of $\mathrm{S}\mathrm{O}_{2l}’$ (an inner form of $\mathrm{S}\mathrm{O}_{2l}$) which is nearly equivalent to $\tau$ .
Note that the pair $(\mathrm{S}\mathrm{O}_{2r+1)}’\mathrm{S}\mathrm{O}_{2l}’)$ $forms$ a relevant pair.

Remark 2.9. A relevant pair of two nondegenerate quadratic spaces can
be defined as follows. Let (V, (.,$\cdot)_{V})$ and (V, (.,$\cdot)_{W})$ be two nondegenerate
quadratic spaces over $k$ . The pair $(V, W)$ is called $a$ relevant pair if the
following holds

(1) $|\dim_{k}V-\dim_{k}W|$ is odd;

(2) the quadratic space $V\oplus W$ with quadratic form
$(\cdot, ’)_{V\oplus W}:=(\cdot).)_{V}-(\cdot, \cdot)_{W}$

is split; $i.e$ . has the Witt index $[ \frac{\dim_{k}V+\dim_{k}W}{2}]$ .

The pair (SO (V), SO(W)) is called a relevant pair if $(V, W)$ is a relevant
pair. It is clear that for a relevant pair (SO(V), SO (W)), one can define the
periods for automorphic forms on SO(V) and SO(W) as before.
Remark 2.10. We proved the above theorem for general $l$ under the assurap-
tion of the existence of a certain nonirivial Fourier coefficient of the residue
$E_{\frac{1}{2}}(g, \phi_{\pi_{2}\otimes\sigma})$ . More precisely we assume that if the residue is nonzero, it has $a$

nonzero Fourier coefficient associated to the unipotent orbit of $SO_{4l+2r+1}(\mathbb{C})$

corresponding to the partition $[(2l+2r+1)1^{2l}]$ . We conjecture that the
residue $E_{\frac{1}{2}}(g, \phi_{\pi_{2}\otimes\sigma})$ , if nonzero, has a nonzero Fourier coefficient associ-
atel to the unipotent orbit of $SO_{4l+2r+1}(\mathbb{C})$ corresponding to the partition
$[(2l+2r+1)(2l-1)(1)]$ . More details can be found in [GJR04].

Remark 2.11. The most significant lower rank case of the Gross-Prasad
conjecture is the case when the relevant pair is (S04, $\mathrm{S}\mathrm{O}_{3}$). In this case, it is $a$

conjecture of Jacquet. Let $\pi_{1}$ , $\pi_{2}$ , and $\pi_{3}$ be irreducible cuspidal automorphic
representations of $\mathrm{G}\mathrm{L}_{2}(\mathrm{A})$ with the product of the cenrral characters being
trivial, $\mathrm{i}.e$ .

$\omega_{\pi_{1}}\cdot\omega_{\pi_{2}}\cdot\omega_{\pi_{3}}=1$.

14
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The conjec rure of Jacquet asserts that the central value of the triple prod $uct$

L-function
A $( \frac{1}{2}, \pi_{1}\mathrm{x} \pi_{2}\mathrm{x} \pi_{3})$

is nonzero if and only if there is a unique quaternion algebra $D$ over $k$ such
that the $tri$ linear period integral

$\oint_{Z_{D^{\mathrm{X}}}(\mathrm{A})D^{\mathrm{x}}(k)\backslash D^{\mathrm{x}}(\mathrm{A})}\varphi_{\pi_{1}^{\tau\rangle}}(x)\varphi_{\pi_{2}^{D}}(x)\varphi_{\pi_{3}^{D}}(x)dx$

is nonzero for a certain choice of $\varphi_{\pi_{i}^{D}}$ , $i-=1,2,3$ , where $\pi_{1}^{D}$ is the image of
$\pi_{\tau}$ under the Jacquet-Langlands correspondence.

The conjecture of Jacquet was completely proved in [HK04J- In $[J\mathit{9}\mathit{8}a]$,
$[J\mathit{9}\mathit{8}b]$, and $[J\mathrm{O}1]$, a different approach has been applied to the split period
case of Jacquet’s conjecture.

Remark 2.12. More recently, Boecherer, Furusawa, and Schultze-Pilloi proved
some special case for the relevant pair $(\mathrm{S}\mathrm{O}_{5)}\mathrm{S}\mathrm{O}_{4})([BFSP\mathit{0}\mathit{4}])$ , and Ichino
and Ikeda proved some special case for the relevant pair $(\mathrm{S}\mathrm{O}_{6}, \mathrm{S}\mathrm{O}_{5})([II\mathit{0}\mathit{4}J)$.

Remark 2.13. The analogue for unitary groups is the work in progress of
Ginzburg and Jiang.

Remark 2.14. In [J05], a systematic account of general periods of aryetomor-

phic forms and related basic problems and topics has be found. Some useful
references have been provided below. We hope they are useful to the interested
readers.
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