A counterpart of strong normality

神奈川大学 · 工学部 阿部 吉弘 (Yoshihiro Abe) Faculty of Engineering, Kanagawa University

Abstract

For non-inaccessible κ we try to define an ideal with the property between normality and strong normality, which is expected to be a natural one.

1 Introduction

Throughout κ is regular uncountable and λ a cardinal $> \kappa$. Let $\mathcal{P}_{\kappa}\lambda$ denote the set of the subsets of λ with the cardinality less than κ , that is, $\mathcal{P}_{\kappa}\lambda = \{x \subset \lambda : |x| < \kappa\}$. All the proofs are easily given by the reader.

Definition 1.1. let $X \subset \mathcal{P}_{\kappa}\lambda$.

We say X is unbounded if for evry $x \in \mathcal{P}_{\kappa}\lambda$ there exists $y \in X$ such that $x \subset y$.

X is said to be *closed* if it is closed under \subset -increasing sequence of length $< \kappa$.

X is a *club* if it is closed and unbounded.

X is stationary if $X \cap C \neq \emptyset$ for any club C.

Let $I_{\kappa,\lambda} = \{X \subset \mathcal{P}_{\kappa}\lambda : X \text{ is not unbounded}\}$ and $NS_{\kappa,\lambda} = \{X \subset \mathcal{P}_{\kappa}\lambda : X \text{ is not stationary}\}.$

Usually a large cardinal propertie is characterized by a normal ideal whose members are the sets without the property (or its dual filter):

supercompactness \longleftrightarrow normal measure partition property \longleftrightarrow $NP_{\kappa,\lambda}$ ineffability \longleftrightarrow $NIn_{\kappa,\lambda}$ Shelah property \longleftrightarrow $NSh_{\kappa,\lambda}$ subtlety \longleftrightarrow nonsubtle ideal

Definition 1.2. We say I is an *ideal* if the following hold:

- (1) $I \subset \mathcal{P}(\mathcal{P}_{\kappa}\lambda)$,
- (2) $\emptyset \in I$ and $\mathcal{P}_{\kappa} \lambda \notin I$,
- (3) if $X \subset Y \in I$, then $X \in I$,
- (4) I is closed under the union of less than κ many mebmers (we say I is κ complete),
- (5) $I_{\kappa,\lambda} \subset I$ (we say I is fine).

Let $I^+ = \mathcal{P}(\mathcal{P}_{\kappa}\lambda) \setminus I$ and $I^* = \{X \subset \mathcal{P}_{\kappa}\lambda : \mathcal{P}_{\kappa}\lambda \setminus X \in I\}$.

A function $f: \mathcal{P}_{\kappa}\lambda \to \lambda$ is regressive if $f(x) \in x$ for any $x \in \mathcal{P}_{\kappa}\lambda$.

An ideal I on $\mathcal{P}_{\kappa}\lambda$ is *normal* if for any $X \in I^+$ and a regressive function f on X there exists $Y \in \mathcal{P}(X) \cap I^+$ such that $f \upharpoonright Y$ is constant.

Note tha $I_{\kappa,\lambda}$ is the minimal, and $NS_{\kappa,\lambda}$ is the minimal normal ideal on $\mathcal{P}_{\kappa}\lambda$.

Forementioned ideals have a stronger property:

Definition 1.3. For $x, y \in \mathcal{P}_{\kappa}\lambda$, $y \prec x$ denotes $y \in \mathcal{P}_{x \cap \kappa}x = \{s \subset x : |s| < |x \cap \kappa|\}.$

We say a function $f: \mathcal{P}_{\kappa}\lambda \to \mathcal{P}_{\kappa}\lambda$ is set-regressive if $f(x) \prec x$ for any $x \in \mathcal{P}_{\kappa}\lambda$.

An ideal I on $\mathcal{P}_{\kappa}\lambda$ is strongly normal if for any $X \in I^+$ and set-regressive function f on X there exists $Y \in \mathcal{P}(X) \cap I^+$ such that $f \upharpoonright Y$ is constant. Let $WNS_{\kappa,\lambda}$ denote the minimal strongly normal ideal on $\mathcal{P}_{\kappa}\lambda$.

Fact 1.4. $\mathcal{P}_{\kappa}\lambda \notin WNS_{\kappa,\lambda}$ if and only if κ is Mahlo or $\kappa = \nu^+$ with $\nu^{<\nu} = \nu$ [6].

The following figure is known:

nonsubtle ideal

$$I_{\kappa,\lambda} \subseteq NS_{\kappa,\lambda} \subseteq WNS_{\kappa,\lambda}$$

 $NSh_{\kappa,\lambda}$

2 Motivation

As is shown strong normality gives some limitation to κ . It seems natural to ask:

Can we define a natural strengthening of normality without assuming inaccessibility?

We consider several aspects of this question.

(1) Reflection.

Usual type of reflection is as follows:

if κ has property P, we can find $\alpha < \kappa$ which has property P.

The stationary reflection of $\mathcal{P}_{\omega_1}\lambda$ is:

if $S \subset \mathcal{P}_{\omega_1} \lambda$ is stationary, then we can find A of cardinality ω_1 such that $\omega_1 \subset A \subset \lambda$ and $S \cap \mathcal{P}_{\omega_1}A$ is stationary in $\mathcal{P}_{\omega_1}A$.

The statioary reflection of $\mathcal{P}_{\kappa}\lambda$ is false for $\kappa > \omega_1$ [11]. While the following holds[5][9]:

if κ is λ Shelah, then for any stationary $S \subset \mathcal{P}_{\kappa}\lambda$ we can find $x \in \mathcal{P}_{\kappa}\lambda$ such that $S \cap \mathcal{P}_{x \cap \kappa}x$ is stationary in $\mathcal{P}_{x \cap \kappa}x$.

(2) Diamond and subtlety.

It is known that \Diamond_{κ} holds is κ is subtle. Eliminating inaccessibility, this assumption can be weakend to " κ is ethereal with $2^{<\kappa} = \kappa$. While we have:

if κ is subtle, then there exists a sequence $\langle S_x | x \in \mathcal{P}_{\kappa} \lambda \rangle$ such

- (1) $S_x \subset \mathcal{P}_{x \cap \kappa} x$,
- (2) for any $S \subset \mathcal{P}_{\kappa} \lambda \{x : S_x = S \cap \mathcal{P}_{x \cap \kappa} x\} \in WNS_{\kappa \lambda}^+$.

We denote the above sequence $\diamondsuit_{\kappa,\lambda}$. We review some definitions.

Definition 2.1. For $X \subset \kappa$ let $[X]^2$ denote the set $\{(\alpha, \beta) \in X \times X :$ $\alpha < \beta$. We say X is *subtle* if for any sequence $\langle S_{\alpha} \subset \alpha | \alpha \in X \rangle$ and club $C \subset \kappa$ there exists $(\beta, \gamma) \in [C \cap X]^2$ such that $S_{\beta} = S_{\gamma} \cap \beta$. For $Y \subset \mathcal{P}_{\kappa}\lambda$ let $[Y]^2_{\prec}$ denote the set $\{(x,y) \in Y \times Y : x \in \mathcal{P}_{y \cap \kappa}y\}$. We say $Y \subset \mathcal{P}_{\kappa}\lambda$ is strongly subtle if for any sequence $\langle S_z \subset \mathcal{P}_{z \cap \kappa}z | z \in Y \rangle$ and $C \in WNS_{\kappa,\lambda}^*$ there exists $(x,y) \in [C \cap Y]^2_{\prec}$ such that $S_x = S_y \cap \mathcal{P}_{x \cap \kappa} x$.

Note that κ is subtle if and only if $\mathcal{P}_{\kappa}\lambda$ is strongly subtle [3]. Compare the above with the following:

Definition 2.2. $X \subset \kappa$ is *ethereal* if for any sequence $\langle S_{\alpha} \subset \alpha | \alpha \in X \rangle$ with $|S_{\alpha}| = |\alpha|$ and club $C \subset \kappa$ there exists $(\beta, \gamma) \in [C \cap X]^2$ such that $|S_{\beta} \cap S_{\gamma}| = |\beta|$.

We say $Y \subset \mathcal{P}_{\kappa}\lambda$ is weakly subtle if for any sequence $\langle S_z \subset \mathcal{P}_{z \cap \kappa} z | z \in Y \rangle$ with $S_x \in I_{x \cap \kappa, x}^+$ and $C \subset \mathcal{P}_{\kappa}\lambda$ club there exists $(x, y) \in [C \cap Y]^2_{\prec}$ such that $S_x \cap S_y \in I_{x \cap \kappa, x}^+$.

Fact 2.3. (1) If $\mathcal{P}_{\kappa}\lambda$ is weakly subtle, then the corresponding ideal is normal, $\{x: x \cap \kappa \text{ is regular}\}$ is in its dual filter, hence κ is weakly Mahlo.

(2) If $f: \mathcal{P}_{\kappa}\lambda \to \lambda$ is a bijection and $A = \{x \in \mathcal{P}_{\kappa}\lambda : f^*\mathcal{P}_{x \cap \kappa}x = x\}$, then strongly subtle ideal = weakly subtle ideal \(\cap A.\)

Note that $WNS_{\kappa,\lambda} = NS_{\kappa,\lambda} \upharpoonright A$ in (2).

We have several questions:

Question 2.4. 1) Is it consistent that there is a non-inaccessible weakly subtle cardinal?

- 2) Does $\tilde{\Diamond}_{\kappa,\lambda}$ hold if κ is weakly subtle and $2^{<\kappa} = \kappa$?
- 3) Is $\mathcal{P}_{\kappa}\lambda$ weakly subtle if κ is ethereal?
- 4) Is the definition of weak subtlety "a right one"?
- (3) Weak normalities.

We have some $\mathcal{P}_{\kappa}\lambda$ generalizations of weakly normal ideals on κ defined by Kanamori [8].

Definition 2.5. An ideal I on κ is said to be *weakly normal* if for any $f: \kappa \to \kappa$ such that $f(\alpha) < \alpha$ for every $\alpha < \kappa$ there exists $\gamma < \kappa$ with $\{\alpha: f(\alpha) \leq \gamma\} \in I^*$.

We say I on $\mathcal{P}_{\kappa}\lambda$ is Kanamori if for any regressive $f: \mathcal{P}_{\kappa}\lambda \to \lambda$ there exists $\gamma < \lambda$ with $\{x: f(x) \leq \gamma\} \in I^*$.

D. Burke[4] and Abe[1] proved:

Fact 2.6. The singular cardinal hypothesis (SCH) holds for $\lambda^{<\kappa}$ if $\mathcal{P}_{\kappa}\lambda$ carries a Kanamori ideal and one of the following holds:

- (1) λ is regular or $cf(\lambda) \leq \kappa$
- (2) $\kappa^+ \leq \operatorname{cf}(\lambda) < \lambda$ and there is a measurable cardinal above λ .

Kanamori ideal may be seen as a weakening of strong compactness and has too strong consequences.

Definition 2.7. We say I is an AN-ideal if for any set-regressive function f on $\mathcal{P}_{\kappa}\lambda$ there exists $a \in \mathcal{P}_{\kappa}\lambda$ such that $\{x : f(x) \subset a\} \in I^*$. (For AN-ideals κ completeness is not assumed.)

Fact 2.8. Suppose that I is a κ complete AN-ideal. Then, I is strongly normal, κ saturated, and $\{x : S \cap \mathcal{P}_{x \cap \kappa} x \in NS^+_{x \cap \kappa, x}\} \in I^*$ whenever $S \subset \mathcal{P}_{\kappa} \lambda$ is stationary [2].

So AN-ideal may be seen as a weakening of supercompactness and is too strong as well.

While Mignon [10] defined a direct weakening of normality:

Definition 2.9. An ideal I on $\mathcal{P}_{\kappa}\lambda$ is weakly normal if for any $X \in I^+$ and regressive $f: X \to \lambda$ there exists $\gamma < \lambda$ with $\{x \in X : f(x) \leq \gamma\} \in I^+$.

3 Definition

We just modify Mignon's version of weak normality to define a weakening of strong normality.

Definition 3.1. Let (*) denote the following statement:

(*) for any $X \in I^+$ and set-regressive $f: X \to \mathcal{P}_{\kappa} \lambda$ there exists $a \in \mathcal{P}_{\kappa} \lambda$ such that $\{x \in X : f(x) \subset a\} \in I^+$.

Fact 3.2. (1) If κ is inaccessible, then (*) is equivalent to strong normality.

- (2) If $\mathcal{P}_{\kappa}\lambda$ carries an ideal with (*), then κ is weakly inaccessible.
- (3) Every normal κ saturated ideal on $\mathcal{P}_{\kappa}\lambda$ has the property (*).

(4) (*) is equivalent to that I is closed under some type of diagonal unions, that is,

$$I = \widetilde{\nabla}_{\prec} I = \{ \nabla_{\prec} \langle X_s | s \in \mathcal{P}_{\kappa} \lambda \rangle : X_s \in I, \ \underline{X_s \subset X_t \ whenever \ s \subset t} \}$$

where $x \in \nabla_{\prec} \langle X_s | s \in \mathcal{P}_{\kappa} \lambda \rangle$ if and only if $x \in X_s$ for some $s \prec x$.

- (5) Suppose that I satisfies (*) in the grand model V, \mathbb{P} is a δ -c.c. forcing with $\delta < \kappa$, $G \mathbb{P}$ generic, and J defined in V[G] as $J = \{X \subset \mathcal{P}_{\kappa}\lambda : X \cap V \subset Y \text{ for some } Y \in I\}$. Then the following hold:
 - (a) J satisfies (*),
 - (b) $I = \{X : \Vdash_{\mathbb{P}} \check{X} \in \dot{J}\}$
- (6) Suppose that \mathbb{P} is κ -c.c., J defined as above satisfies (*) in V[G], and $\mathcal{P}_{\kappa}\lambda \cap V \notin J$. Then, I satisfies (*).

Remark. The condition underlined in (4) is equivalent to the following:

$$\bigcup \{X_s : s \subset x\} \in J \text{ for every } x \in \mathcal{P}_{\kappa} \lambda.$$

Concerning the consistency of the existence of a non-strongly normal ideal with (*) we have the following:

Fact 3.3. Let κ be Mahlo, \mathbb{P} adding κ many Cohen real forcing, and $V[G] \models "J = \{X \subset \mathcal{P}_{\kappa}\lambda : X \cap V \subset Y \text{ for some } Y \in WNS_{\kappa,\lambda}^V\}"$. Then J is the minimal ideal with (*) such that $\mathcal{P}_{\kappa}\lambda \cap V \in J^*$.

4 Combinatorial characterization of the minimal ideal with (*)

 $NS_{\kappa,\lambda}$ and $WNS_{\kappa,\lambda}$ are characterized as follows:

Fact 4.1. Let $X \subset \mathcal{P}_{\kappa}\lambda$.

- (1) $X \in NS_{\kappa,\lambda}$ if and only if there exists $f : \lambda^2 \to \mathcal{P}_{\kappa}\lambda$ such that $C_f \cap X = \emptyset$, where $C_f = \{x : f^*x^2 \subset \mathcal{P}(x)\}$.
- (2) $X \in WNS_{\kappa,\lambda}$ if and only if there exists $f : \mathcal{P}_{\kappa}\lambda \to \mathcal{P}_{\kappa}\lambda$ such that $C_f \cap X = \emptyset$, where $C_f = \{x : f^*\mathcal{P}_{x \cap \kappa}x \subset \mathcal{P}(x)\}.$

If κ is inaccessible or $\kappa = \nu^+$ with $\nu^{<\nu} = \nu$, then $\bigcup f^*\mathcal{P}_{x\cap\kappa}x \in \mathcal{P}_{\kappa}\lambda$ for every $f \in \mathcal{P}_{\kappa}\lambda \mathcal{P}_{\kappa}\lambda$ and $x \in \mathcal{P}_{\kappa}\lambda$.

Definition 4.2. Let $\mathcal{F} = \{ f \in \mathcal{P}_{\kappa} \lambda \mathcal{P}_{\kappa} \lambda : \bigcup f'' \mathcal{P}_{x \cap \kappa} x \in \mathcal{P}_{\kappa} \lambda \text{ for every } x \in \mathcal{P}_{\kappa} \lambda \}$, and $\tilde{C}_f = \{ x : f'' \mathcal{P}_{x \cap \kappa} x \subset \mathcal{P}(x) \}$ for $f \in \mathcal{F}$. Set $I_0 = \{ X \subset \mathcal{P}_{\kappa} \lambda : \tilde{C}_f \cap X = \emptyset \text{ for some } f \in \mathcal{F} \}$.

Fact 4.3. Let κ be weakly Mahlo. Then,

- (1) For any $f \in \mathcal{F} \ \tilde{C}_f \in I_{\kappa,\lambda}^+$.
- (2) I_0 satisfies (*).

Recall that $WNS_{\kappa,\lambda}$ has another characterization:

Fact 4.4. For any $X \subset \mathcal{P}_{\kappa}\lambda$, $X \in WNS_{\kappa,\lambda}$ if and only if there exists a set-regressive $f: X \to \mathcal{P}_{\kappa}\lambda$ such that $f^{-1}(\{a\}) \in I_{\kappa,\lambda}$ for any $a \in \mathcal{P}_{\kappa}\lambda$.

We now define another ideal.

Definition 4.5. Define J_0 by:

 $X \in J_0$ if $X \subset \mathcal{P}_{\kappa}\lambda$ and there exists a set regressive $f: X \to \mathcal{P}_{\kappa}\lambda$ such that for any $a \in \mathcal{P}_{\kappa}\lambda$ $\{x \in X : f(x) \subset a\} \in I_{\kappa,\lambda}$.

We easily have:

Fact 4.6. $NS_{\kappa,\lambda} \subset J_0 = \tilde{\nabla}_{\prec} I_{\kappa,\lambda}$.

We know $\nabla \nabla \nabla I = \nabla \nabla I$ and $\nabla_{\prec} \nabla_{\prec} I = \nabla_{\prec} I$ for every ideal I. (If $NS_{\kappa,\lambda} \subset I$, then $\nabla \nabla I = \nabla I$.) The author does not know how about for the operation $\tilde{\nabla}_{\prec}$.

Question 4.7. (1) Is J_0 normal? (2) $\tilde{\nabla}_{\prec}I = \tilde{\nabla}_{\prec}\tilde{\nabla}_{\prec}I$ for every ideal I?

Fact 4.6 suggests a different ideal.

Definition 4.8. Define J_1 by:

 $X \in J_1$ if $X \subset \mathcal{P}_{\kappa}\lambda$ and there exists a set regressive $f: X \to \mathcal{P}_{\kappa}\lambda$ such that for any $a \in \mathcal{P}_{\kappa}\lambda$ $\{x \in X : f(x) \subset a\} \in NS_{\kappa,\lambda}$.

Clearly J_1 is normal.

Question 4.9. $J_1 = I_0$?

参考文献

- [1] Y. Abe, Weakly normal ideals on $\mathcal{P}_{\kappa}\lambda$ and the singular cardinal hypothesis, Fund. Math. 143 (1993), 97-106.
- [2] Y. Abe, Nonreflecting stationary subsets of $\mathcal{P}_{\kappa}\lambda$, Fund. Math. 165 (2000), 55-66.
- [3] Y. Abe, Notes on subtlety and ineffability in $\mathcal{P}_{\kappa}\lambda$, Arch. Math. Logic 44 (2005), 619-631.
- [4] D. Burke, A note on a question of Abe, Fund. Math. 163 (2000), 95-98.
- [5] D. M. Carr, A note on the λ -Shelah property, Fund Math. 128 (1987), 197-198.
- [6] D. M. Carr, J. P. Levinski and D. H. Pelletier, On the existence of strongly normal ideals on $\mathcal{P}_{\kappa}\lambda$, Arch. Math. Logic 30 (1990), 59-72.
- [7] T. Jech, Some combinatorial problems concerning uncountable cardinals, Ann. Math. Logic 5 (1973), 165-198.
- [8] A. Kanamori, Weakly normal filters and irregular filters, Trans. Amer. Math. Soc. 220 (1976), 393-399.
- [9] P. Matet, Concerning stationary subsets of $[\lambda]^{<\kappa}$, Set Theory and its Applications, L. N. in Math. 1401 (springer) 1989, 119-127.
- [10] R. Mignone, A direct weakening of normality for filters, Rocky Mountain J. Math. 22 (1992), 1447-1458.
- [11] S. Shelah and M. Shioya, Nonreflecting stationary sets in $\mathcal{P}_{\kappa}\lambda$, Adv. Math. (to appear).

DEPARTMENT OF MATHEMATICS KANAGAWA UNIVERSITY YOKOHAMA 221-8686, JAPAN

E-mail: yabe@n.kanagawa-u.ac.jp