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On equidistribution properties of Hecke eigenforms

Wenzhi Luo
Ohio State University

1 Introduction.

This is a brief survey of some of the recent progress on equidistribution properties
of Hecke eigenforms on arithmetic surfaces. For simplicity let I' = SL(2,Z) be the
full modular group and Xt = ['\H be the corresponding modular surface, where H
denotes the upper half plane. On Xt we have the (normalized) invariant measure

. 1 dzdy
"~ area(Xt) 32’

dy

associated to the Poincaré metric y~2(dz?+ dy?). For integer & > 8, denote by Sa;(I')
the space of holomorphiic cusp forms of weight 2% with respect to I'. It is well-known
that Sax(T') is a finite-dimensional Hilbert space with respect to the Petersson scalar
product. Define J; = dimg Spx(T), and recall that by the Riemann-Roch theorem we
have

Ty ~ k/6

as k — o0o. Let {fy;}i<j<s, be the orthonormal basis of Hecke eigenforms in So(T).

Each fi; gives rise to a new probablity measure on Sy (I'):

dps; = y** | fi s dp.
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As an analogue of the quantum unique ergodicity conjecture for the Maass-Hecke
eigenforms [Sar], one can formulate the following equidistribution conjecture for the
holomorphic Hecke eigenforms:

Conjecture. For any compact region A C Xr, we have

Jim /A dpir; = /Adﬂ (1)

This is equivalent to
I / dpg; = f d 2
k}g}o qub Hkg X[‘¢ # @)

for any Schwarz function ¢ € 8(Xr).
Let’s first examine the depth and the arithmetic implication of this conjecture.

Take ¢ to be an even Maass-Hecke eigenform of eigenvalue Ay = % + 12, then

erqﬁd,u,:O .

On the other hand, Harris-Kudla [HK] and Watson [Wa] proved, by means of the

theta correspondence and Siegel-Weil formula, that

12 AL/2,5ym® (fiy) ® $)A(L/2,0)
I/XP Plts| = A(1,sym?(f,;))?A(1,sym?(4)) ’ (3)

where

$) = 7T s’-l—ztd,) ( 22t¢>L(S, é),

(
Als, sym*(§)) = n=%/°T @) r (3 T 2““’) (S —22@) L(s,sym?($)),

Als, fus) = (2r)*Ts + 2k = 1)/2)L(s, 1),
M, sy (g =770 (52 (2H5 (= %) 165, sy

2 2 2

141 9% — 1 — it
Als, sym®(fu) ® 6) = 75T (s+2k 21+@t¢) . <s+ k 2 i ¢>

2 2 2
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Thus, (2) boils down to the subconvexity bound
L(1/2, sym*(fiz) ® ¢) = o(k)
as k — oo, while currently the best bound we know is only
L(1/2, sym*(fug) ® 8) = O (K1),

which follows from the Phragmén-LindelSf convexity principle. The Generlized Rie-

mann Hypothesis would implies

L(1/2, sym*(fiz) @ 6) = Oy, k%),

which in turn predicts the rate of convergence for the equdistribution
[ iy = O, (7719, @
2 A theorem of Shiffman-Zelditch

Shiffman-Zelditch [SZ] proved the following theorem:

Theorem (Shiffman-Zelditch): There exists a full density subsequence of { f¢ ;}1<j<s,, k>8

such that (1) holds, i.e. there exist a subset Ay C {1,---,J,} satisfying

such that for any compact region A C Xr, we have

lim /A dug; = /A dis . (5)

k‘—)OO,jEAk

Morcover using the potential theory, they showed that the zeros of the sequence

fr,5 J € Ag are also equidistributed:

. #{Z € A’ fk,j(z) = O} .
lim = /Adﬂ. (6)

k—o0,jEAE ch



Note by the Riemann-Roch theorem, we have
#{z € Xp, fk,j(z) = 0} ~ Jk, as k — 00 .

If we define L = T*{Xp), the cotangent bundle to Xr, and denote by X7 the
compactification of Xr, then we have the interpretation of Sy (I') as the space of

holomorphic sections of 2k-th tensor power of L with vanishing condition at the cusp:

Sgk(F) = HO

cusp

(X7, L*).

In this context, the theorem of Shiffman-Zelditch has an anologue for holomorphic
sections of tensor powers of any ample Hermitian line bundle L on a compact Kahler

manifold X of higher dimension. For details see [SZ].

3 Bergman kernel

Define a new probablity measure on Xr by

7E L 47 fi s

)l
d
Jk 1‘1'7

d;wh =

which is an average of the measures duy j, 1 < j < Ji. As a first step towards the
conjecture (1), we proved the following theorem [L]:

Theorem. For any measurable subset A on the modular surface X, we have

lim [ due= [ d (7)

In fact, for any € > 0,
- —1/2+4€ 8
[ due = [ du+ Ouk72) (8)

holds uniformly for all A on X.
The Hecke operator Ty, (m) (m > 1) acts on cusp form f € Sy(T') by

Tk(m)f% IS f(“zjb)-

ad=m 0<b<d
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Ti(m) can be represented by the holomorphic automorphic kernel C;’ Ym2=1hy nlz, 2)

(Cy, defined in (12) below),

hemlz,2)= Y (c22 +d2 +az+b)7%, 9)

ad—be=m

where the sum is taken over all integer matrices ( i g ) with determinant m, in
the sense that
(£, Cem* (-, =7), = (Te(m)f)(2), (10)
where <, > is the (normalized) Petersson inner product on Sg(I'). This kernel was
first studied by Petersson, and later used by Zagier to give a new proof the Eichler-
Selberg trace formula for the Hecke operatos.
The series in (9) is absolutely convergent and Ay (2, 2) as a function of each

variable z or 2 is a cusp form in So(T"), and we have the identity
Ci ' m™* (2, 2) Z Ak (m) fi(2) Fi(2), (11)
where A;x(m) is the Hecke eigenvalue of f;; under Tj(m) and

3(—1)
Ce= 2<2k—3(>(213 ~1) (12

In particular, for m = 1 and 2’ = 2, we obtain

Cy thilz, —7) Zlf;/, : (13)

Let x4 denote the characteristic function of 4 on X. One can extend it (with the

same notation) to H as a I-invariant function. We have

d — 1 L 2k 2
ftn = 5 [xa v aa P

- 2
= 3o o xa@le 2

1 y2k
~ JCh /XXA(Z) ( 2 (elzf> +dZ — az - b)%) ap- (14)

ad—be=1




Since replacing z by vz (v € I') in each term of the sum in (14) amounts to

a b ~1 a b
(2a) wom (i)

we may decompose the sum into [-invarint pieces with a +d =, t € Z. Thus,

Y
/ djux = Z * JeCh f Xalz ( 2 (clz|? +dZ —az — b)%) dp. - (15)

ad—be=1, a+d=t

replacing

There is a bijection between the integral matrices ( (Z Z ) with determinant
1 and trace ¢, and the set of integral binary quadratic forms g with discriminant

disc(g) = t* — 4. The bijection is given by:

( Z 2 ) - g(u, v) = cu® + (d — a)uv — b’ (16)
) 2 (t-8)/2 i
g(u, v) = ou” + fuv + yv° ( o t+8)/2 ) (17)
For g(u, v) = au® + Buv + yv? and z = z + iy, set
2
Rg<z7 t) = b (18)

(afz? +y2) + B + v —ity)*
then for v € I' we have
Ryrg(z, t) = Ry(y2, 1), (19)
and (15) can be written as

/ dpe = Z e / xa(z ( S Ry(z t)) du, (20)

disc(g)=t2—14

where the sum is taken over all forms of discriminant % — 4.
For each discriminant D = t* — 4 and a quadratic form g of discriminant D, we

let 79 to denote the isotropy group of elements leaving gﬁxed, and observe that

Y Rnt= Y ¥ Reglt= % X Rmo),

disc(g)=D disc(g)=D, mod T Y€\ disc(g)=D, mod T V€T o
21
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where mod I'" means the sum is taken over a set of representatives for classes of
quadratic forms with discriminant D. For D # 0, recall the class number k(D) is

finite, and thus we obtain

/XXA(Z) ( Z Rg(za t)) dyp = Z /}g xal(z)Ry(z, t)du, (22)

disc(g)=D disc(g)=D, modT ¢

Xy = U v X, (23)

YETG\T

is a fundamnetal domain for the action of I'y on H with X identified with a funda-
mental domain of T'.

Denote by I elliptic’ Ihyperbohc and Iparabolic the corresponding contributions
from those terms with D = #2—4 < 0, D = t*—4 > 0, and D = t? —4—0 respectively.

Then we compute (see [L])
Ielliptic = O(k™1/*°), Thyperbolic = O((4/5)"), Iparabolic = /Adﬂ +O(k™)
and conclude that
/A dpe = Lolliptic + Ihypefbolic + Iparabolic = /A dp+ Oc(k™12%¢).
4 Asymptotics for the co-variance
For ¢ € 8(Xr), define

prs @)= [ sy, p(@)= [ odu.

In [LS], we computed asymptotically the variance for the equidistribution. For

¢ € 8(Xr), we showed

5 5" s, () = (@) ~ Gk

E<K j=1
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as K -+ 0o. Actually we studied a smoothed version of the above sum.
Theorem (Luo-Sarnak). Fix u € C§°(0,00). There is a non-negative Hermitian

form B defined on S(Xr) such that for ¢,v € 8(Xr) and any € > 0,

& ( 1) L(1, sym®(fu 1)) (s, (0) — 1)) (s ; (4) — ()
= B(¢7 ¢) (/ (t) ) K+ Oe,gb(Kl/z_H:)’

as K — co. The Laplacian A and the Hecke operators 7), are self-adjoint with respect
to B, i.e. |

B(A¢, 1) = B(¢, AY),
and

B(Tw$,v) = B, Tnt)).

Moreover for two Maass-Hecke cusp forms ¢ and 1, normalized so that their first

Fourier coefficients are 1, we have the relation

B(¢, ¢) = < ¢,% > L(1/2,9),

where < -, - > is the Petersson scalar product.
Since (see [I2])
k¢ & L(1,sym?(fi ;) < &5,

for any € > 0, our theorem indicates that on the average, (uy, ;(¢) — (¢)) has the size
of k=1/2. Also as a by-product, we obtain a new proof of the fact that L(1/2,¢) > 0
for Maass-Hecke cusp forms ¢.

Our proof uses Poincaré series and trace formula, involving subtle analysis of the
sum of the Salié sums and the Neumann series for J-Bessel functions of large orders.

For details see [LS].
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5 Linnik problem, an analogy

There is a striking analogy between the equidistributions problem for Hecke eigen-
forms and the Linnik problem for integer points on the spheres and the Heegner points

on Xr. For n square-free and satisfying —n # 1 {(mod 8), consider
Vo= {m/|m| € %, m € Z3, m|* = n},

where |m/| is the usual Euclidean norm. A result of Gauss provides an exact formula

for the number of integer points lying on the sphere 22 + 22 + 22 = n,

(5]

Wy 2
where d,, h(d,) and w, are the discriminant, the class number and the number of

units of Q(y/—n) respectively. Recall by Siegel’s theorem,
n'/?7¢ &, h(—n) < n'l?te .

To establish that the points in V,, are equidistributed as n — oo, by Wey!’s criterion,

we need to show that the Weyl sum

LS ae) = o1), (24)

W(n) =

for any spherical harmonics u(z) of degree [ > 1. Now a(n) = n'/?#V,W,(n) is the
n-th Fourier coeflicient of the theta series

0(z, u) = 3 u(m)e(zlm?),

mezZs
which is a holomorphic cusp form for T'g(4) of half-integral weight [ + 3/2. Without
loss of generality we may assume 6(z, u) is a Hecke eigenform. By Waldspurger’s

formula, we have

la(n)? = en'*3L(1/2, F® x4) (25)



where f is the Shimura lift of 6(z, u) to Se2(l), xa, is the quadratic character
associated to the field Q(y/—n), and ¢ is a constant depending only on 8(z, u) and
f. Thus the resolution of Linnik’s problem would result from any improvement of the

convexity bound for the central L-values of the quadratic twists of f,
L(1/2, | ® Xa,) = Oc(n*/?).

Linnik’s problem was solved by Duke [D] in 1988 based on Iwaniec’s subconvexity

bound {I1] for L{1/2, f® xa,),
L(1/2, f ® Xa,) = Oc(n® ™) .

Similarly Duke [D] showed that the Heegner points on Xr are also equidistributed.
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