The partition property of $\mathcal{P}_{\kappa}\lambda$

薄葉 季路 (Toshimichi Usuba)*

名古屋大学大学院情報科学研究科

(Graduate School of Information Science, Nagoya University)

Abstract

We study a relationship between the partition property of $\mathcal{P}_{\kappa}\lambda$ and the Shelah property.

1 Introduction

The partition property of $\mathcal{P}_{\kappa}\lambda$ was introduced by Jech [5] as a generalization of the classical partition property of cardinal. In this paper we study a relation between the partition property and the Shelah property of $\mathcal{P}_{\kappa}\lambda$, the Shalah property is defined by Carr [2] as a generatizatation of weakly compactness. It is well-known that there is a essential connection between the partition property of a cardinal and weakly compactness: for a cardinal κ , κ is weakly compact iff $\kappa \longrightarrow (\kappa)_2^2$. In Carr [4] observed such connection for various partition property and large cardinal property of $\mathcal{P}_{\kappa}\lambda$, including the Shelah property. We will try more deep analysis. Let $\mathrm{NSh}_{\kappa\lambda}$ is the set of all $X \subseteq \mathcal{P}_{\kappa\lambda}$ such that X is not Shelah.

Main Theorem 1 Let $I = \{X \subseteq \mathcal{P}_{\kappa}\lambda : X \xrightarrow{f} (I_{\kappa\lambda}^+)_2^2\}$. Assume $\lambda \geq \kappa$ is regular, $\lambda^{<\lambda} = \lambda$ but not weakly compact. Then there exists a club C of $\mathcal{P}_{\kappa}\lambda$ such that $I|C = \mathrm{NSh}_{\kappa\lambda}$.

Main Theorem 2 Assume $\lambda \geq \kappa$ is regular and $\lambda^{<\lambda} = \lambda$. Then the following are equivalent:

- (1) κ is λ -Shelah,
- (2) $C \xrightarrow{\leq} (I_{\kappa\lambda}^+)_2^2$ for every club C of $\mathcal{P}_{\kappa}\lambda$.

^{*}E-mail:usuba@info.human.nagoya-u.ac.jp

Theorem 2 shows the Shelah property of $\mathcal{P}_{\kappa}\lambda$ is right analogue of weakly compactness. In this sense, Theorem 2 is not surprising. However Theorem 1 is interesting, since if $\lambda = \kappa$ then it must false; in fact if $\lambda = \kappa$ the partition ideal I in Theorem 1 is just unbounded ideal over $\mathcal{P}_{\kappa}\lambda$, and $\mathrm{NSh}_{\kappa\kappa}$ is just the weakly compact ideal. Further Theorem 2 shows that the partition ideal I can be locally normal, but I itself cannot be normal. These results indicate that the partition ideal I over $\mathcal{P}_{\kappa}\lambda$ has a strange structure under GCH. Note that, if GCH fails, the partition ideal can have a simple form, unbounded ideal (see Shioya [9]).

we will give a partial answer of a question of 5.5 in Carr [4] with a method which will be used to prove theorems.

2 Preliminaries

We refer to Kanamori [7] for general background and basic notation. Throughout this paper, κ denotes an inaccessible cardinal and λ a cardinal $\geq \kappa$.

An ideal over $\mathcal{P}_{\kappa}\lambda$ means that κ -complete fine ideal over $\mathcal{P}_{\kappa}\lambda$ in this paper. For an ideal I over $\mathcal{P}_{\kappa}\lambda$, I^* denotes the dual filter of I and $I^+ = \mathcal{P}(\mathcal{P}_{\kappa}\lambda) \setminus I$. An element of I^+ is called I-positive set. $\mathrm{NS}_{\kappa\lambda}$ ($\mathrm{I}_{\kappa\lambda}$) is the set of all $X \subseteq \mathcal{P}_{\kappa}\lambda$ such that X is non-stationary (not unbounded) in $\mathcal{P}_{\kappa}\lambda$.

Definition 2.1 For $x, y \in \mathcal{P}_{\kappa}\lambda$, we define x < y if $x \subseteq y$ and $|x| < |y \cap \kappa|$. For an ideal I on $\mathcal{P}_{\kappa}\lambda$, I is strongly normal if for all $X \in I^+$ and <-regressive $f: X \to \mathcal{P}_{\kappa}\lambda$, that is, f(x) < x for all $x \in X$ with $|x \cap \kappa| > 0$, there exists $y \in \mathcal{P}_{\kappa}\lambda$ such that $\{x \in X : f(x) = y\} \in I^+$. \square

For $x \in \mathcal{P}_{\kappa}\lambda$, we denote $\mathcal{P}_x = \{y \in \mathcal{P}_{\kappa}\lambda : y < x\}$. If $x \cap \kappa$ is a regular cardinal, then properties of $\mathcal{P}_{\kappa}\lambda$ can be translated into \mathcal{P}_x naturally. For example, $X \subseteq \mathcal{P}_x$ is stationary if for all $f: x \times x \to \mathcal{P}_x$ there exists $y \in X$ such that $\bigcup f''(y \times y) \subseteq y$.

Definition 2.2 For $X \subseteq \mathcal{P}_{\kappa}\lambda$, X is Shelah if for all $\langle f_x : x \in X \rangle$ with $f_x : x \to x$, there exists $f : \lambda \to \lambda$ such that the set $\{x \in X : f | y = f_x | y\}$ is unbounded for all $y \in \mathcal{P}_{\kappa}\lambda$. We say that κ is λ -Shelah if $\mathcal{P}_{\kappa}\lambda$ is Shelah.

 $NSh_{\kappa\lambda}$ is the set of all $X \subseteq \mathcal{P}_{\kappa}\lambda$ such that X is not Shelah. \square

- Fact 2.3 (Carr [2, 3]) (1) $NSh_{\kappa\lambda}$ is a normal ideal over $\mathcal{P}_{\kappa}\lambda$. Moreover it is strongly normal if $cf(\lambda) \geq \kappa$,
 - (2) if κ is $2^{\lambda^{\kappa}}$ -Shelah then κ is λ -supercompact,
 - (3) if κ is λ -supercompact then κ is λ -Shelah. \square
- (2) of the above fact shows that the Shelah property of $\mathcal{P}_{\kappa}\lambda$ is a very strong property.

Fact 2.4 (Abe [1]) $\{x \in \mathcal{P}_{\kappa}\lambda : \forall \alpha \in x (|x \cap \alpha| < |x|)\} \in \mathrm{NSh}_{\kappa\lambda}^*$. \square

Now we define the partition property of $\mathcal{P}_{\kappa}\lambda$.

Definition 2.5 Let n be a natural number > 0. For $X \subseteq \mathcal{P}_{\kappa}\lambda$,

$$[X]_{<}^{n} = \{\{x_1, \dots, x_n\} \subseteq X : x_1 < \dots < x_n\}.$$

For a function f on $[X]_{<}^n$, H is homogeneous set for f if $H \subseteq X$ and $|f''[H]_{<}^n| = 1$, and H is called x-homogeneous if $f''[H]_{<}^n = \{x\}$ for some x. \square

When an element of $[X]_{<}^n$ is written as $\{x_1, \ldots, x_n\}$, it is assumed that $x_1 < \cdots < x_n$. For $\{x_1, \ldots, x_n\} \in [X]_{<}^n$ and a function f on $[X]_{<}^n$, we shall write $f(x_1, \ldots, x_n)$ instead of $f(\{x_1, \ldots, x_n\})$.

Definition 2.6 Let $\mathcal{A} \subseteq \mathcal{P}(\mathcal{P}_{\kappa}\lambda)$. For a natural number n, an ordinal α and $X \subseteq \mathcal{P}_{\kappa}\lambda$, we say that $X \xrightarrow{\leq} (\mathcal{A})^n_{\alpha}$ holds if for all $f : [X]^n_{\leq} \to \alpha$ there exists a homogeneous set $Y \in \mathcal{A}$ for f.

For $\mathcal{B} \subseteq \mathcal{P}(\mathcal{P}_{\kappa}\lambda)$, $\mathcal{B} \stackrel{<}{\longrightarrow} (\mathcal{A})^n_{\alpha}$ holds if $X \stackrel{<}{\longrightarrow} (\mathcal{A})^n_{\alpha}$ holds for all $X \in \mathcal{B}$.

We say that $\operatorname{Part}(\kappa, \lambda)^n_{<}$ holds if $\mathcal{P}_{\kappa}\lambda \xrightarrow{\leq} (\operatorname{I}^+_{\kappa\lambda})^n_2$ holds, and $\operatorname{Part}^*(\kappa, \lambda)^n_{<}$ holds if $\mathcal{P}_{\kappa}\lambda \xrightarrow{\leq} (\operatorname{NS}^+_{\kappa\lambda})^n_2$ holds.

As usual, \xrightarrow{f} means the negation of the corresponding partition property. Remark that Jech's partition property was defined with the order \subsetneq , not <. The partition property with \subsetneq is stronger than with <, but the author does not know that there is a essential difference between those properties.

Fact 2.7 (Carr [4], Jech [5], Magidor [8]) (1) If $Part(\kappa, \lambda)^2 < holds$ for some λ then κ is weakly compact,

- (2) if $\operatorname{Part}(\kappa, \lambda)^3_{<}$ holds for all λ then κ is strongly compact,
- (3) κ is supercompact iff $\operatorname{Part}^*(\kappa, \lambda)^2_{<}$ holds for all λ . \square

Fix n a natural number > 0 and put $I = \{X \subseteq \mathcal{P}_{\kappa}\lambda : X \xrightarrow{\checkmark} (I_{\kappa\lambda}^+)_2^n\}$. Then it is easy to check that I forms an ideal over $\mathcal{P}_{\kappa}\lambda$. I is often called the partition ideal over $\mathcal{P}_{\kappa}\lambda$.

3 The Shelah property and the partition property

We start proofs of Theorem 1 and 2. First we prove that the Shelah property of $\mathcal{P}_{\kappa}\lambda$ implies the partition property.

Lemma 3.1 Assume λ is regular and $\lambda^{<\lambda} = \lambda$. For $X \subseteq \mathcal{P}_{\kappa}\lambda$, if X is Shelah then X satisfies the following property: for any $\langle f_x : x \in X \rangle$ with $f_x : x \to x$ there exists $f : \lambda \to \lambda$ such that for all $\alpha < \lambda$ $\{x \in X : f | x \cap \alpha = f_x | x \cap \alpha\} \in \mathrm{NSh}^+_{\kappa\lambda}$.

Proof: Fix $\langle f_{\xi} : \xi < \lambda \rangle$ an enumeration of $\bigcup \{{}^{\alpha}\lambda : \alpha < \lambda \}$. Let $Z = \{x \in \mathcal{P}_{\kappa}\lambda : \forall \alpha \in x \forall f : x \cap \alpha \to x \exists \xi \in x \ (f = f_{\xi}|(x \cap \alpha))\}$. First we claim $Z \in \mathrm{NSh}_{\kappa\lambda}^*$. Assume not. By the normality of $\mathrm{NSh}_{\kappa\lambda}$ there exists $\alpha < \lambda$ such that $Y = \{x \in \mathcal{P}_{\kappa\lambda} : \exists f_x : x \cap \alpha \to x \forall \xi \in x \ (f_x \neq f_{\xi}|(x \cap \alpha))\} \in \mathrm{NSh}_{\kappa\lambda}^+$. For each $x \in Y$, let $g_x : x \to x \cap \alpha$ satisfying $f_x(g_x(\xi)) \neq f_{\xi}(g_x(\xi))$. Then by the Shelah property of Y, there exists $f : \alpha \to \lambda$ and $g : \lambda \to \alpha$ such that $\{x \in Y : f_x | y = f | y, \ g_x | y = g | y\}$ is unbounded for any $y \in \mathcal{P}_{\kappa\lambda}$. Then $f = f_{\xi}$ for some $\xi < \lambda$. Take $y \in \mathcal{P}_{\kappa\lambda}$ such that y is closed under g and $\xi \in y$. Then we can take $x \in Y$ such that $y \subseteq x$, $f_x|y = f_{\xi}|y$ and $g_x|y = g|y$. Then $g(\xi) = g_x(\xi) \in y$, hence $f_x(g(\xi)) = f_{\xi}(g(\xi))$ holds. But this contradict to the definition of g_x , namely $f_x(g_x(\xi)) \neq f_{\xi}(g_x(\xi))$.

Now let $X \in \text{NSh}_{\kappa\lambda}^+$. We may assume that $X \subseteq Z$. For given $\langle f_x : x \in X \rangle$, define $\langle g_x : x \in X \rangle$ with $g_x : x \to x$ by $f_x | x \cap \xi = f_{g_x(\xi)} | x \cap \xi$. By a theorem of Johnson [6], there exists $g : \lambda \to \lambda$ such that for any $y \in \mathcal{P}_{\kappa\lambda}$ $\{x \in X : g_x | y = g | y\} \in \text{NSh}_{\kappa\lambda}^+$. Now define $f : \lambda \to \lambda$ by $f(\xi) = f_{g(\eta)}(\xi)$ for some $\eta > \xi$. It is easy to see that f is well-defined. We see that f has the desired property. Let $\alpha < \lambda$. Take $y \in \mathcal{P}_{\kappa\lambda}$ such that $\alpha \in y$, $\sup(y) > \alpha$ and closed under g. Then $W = \{x \in X : y \subseteq x, g | y = g_x | y\} \in \text{NSh}_{\kappa\lambda}^+$. Let $x \in W$. Then $f_x | x \cap \alpha = f_{g_x(\alpha)} | x \cap \alpha = f_{g(\alpha)} | x \cap \alpha$. Hence by the definition of f, $f(\xi) = f_x(\xi)$ holds for any $\xi \in x \cap \alpha$. \square

Assume $\lambda^{<\lambda} = \lambda$. Let $\langle x_{\xi} : \xi < \lambda \rangle$ be an enumeration of $\mathcal{P}_{\kappa}\lambda$. Then by the strong normality of $\mathrm{NSh}_{\kappa\lambda}$, we have $\{x \in \mathcal{P}_{\kappa}\lambda : \mathcal{P}_{x} = \{x_{\xi} : \xi \in x\}\} \in \mathrm{NSh}_{\kappa\lambda}^{*}$. Hence we have the following:

Cor. 3.2 Assume λ is regular and $\lambda^{<\lambda} = \lambda$. Let $X \in \mathrm{NSh}_{\kappa\lambda}^+$. Then X has the following property: for any $\langle f_x : x \in X \rangle$ with $f_x : x \to \mathcal{P}_x$ there exists $f : \lambda \to \mathcal{P}_{\kappa\lambda}$ such that for all $\alpha < \lambda$ $\{x \in X : f_x | x \cap \alpha = f | x \cap \alpha\} \in \mathrm{NSh}_{\kappa\lambda}^+$. \square

Now we shall prove more strong partition property from the Shelah property. For $X \subseteq \mathcal{P}_{\kappa}\lambda$ and $\mathcal{A}, \mathcal{B} \subseteq \mathcal{P}(\mathcal{P}_{\kappa}\lambda)$, we say that $X \stackrel{\leq}{\longrightarrow} (\mathcal{A}, \mathcal{B})^n$ holds if for any $f: [X]^n_{<} \to 2$, either there exists a 0-homogeneous set H for f with $H \in \mathcal{A}$ or 1-homogeneous set H for f with $H \in \mathcal{B}$.

Lemma 3.3 Assume λ is regular and $\lambda^{<\lambda} = \lambda$. For $X \subseteq \mathcal{P}_{\kappa}\lambda$, if X is Shelah then $X \xrightarrow{\leq} (\mathrm{NSh}_{\kappa\lambda}^+, \mathrm{I}_{\kappa\lambda}^+)^2$ holds.

Proof: Fix an enumeration $\langle x_{\xi} : \xi < \lambda \rangle$ of $\mathcal{P}_{\kappa}\lambda$. For each $x \in X$, we may assume that $\mathcal{P}_{x} = \{x_{\xi} : \xi \in x\}$. Let $f : [X]_{<}^{2} \to 2$. For $x \in X$, we define $g_{x} : x \cap \alpha_{x} \to X \cap \mathcal{P}_{x}$ and $\alpha_{x} \leq \sup(x)$ by the induction on $\xi \in x$. Let $\xi \in x$ and assume $g_{x}|x \cap \xi$ is defined. If there exists $z \in \mathcal{P}_{x} \cap X$ such that $x_{\xi} \subseteq z$,

 $\forall \eta \in x \cap \xi \ (z \not\subseteq g_x(\eta)) \text{ and } \forall \eta \in x \cap \xi \ (g_x(\eta) < z \Rightarrow f(g_x(\eta), z) = f(z, x) = 1), \text{ then set } g_x(\xi) = z. \text{ If there is no such } z \in X \cap \mathcal{P}_x, \text{ then we set } \alpha_x = \xi. \text{ Assume } g_x(\xi) \text{ is defined for any } \xi \in x, \text{ then we set } \alpha_x = \sup(x).$

Note that $\{g_x(\xi): \xi \in x \cap \alpha_x\} \cup \{x\}$ is 1-homogeneous for f and if $\alpha_x = \sup(x)$ then $\{g_x(\xi): \xi \in x \cap \alpha_x\}$ is unbounded in \mathcal{P}_x .

Now we consider the following two cases.

Case 1. $\{x \in X : \alpha_x < \sup(x)\} \in \mathrm{NSh}_{\kappa\lambda}^+$. By the normality of $\mathrm{NSh}_{\kappa\lambda}$, there exists $\alpha < \lambda$ such that $\{x \in X : \alpha_x = \alpha\} \in \mathrm{NSh}_{\kappa\lambda}^+$. Then by Cor. 3.2, there exists $g: \alpha \to X$ such that $Y = \{x \in X : g_x | x \cap \alpha = g | x \cap \alpha\} \in \mathrm{NSh}_{\kappa\lambda}^+$. Let $H = \{x \in Y : x_\alpha < x, \forall \xi < \alpha (g(\xi) < x \Rightarrow \xi \in x)\}$. Then it is easy to see that $H \in \mathrm{NSh}_{\kappa\lambda}^+$. We claim that H is 0-homogeneous set. Let $x, y \in H$ with x < y. Assume f(x, y) = 1. If $f(g_y(\eta), x) = 1$ for all $\eta \in y \cap \alpha$ with $g_y(\eta) < x$, then x witness that $\alpha \in \mathrm{dom}(g_y)$. Hence there must exist $\eta \in y \cap \alpha$ such that $g_y(\eta) < x$ and $f(g_y(\eta), x) = 0$. Since $g_y(\eta) = g(\eta) < x$, we have $\eta \in x$. Thus $g_x(\eta) = g_y(\eta) = g(\eta)$ holds. However $f(g_x(\eta), x) = 1$ by the definition of g_x , a contradiction.

Case 2. $\{x \in X : \alpha_x = \sup(x)\} \in \mathrm{NSh}_{\kappa\lambda}^+$. Let $Y = \{x \in X : \alpha_x = \sup(x)\}$. Then for $x \in Y$, $\{g_x(\xi) : \xi \in x\}$ is a 1-homogeneous set for f and unbounded in \mathcal{P}_x . By Cor. 3.2, there exists $g : \lambda \to X$ such that $\{x \in Y : g_x | x \cap \alpha = g | x \cap \alpha\} \in \mathrm{NSh}_{\kappa\lambda}^+$ for all $\alpha < \lambda$. Let $H = g^{\alpha}\lambda$. Then it is easy to see that H is an unbounded 1-homogeneous set for f. \square

Next we will show that if $NS_{\kappa\lambda}^* \xrightarrow{<} (I_{\kappa\lambda}^+)_2^2$ then κ is λ -Shelah. To see this, we need some lemmata.

Lemma 3.4 Let μ be a cardinal with $\kappa \leq \mu \leq \lambda$. Assume $\lambda^{<\mu} = \lambda$. Then there exists a club C of $\mathcal{P}_{\kappa}\lambda$ such that for every unbounded subset $X \subseteq C$, $\alpha < \mu$ and $f: \alpha \to \mathcal{P}_{\kappa}\lambda$, $X \setminus \{x \in X : \forall \zeta \in x \cap \alpha (f(\zeta) < x)\}$ is not unbounded.

Proof: Let $\vec{h} = \langle h_{\xi} : \xi < \lambda \rangle$ be an enumeration of $\bigcup_{\eta < \mu}{}^{\eta} \lambda$ and $\vec{x} = \langle x_{\xi} : \xi < \lambda \rangle$ an enumeration of $\mathcal{P}_{\kappa} \lambda$. We can enumerate with λ -length by our cardinal arithmetic assumption. Let θ be a sufficiently large regular cardinal and $M = \langle \mathcal{H}_{\theta}, \in, \kappa, \lambda, \vec{h}, \vec{x} \rangle$. Let $C = \{N \cap \lambda : N \prec M, |N| < \kappa, N \cap \kappa \in \kappa\}$. Then C forms a club. Note that if $N \cap \kappa \in C$ and $x \in N \cap \mathcal{P}_{\kappa} \lambda$ then $x < N \cap \lambda$. We shall check that C satisfies the conclusion of lemma. Fix X an unbounded subset of C. Let $\alpha < \mu$ and $f : \alpha \to \mathcal{P}_{\kappa} \lambda$. For f, define $h : \alpha \to \lambda$ by $f(\zeta) = x_{h(\zeta)}$. Then there exists $\xi < \lambda$ such that $h = h_{\xi}$. By the definition of C, for each $x \in X$ if $\xi \in x$ then $h''(x \cap \alpha) \subseteq x$. Further if $N \prec M$, $N \cap \lambda \in X$ and $h(\zeta) \in N$, then $f(\zeta) = x_{g(\zeta)} \in N$, hence $f(\zeta) \in N$. Therefore for each $N \cap \lambda \in X$ if $\xi \in N \cap \lambda$ then $\forall \zeta \in N \cap \alpha (f(\zeta) < N \cap \lambda)$. Since $X \setminus \{x \in X : \xi \in X\}$ is not unbounded, we have done. \square

Lemma 3.5 Let μ be a cardinal with $\kappa \leq \mu \leq \lambda$ and assume $\lambda^{<\mu} = \lambda$. Then there exists some club C of $\mathcal{P}_{\kappa}\lambda$ such that for any $X \subseteq C$ if $X \to (I_{\kappa\lambda}^+)_2^{n+1}$ holds then X has the following property: whenever $\langle a_t : t \in [X]_{<}^n \rangle$ with $a_t \subseteq \min(t) \cap \mu$ there exists an unbounded subset $H \subseteq X$ and $A \subseteq \mu$ such that

$$\forall \xi < \mu \exists z_{\xi} \in \mathcal{P}_{\kappa} \lambda \forall t \in [H]^{n}_{<}(z_{\xi} < \min(t) \Rightarrow A \cap \min(t) \cap \xi = a_{t} \cap \xi)).$$

Here min(t) is the minimal element of t with respect to <.

Proof: Let C be a club shown in Lemma 3.4. Let $X \subseteq C$ be such that $X \stackrel{<}{\hookrightarrow} (I_{\kappa\lambda}^+)_2^{n+1}$ holds. We will see that X has the desired property. Let $\langle a_t : t \in [X]_<^n \rangle$ with $a_t \subseteq \min(t) \cap \mu$. We define $f: [X]_<^n \to 2$ as: for $\{x_1, \ldots, x_{n+1}\} \in [X]_<^{n+1}$, if $a_{x_1 \cdots x_n} = a_{x_2 \cdots x_{n+1}} \cap x_1$, then let $f(x_1, \ldots, x_{n+1}) = 0$. Assume $a_{x_1 \cdots x_n} \neq a_{x_2 \cdots x_{n+1}} \cap x_1$ and let α be the minimal element of $a_{x_1 \cdots x_n} \triangle (a_{x_2 \cdots x_{n+1}} \cap x_1)$. If $\alpha \in a_{x_2 \cdots x_{n+1}}$, then $f(x_1, \ldots, x_{n+1}) = 0$. If $\alpha \in a_{x_1 \cdots x_n}$, then $f(x_1, \ldots, x_{n+1}) = 1$.

By $X \stackrel{\leq}{\longrightarrow} (I_{\kappa\lambda}^+)_2^{n+1}$, we can take an unbounded homogeneous set H for f. Now we will construct $A \subseteq \mu$ and $\langle z_{\xi} : \xi < \mu \rangle$ by the induction on $\xi < \mu$. Assume $A \cap \eta$ and z_{η} is defined for any $\eta < \xi$ and satisfies the following:

- (1) $z_{\eta} \in \mathcal{P}_{\kappa} \lambda$,
- (2) for any $t \in [H]_{<}^n$, if $z_{\eta} < \min(t)$ then $A \cap \eta \cap \min(t) = a_t \cap \eta$.

We define z_{ξ} and decide whether $\xi \in A$ or not. First assume that H is 0-homogeneous. Let $H' = \{x \in H : \exists \eta \in x \cap \xi (z_{\eta} \not< x)\}$. By Lemma 3.4, H' is not unbounded. Fix $z \in H$ such that $\xi \in z$ and $z \not< x$ for all $x \in H'$. Note that if $x \in H$ and z < x then $\forall \eta \in x \cap \xi (z_{\eta} < x)$.

Case 1. If there exists $\{y_1,\ldots,y_n\}\in [H]_<^n$ such that $z< y_1$ and $\xi\in a_{y_1\ldots,y_n}$, then set $z_\xi=y_n$ and $\xi\in A$. We check that $A\cap\xi+1$ and z_ξ satisfies the induction hypotheses. Let $\{x_1,\ldots x_n\}\in [H]_<^n$ such that $z_\xi< x_1$. Then since $z< y_1<\cdots< y_n=z_\xi< x_1<\cdots< x_n,\ \forall\eta\in x_i\cap\xi\,(z_\eta< x_i)$ and $\forall\eta\in y_i\cap\xi\,(z_\eta< y_i)$ hold for any $i\le n$. Hence by the induction hypotheses, for any $\eta\in y_1\cap\xi$, $A\cap y_1\cap\eta=a_{y_1\cdots y_n}\cap\eta$. This means that $A\cap y_1\cap\xi=a_{y_1\cdots y_n}\cap\xi$. By the same reason we have $A\cap y_2\cap\xi=a_{y_2\cdots y_nx_1}\cap\xi$. In particular $a_{y_1\cdots y_n}\cap\xi=a_{y_2\cdots y_nx_1}\cap y_1\cap\xi$. Further H is 0-homogeneous and $\xi\in a_{y_1\cdots y_n}$, ξ must be an element of $a_{y_2\cdots y_nx_1}$. Repeating this argument n-times, we have $\xi\in a_{x_1\cdots x_n}$ and $A\cap(\xi+1)=a_{x_1\cdots x_n}\cap\xi+1$.

Case 2. If there exists no $\{y_1, \ldots, y_n\} \in [H]^n_{\leq}$ such that $z < y_1$ and $\xi \in a_{y_1, \ldots, y_n}$, then set $z_{\xi} = z$ and $\xi \notin A$. Then it is clear that z_{ξ} and $A \cap \xi + 1$ satisfies the induction hypotheses.

If H is 1-homogeneous, then we consider the following two cases: there exists $\{y_1, \ldots, y_n\} \in [H]^n_{\leq}$ such that $z < y_1$ and $\xi \notin a_{y_1, \ldots, y_n}$, and otherwise. The rest follows from a similar argument. \square

Now we will prove Theorem 1 and 2 using the above lemma.

Lemma 3.6 Assume λ is regular, $\lambda^{<\lambda} = \lambda$ and λ is not strong limit. Let $I = \{X \subseteq \mathcal{P}_{\kappa}\lambda : X \xrightarrow{\varsigma} (I_{\kappa\lambda}^+)_2^2\}$. Then there exists a club D of $\mathcal{P}_{\kappa}\lambda$ such that $\mathrm{NSh}_{\kappa\lambda} = I|D$ holds.

Proof: Since $\lambda^{<\lambda}=\lambda$ and λ is not strong limit, there exists $\nu<\lambda$ such that $2^{\nu}=\lambda$. Fix such a ν . Fix $\langle B_{\xi}: \xi<\lambda\rangle$ a bijective enumeration of $\mathcal{P}(\nu)$. Fix $\pi:\lambda\times\nu\to\lambda$ a bijection. Now let C be a club in Lemma 3.5 with the case $\mu=\lambda$. Let θ be a sufficiently large regular cardinal and $M=\langle \mathcal{H}_{\theta}, \in, \kappa, \lambda, \pi, \langle B_{\xi}: \xi<\lambda\rangle, \ldots\rangle$. Now let $D=\{N\cap\lambda\in C: N\prec M, |N|<\kappa, N\cap\kappa\in\kappa\}$. Then D is a club subset of $\mathcal{P}_{\kappa}\lambda$. We will show that D works. Note that for any $x\in D$, π " $(x\times(x\cap\nu))=x$ and for all $\xi,\eta\in x$, if $\xi\neq\eta$ then $B_{\xi}\cap x\neq B_{\eta}\cap x$.

Since $NSh_{\kappa\lambda}$ is normal, if $X \in NSh_{\kappa\lambda}^+$ then $X \cap D \in NSh_{\kappa\lambda}^+$. Hence by Lemma 3.3 $X \in (I|D)^+$ holds.

To see converse, let $X \in (I|D)^+$. We may assume that $X \subseteq D$. Let $\langle f_x : x \in X \rangle$ with $f_x : x \to x$. For $x \in X$, let $a_x = \pi^*\{\langle \eta, \zeta \rangle : \eta \in x, \zeta \in B_{f_x(\eta)} \cap x\} \subseteq x$. Then by Lemma 3.5, there exists an unbounded $H \subseteq X$, $A \subseteq \lambda$ and $\langle z_\xi : \xi < \lambda \rangle$ such that $\forall \xi < \lambda \forall x \in H \ (z_\xi < x \Rightarrow A \cap x \cap \xi = a_x \cap \xi)$. For each $\eta < \lambda$, define $A_\eta \subseteq \nu$ by $\zeta \in A_\eta$ iff $\pi(\langle \eta, \zeta \rangle) \in A$. Then define $f : \lambda \to \lambda$ by $A_\xi = B_{f(\xi)}$. We clam for any $y \in \mathcal{P}_\kappa \lambda$ there exists $x \in H$ such that $y \subseteq x$ and $f|y = f_x|y$, this completes a proof. Let $y \in \mathcal{P}_\kappa \lambda$. If necessary we may assume that y is closed under f. Take a large $\xi < \lambda$ such that $\sup(y) < \xi$ and $\pi^*(\xi \times \nu) = \xi$. Then we can take $x \in H$ such that $z_\xi < x$, y < x and $A \cap x \cap \xi = a_x \cap \xi$. We check that $f|y = f_x|y$. Note that $\pi^*((x \cap \xi) \times (x \cap \mu)) = x \cap \xi$. Let $\eta \in y$. Since $f(\eta), f_x(\eta) \in x$, it suffices to show that $B_{f(\eta)} \cap x = B_{f_x(\eta)} \cap x$. Let $\zeta \in B_{f_x(\eta)} \cap x$. Then $\pi(\langle \eta, \zeta \rangle) \in a_x$. Since $\eta < \xi$, $\pi(\langle \eta, \zeta \rangle) \in a_x \cap \xi = A \cap x \cap \xi$. Then by the definition of A, we have $\zeta \in B_{f(\eta)}$. The converse can be verified by the same argument. \square

Lemma 3.7 Assume λ is regular, $\lambda^{<\lambda} = \lambda$ and there exists a λ -Aronsjazn tree. Let $I = \{X \subseteq \mathcal{P}_{\kappa}\lambda : X \xrightarrow{f} (I_{\kappa\lambda}^+)_2^2\}$. Then there exists a club D of $\mathcal{P}_{\kappa}\lambda$ such that $\mathrm{NSh}_{\kappa\lambda} = I|D$ holds.

Proof: Fix $T = \langle T, \leq_T \rangle$ a λ -Aronsjazn tree. We may assume that $T = \lambda$. For $\alpha < \lambda$, T_{α} denotes the α -th level of T. Fix $\pi : \lambda \times \lambda \to \lambda$ a bijection. Let θ be a sufficiently large regular cardinal. Let $M = \langle \mathcal{H}_{\theta}, \in, \kappa, \lambda, T, \pi, \ldots \rangle$. Let C be a club in Lemma 3.5 with the case $\mu = \lambda$ and $D = \{N \cap \lambda \in C : N \prec M, |N| < \kappa, N \cap \kappa \in \kappa\}$. We will show that D works.

 $I|D \subseteq \operatorname{NSh}_{\kappa\lambda}$ is Lemma 3.3. Let $X \in (I|D)^+$ be such that $X \subseteq D$. For $\langle f_x : x \in X \rangle$ with $f_x : x \to x$, define a_x for $x \in X$ as follows: for $\eta \in x$, take $\alpha_\eta^x \in T_{f_x(\eta)} \cap x$. Note that such an α_η^x exists since $x = N \cap \lambda$ for some $N \prec M$. Let

 $b_{\eta}^{x} = \{\beta \in T : \beta \leq_{T} \alpha_{\eta}^{x}\} \cap x$. Hence α_{η}^{x} is the max element of b_{η}^{x} with respect to the order \leq_{T} . Now let $a_{x} = \pi^{*}\{\langle \eta, \zeta \rangle : \eta \in x, \zeta \in b_{\eta}^{x}\} \subseteq x$.

We take an unbounded $H \subseteq X$, $A \subseteq \lambda$ $\langle z_{\xi} : \xi < \lambda \rangle$ by Lemma 3.5. For each $\eta < \lambda$, define $B_{\eta} \subseteq \lambda$ by $\zeta \in B_{\eta} \iff \pi(\langle \eta, \zeta \rangle) \in A$.

Fix $\eta < \lambda$. We check B_{η} forms a chain of T. Let $\zeta_1, \zeta_2 \in B_{\eta}$. Take $\xi < \lambda$ such that $\pi(\langle \eta, \zeta_1 \rangle), \pi(\langle \eta, \zeta_2 \rangle) < \xi$. Then we can take $x \in H$ such that $\pi(\langle \eta, \zeta_1 \rangle), \pi(\langle \eta, \zeta_2 \rangle) \in x$ and $a_x \cap \xi = A \cap x \cap \xi$. Thus $\pi(\langle \eta, \zeta_1 \rangle), \pi(\langle \eta, \zeta_2 \rangle) \in A \cap x \cap \xi = a_x \cap \xi$. By the definition of a_x , both ζ_1 and ζ_2 belong b_{η}^x , hence ζ_1, ζ_2 are compatible. As the above argument, we can show that if $\zeta_1 \in B_{\eta}$ and $\zeta_2 \leq_T \zeta_1$ then $\zeta_2 \in B_{\eta}$.

Since T is an Aronsjazn tree, B_{η} is not cofinal in T. Take $\delta_{\eta} < \lambda$ such that $B_{\eta} \subseteq \bigcup_{\beta < \delta_{\eta}} T_{\beta}$ but $B_{\eta} \cap T_{\delta_{\eta}} = \emptyset$. Now we claim that δ_{x} is a successor ordinal, hence B_{η} has the max element. Assume not. Take $\xi < \lambda$ such that $\eta, \delta_{x} < \xi, \bigcup_{\beta \le \delta_{x}} T_{\beta} \subseteq \xi$ and $\pi''(\xi \times \xi) \subseteq \xi$. Take $x \in H$ such that $\delta_{\eta} \in x$ and $A \cap x \cap \xi = a_{x} \cap \xi$. By Lemma 3.4 and the fact $H \subseteq C$, we may assume that for each $\beta \in x \cap \delta_{x}$, the β -th element of B_{η} (with respect to \leq_{T}) is in x. If $f_{x}(\eta) \geq \delta_{\eta}$, there exists $\gamma \in b_{\eta}^{x} \cap T_{\delta_{\eta}} \cap x$. But since $\bigcup_{\beta \le \delta_{\eta}} T_{\beta} \cap x \subseteq x \cap \xi$, we have $\pi(\langle \eta, \gamma \rangle) \in a_{x} \cap \xi = A \cap x \cap \xi$. Hence $\gamma \in B_{\eta} \cap T_{\delta_{\eta}} \neq \emptyset$, a contradiction. Thus $f_{x}(\eta) < \delta_{\eta}$. If $f_{x}(\eta) + 1 < \delta_{\eta}$, then $f_{x}(\eta) + 1 \in x$. Hence we can take $\gamma \in x \cap T_{f_{x}(\eta)+1} \cap B_{\eta}$. Then $\gamma < \xi$. Thus $\pi(\langle \eta, \gamma \rangle) \in A \cap x \cap \xi = a_{x} \cap \xi$. However then $\gamma \in b_{\eta}^{x} \cap T_{f_{x}(\eta)+1}$, a contradiction. Therefore we have $\delta_{x} = f_{x}(\eta) + 1$. Further notice that this arguments indicates the max element of b_{η}^{x} is equal to of B_{η} .

For $\eta < \lambda$, let α_{η} be the max element of B_{η} . Now define $f: \lambda \to \lambda$ by $f(\eta) =$ the height of α_{η} . We will see that for any $y \in \mathcal{P}_{\kappa}\lambda$ there exists $x \in H$ such that $y \subseteq x$ and $f|y = f_x|y$. Let $y \in \mathcal{P}_{\kappa}\lambda$. If necessary we may assume that y is closed under f. Take a large $\xi < \lambda$ such that $\sup(y) < \xi$ and $f''\xi \subseteq \xi$. Then we can take $x \in H$ such that $y \subseteq x$ and $A \cap x \cap \xi = a_x \cap \xi$. As the above argument, we may assume that for any $\eta \in y$, the max element of b_{η}^x is equal to of B_{η} . Then by the definition of b_x^{η} and f, we have $f_x(\eta) = f(\eta)$ holds for all $\eta \in y$. \square

This completes the proof of Main Theorem 1.

Cor. 3.8 Assume λ is regular, $\lambda^{<\lambda} = \lambda$ but not weakly compact. Then for $X \subseteq \mathcal{P}_{\kappa}\lambda$, the following are equivalent:

- (1) X is Shelah,
- (2) $(NS_{\kappa\lambda}|X)^* \xrightarrow{\leq} (I_{\kappa\lambda}^+)_2^2 \ holds,$
- (3) $X \xrightarrow{\leq} (NS_{\kappa\lambda}^+, I_{\kappa\lambda}^+)^2$ holds,
- (4) $X \xrightarrow{\leq} (NSh_{\kappa\lambda}^+, I_{\kappa\lambda}^+)^2 \ holds. \square$

Proof: $(4) \Rightarrow (3)$ is trivial. $(1) \Rightarrow (4)$ is Lemma 3.3. $(2) \Rightarrow (1)$ follows from Lemma 3.6 and 3.7.

(3) \Rightarrow (2). Assume $X \cap C \xrightarrow{\checkmark} (I_{\kappa\lambda}^+)_2^2$ for some club C of $\mathcal{P}_{\kappa\lambda}$. Since (3) holds, it must hold that $X \setminus C \xrightarrow{\lt} (NS_{\kappa\lambda}^+, I_{\kappa\lambda}^+)^2$. However this is impossible; consider the constant function $f: [X \setminus C]_{\lt}^2 \to \{0\}$. \square

In the next section, we will prove that we cannot delete the assumption " λ is not weakly compact" of the above Lemma.

For a proof of Theorem 2, we must prove the case that λ is weakly compact. To see this, we need the following lemma.

Lemma 3.9 Let ν be a cardinal with $\kappa \leq \nu < \lambda$ and assume $\lambda^{\nu} = \lambda$. If $NS_{\kappa\lambda}^* \xrightarrow{\leq} (I_{\kappa\lambda}^+)_2^2$ holds then $\mathcal{P}_{\kappa}\nu$ satisfies the following property: whenever $\langle a_x : x \in \mathcal{P}_{\kappa}\nu \rangle$ with $a_x \subseteq x$, there exists $A \subseteq \nu$ such that $\{x \in \mathcal{P}_{\kappa}\nu : a_x = A \cap \nu\}$ is unbounded in $\mathcal{P}_{\kappa}\nu$.

Remark that the above property of $\mathcal{P}_{\kappa}\nu$ is known as almost ineffability (see Carr [3]). Almost ineffability of $\mathcal{P}_{\kappa}\nu$ is stronger than the Shelah property, so the above lemma also shows that if $\lambda^{\nu} = \lambda$ and $NS_{\kappa\lambda}^* \xrightarrow{\leq} (I_{\kappa\lambda}^+)_2^2$ holds then κ is ν -Shelah.

Proof: Let $\langle a_x : x \in \mathcal{P}_{\kappa} \nu \rangle$ be a sequence such that $a_x \subseteq x$. For each $x \in \mathcal{P}_{\kappa} \lambda$, let $b_x = a_{x \cap \nu} \subseteq x \cap \nu$. Then by Lemma 3.5 with the case $\nu^+ = \mu$, there exists unbounded $H \subseteq \mathcal{P}_{\kappa} \lambda$, $B \subseteq \nu$ and $z \in \mathcal{P}_{\kappa} \lambda$ such that for any $x \in H$ if z < x then $b_x = B \cap x$. Let $H^* = \{x \cap \nu : x \in H, z < x\}$. Then it is easy to see that H^* is unbounded in $\mathcal{P}_{\kappa} \nu$ and for all $x \in H^*$, $a_x = B \cap x$. \square

Lemma 3.10 Assume λ is weakly compact. Then the followings are equivalent:

- (1) κ is λ -Shelah,
- (2) $NS_{\kappa\lambda}^* \xrightarrow{<} (I_{\kappa\lambda}^+)_2^2 \ holds.$

Proof: The case that $\lambda = \kappa$ is well-known. Thus we may assume that $\lambda > \kappa$. (1) \Rightarrow (2) is Lemma 3.3. We see (2) \Rightarrow (1). By Lemma 3.9, κ is μ -Shelah for any $\mu < \lambda$. Now assume that κ is not λ -Shelah. Let $\vec{f} = \langle f_x : x \in \mathcal{P}_{\kappa} \lambda \rangle$ be a counterexample of the Shelah property of $\mathcal{P}_{\kappa} \lambda$. Consider the structure $\langle V_{\lambda}, \in \vec{f}, \mathcal{P}_{\kappa} \lambda \rangle$. The assertion that " \vec{f} is a counterexample of the Shelah property of $\mathcal{P}_{\kappa} \lambda$ " can be describable as Π_1^1 -sentence over $\langle V_{\lambda}, \in, \vec{f}, \mathcal{P}_{\kappa} \lambda \rangle$. Since weakly compact cardinal is Π_1^1 -indescribable, this assertion is reflected to μ for some inaccessible $\mu < \lambda$. However this means that κ is not μ -Shelah, a contradiction. \square

Therefore we conclude the following:

Cor. 3.11 Assume λ is regular and $\lambda^{<\lambda} = \lambda$. Then the following are equivalent:

- (1) κ is λ -Shelah,
- (2) $NS_{\kappa\lambda}^* \xrightarrow{\leq} (I_{\kappa\lambda}^+)_2^2 \ holds$,
- (3) $\mathcal{P}_{\kappa}\lambda \xrightarrow{\leq} (NS_{\kappa\lambda}^+, I_{\kappa\lambda}^+)^2 \ holds,$
- (4) $\mathcal{P}_{\kappa}\lambda \xrightarrow{\leq} (\mathrm{NSh}_{\kappa\lambda}^+, \mathrm{I}_{\kappa\lambda}^+)^2 \ holds. \square$

This and corollary 3.8 are partial answers of a question of 5.5 in Carr [4].

Using Lemma 3.9, we have a slit improvement of a Magidor's theorem((3) of Fact 2.7). Notice that $\operatorname{Part}^*(\kappa, \lambda)^2_{<}$ implies $\operatorname{NS}^*_{\kappa\lambda} \xrightarrow{<} (\operatorname{I}^+_{\kappa\lambda})^2_2$, but the converse does not hold in general.

Cor. 3.12 The followings are equivalent:

- (1) κ is supercompact,
- (2) $NS_{\kappa\lambda}^* \xrightarrow{\leq} (I_{\kappa\lambda}^+)_2^2 \text{ holds for any } \lambda$,
- (3) for any countable language structure M with $\kappa \subseteq M$ and $f: [\{N \in \mathcal{P}_{\kappa}M : N \prec M, N \cap \kappa \in \kappa\}]^2_{<} \to 2$ there exists an H such that H is unbounded in $\mathcal{P}_{\kappa}M$ and homogeneous for f. Where for $X \subseteq \mathcal{P}_{\kappa}M$, $[X]^2_{<} = \{\{N, N'\} \subseteq X : N \subseteq N', |N| < |N' \cap \kappa|\}$. \square

4 Some related results

In Theorem 1 and Cor. 3.8, it was assumed that λ is not weakly compact. Now we show that this assumption is needed.

Fact 4.1 Let θ be a sufficiently large regular cardinal and $\mu < \theta$ a cardinal. Let Δ be a well-order of \mathcal{H}_{θ} . Let $M = \langle \mathcal{H}_{\theta}, \in, \Delta, \mu, \ldots \rangle$. For $N \prec M$ and $\alpha < \mu$, let $N[\alpha] = \{f(\alpha) : f \in {}^{\mu}N \cap N\}$. Then $N \subseteq N[\alpha]$, $\alpha \in N[\alpha]$ and $N[\alpha] \prec M$. \square

In fact $N[\alpha]$ is just the Skolem hull of $N \cup \{\alpha\}$ under M.

Lemma 4.2 Assume λ is weakly compact $> \kappa$ and κ is λ -Shelah. Let $W = \{x \in \mathcal{P}_{\kappa}\lambda : \exists \alpha \in x (|x| = |x \cap \alpha|)\}$. Then for any club C of $\mathcal{P}_{\kappa}\lambda$, $(C \cap W) \xrightarrow{\leq} (I_{\kappa\lambda}^+)_2^2$ holds.

Proof: Let C be an arbitrary club and $g: \lambda \times \lambda \to \lambda$ generating C, that is, if $x \cap \kappa \in \kappa$ and x is closed under g then $x \in C$. Fix a sufficiently large regular cardinal θ and a well-order Δ on \mathcal{H}_{θ} . Let $M = \langle \mathcal{H}_{\theta}, \in, \Delta, \kappa, \lambda, g \rangle$. Let $M^* = \text{Skull}^M(\lambda)$.

Then by Carr [2], there exists a λ -complete proper M^* -normal ultra filter F over λ , here M^* -normal ultra mean that for all $A \in M^* \cap \mathcal{P}(\lambda)$, either $A \in F$ or $\lambda \setminus A \in F$, and for any regressive $f \in {}^{\lambda}\lambda \cap M^*$ there exists $\beta < \lambda$ such that $\{\alpha < \lambda : f(\alpha) = \beta\} \in F$.

By Abe [1], we can take $Y \in NSh_{\kappa\lambda}^*$ such that

- (1) for each $x \in Y$, $x \cap \kappa \in \kappa$ and $Skull^{M}(x) \cap \lambda = x$, here $Skull^{M}(x)$ is the Skolem hull of x under M,
- (2) for $x, y \in Y$, if $x \neq y$ then $\sup(x) \neq \sup(y)$.

For $x \in Y$, let $M_x = \text{Skull}^M(x)$. Note that $|M_x| = |x|$. Now define $\langle s_x : x \in Y \rangle$ by the induction on $\sup(x) < \lambda$. Let $x \in Y$ and assume $s_y < \lambda$ is defined for any $y \in Y$ with $\sup(y) < \sup(x)$. Consider $A = \bigcap \{B \in F : B \in M_x \cap \mathcal{P}(\lambda)\}$. Since F is λ -complete, $A \in F$. Hence we can take $s_x \in A$ such that $s_x > \sup(M_y[s_y] \cap \lambda)$ for any $y \in Y$ with $\sup(y) < \sup(x)$.

Now we claim the following:

Claim 4.3 $\{x \in Y : M_x[s_x] \cap s_x \neq x\}$ is non-stationary.

Proof: Assume not. Let $\pi: \lambda \to M^*$ be a bijection. Then $\{x \in \mathcal{P}_{\kappa}\lambda : M_x \cap \lambda = x, \pi^*x = M_x\}$ is club, so $Z = \{x \in Y : \pi^*x = M_x, M_x[s_x] \cap s_x \neq x\}$ is stationary. Let $x \in Z$. Then by the definition of $M_x[s_x]$, there exists $f_x \in M_x$ such that $f_x(s_x) \in (M[s_x] \cap s_x) \setminus x$. Then we may assume that $f_x \in \lambda$ and f_x is regressive. By Fodor's lemma, there exists $f \in M^* \cap \lambda$ such that $\{x \in Z : f_x = f\}$ is stationary. Since $f \in M^*$ and f is regressive, there exists $f \in A$ such that $f \in A$ such that

Let $X = \{x \in Y : M_x[s_x] \cap s_x = x\}$. By the above claim $X \in \text{NSh}_{\kappa\lambda}^*$. Note that for $x \in X$, $M_x[s_x] \cap \kappa = x \cap \kappa \in \kappa$, and $M_x[s_x]$ is closed under g. Thus we have $M_x[s_x] \cap \lambda \in C$. For $x \in X$, $|x| = |M_x[s_x] \cap s_x| = |M_x[s_x] \cap \lambda|$. Therefore $\{M_x[s_x] \cap \lambda : x \in X\} \subseteq C \cap \{x \in \mathcal{P}_\kappa\lambda : \exists \alpha \in x (|x| = |x \cap \alpha|)\}$. We will see that $\{M_x[s_x] \cap \lambda : x \in X\} \xrightarrow{\leq} (I_{\kappa\lambda}^+)_2^2$. To see this, we claim the following: for any $x, y \in X$, if $M_x[s_x] \cap \lambda < M_y[s_y] \cap \lambda$ then x < y. Since $|x| = |M_x[s_x] \cap \lambda|$ and $|y| = |M_y[s_y] \cap \lambda|$, we have $|x| < |y \cap \kappa|$. We check that $x \subseteq y$. We consider three cases.

- 1. If $\sup(x) = \sup(y)$, then x = y by the definition of Y, a contradiction.
- 2. If $\sup(x) > \sup(y)$. Then $s_x > \sup(M_y[s_y] \cap \lambda)$ by the choice of s_x . Hence $s_x \notin M_y[s_y] \cap \lambda$, but this contradict to $M_x[s_x] \cap \lambda \subset M_y[s_y] \cap \lambda$.
- 3. If $\sup(x) < \sup(y)$. Note that then $s_x < s_y$. Hence $x = M_x[s_x] \cap s_x \subseteq M_y[s_y] \cap s_y = y$ and we have done.

For given $f: [\{M_x[s_x] \cap \lambda : x \in X\}]^2_{\lt} \to 2$, define $f': [X]^2_{\lt} \to 2$ by $f'(x,y) = f(M_x[s_x] \cap \lambda, M_y[s_y] \cap \lambda)$ if $M_x[s_x] \cap \lambda < M_y[s_y] \cap \lambda$. Since $X \in \mathrm{NSh}^*_{\kappa\lambda}$, there exists an unbounded homogeneous set H for f'. Then it is easy to see that $\{M_x[s_x] \cap \lambda : x \in H\}$ is unbounded homogeneous set for f. \square

Combing the above lemma and Fact 2.4, we have the following.

Cor. 4.4 Assume λ is weakly compact $> \kappa$ and κ is λ -Shelah. Then $I|C \subseteq \mathrm{NSh}_{\kappa\lambda}$ holds for any club C of $\mathcal{P}_{\kappa}\lambda$, here $I = \{X \subseteq \mathcal{P}_{\kappa}\lambda : X \xrightarrow{\varsigma} (I_{\kappa\lambda}^+)_2^2\}$. \square

Next we argue more possibility of the local normality of the partition ideal. The local normality of the 2-array partition ideal was shown. We see the case $n \geq 2$ with a bit weak assumption.

Lemma 4.5 Let n be a natural number > 0 and $I = \{X \subseteq \mathcal{P}_{\kappa}\lambda : X \xrightarrow{\checkmark} (I_{\kappa\lambda}^+)_2^{n+1}\}$. Assume $\lambda = 2^{\nu}$ for some $\nu < \lambda$. Then there exists a club D of $\mathcal{P}_{\kappa}\lambda$ such that I|D is normal.

Proof: Fix $\nu < \lambda$ with $2^{\nu} = \lambda$. Note that $\kappa \leq \nu < \operatorname{cf}(\lambda)$ and $\lambda^{\nu} = \lambda$ holds. Fix $\vec{A} = \langle A_{\xi} : \xi < \lambda \rangle$ a bijective enumeration of $\mathcal{P}(\nu)$. Take a club C shown in Lemma 3.5 with the case $\mu = \nu^+$. Fix a sufficiently large regular cardinal θ and let $M = \langle \mathcal{H}_{\theta}, \in, \kappa, \lambda, \vec{A} \rangle$. Let $D = \{N \cap \lambda \in C : N \prec M, |N| < \kappa, N \cap \kappa \in \kappa\}$. We will prove D is a desired club.

Let $X \in (I|D)^+$ with $X \subseteq D$. Let $g: X \to \lambda$ be a regressive function. Assume $X_{\alpha} = \{x \in X: g(x) = \alpha\} \in I$ for all $\alpha < \lambda$. Let $f_{\alpha}: [X_{\alpha}]_{<}^{n+1} \to 2$ be a couterexample of $X_{\alpha} \stackrel{<}{\longrightarrow} (I_{\kappa\lambda}^+)_2^n$. For $t \in [X]_{<}^n$, set $a_t = A_{g(\min(t))} \cap \min(t) \subseteq \min(t) \cap \nu$. Now define $f: [X]_{<}^{n+1} \to 2$ as: for $\{x_1, \ldots, x_{n+1}\} \in [X]_{<}^{n+1}$, if $g(x_1) = \ldots = g(x_{n+1}) = \alpha$, then $f(x_1, \ldots, x_{n+1}) = f_{\alpha}(x_1, \ldots, x_{n+1})$. Suppose not. Assume $a_{x_1 \cdots x_n} \neq a_{x_2 \cdots x_{n+1}} \cap x_1$ and let $\xi = \min(a_{x_1 \cdots x_n} \triangle a_{x_2 \cdots x_{n+1}} \cap x_1)$. If $\xi \in a_{x_2 \cdots x_{n+1}} \cap x_1$ then set $f(x_1, \ldots, x_{n+1}) = 0$. If $\xi \in a_{x_1 \cdots x_n}$ then set $f(x_1, \ldots, x_{n+1}) = 1$.

Then, by a similar argument of Lemma 3.5, there exists an unbouned homogeneous set $H \subseteq X$ for f, $A \subseteq \nu$ and $z \in \mathcal{P}_{\kappa}\lambda$ such that for any $t \in [H]^n_{<}$ if $z < \min(t)$ then $A \cap \min(t) = a_t$. Take $\alpha < \lambda$ such that $A = A_{\alpha}$ and put $H^* = \{x \in H : z < x, \alpha \in x\}$. It is easy to check that $H^* \subseteq X_{\alpha}$. Then by the definition of f, H^* is an unbouned homogeneous set for f_{α} , a contradiction. \square

Note that the above lemma shows that the partition ideal over $\mathcal{P}_{\kappa}\lambda$ can be locally normal even if λ is singular.

Combing an arguments of Lemma 3.7 with Lemma 4.5, we have the following.

Lemma 4.6 Let n be a natural number > 0 and $I = \{X \subseteq \mathcal{P}_{\kappa}\lambda : X \xrightarrow{\checkmark} (I_{\kappa\lambda}^+)_2^{n+1}\}$. Assume λ is inaccessible but not weakly compact. Then there exists a club D of $\mathcal{P}_{\kappa}\lambda$ such that I|D is normal. \square

References

- [1] Y. Abe, Combinatorial characterization of Π_1^1 -indescribability in $P_{\kappa}\lambda$, Arch. Math. Logic 37 (1998), no. 4, 261–272.
- [2] D. M. Carr, $P_{\kappa}\lambda$ -generalizations of weak compactness, Z. Math. Logik Grundlag. Math. 31 (1985), no. 5, 393–401.
- [3] D. M. Carr, The structure of ineffability properties of $P_{\kappa}\lambda$, Acta Math. Hungar. 47 (1986), no. 3-4, 325–332.
- [4] D. M. Carr, $P_{\kappa}\lambda$ partition relations, Fund. Math. 128 (1987), no. 3, 181–195.
- [5] T. J. Jech, Some combinatorial problems concerning uncountable cardinals, Ann. Math. Logic 5 (1972/73), 165-198.
- [6] C. A. Johnson, Some partition relations for ideals on $P_{\kappa}\lambda$, Acta Math. Hungar. 56 (1990), no. 3-4, 269–282.
- [7] A. Kanamori *The higher infinite*. Large cardinals in set theory from their beginnings. Perspectives in Mathematical Logic. Springer-Verlag, Berlin, 1994.
- [8] M. Magidor, Combinatorial characterization of supercompact cardinals, Proc. Amer. Math. Soc. 42 (1974), 279–285.
- [9] M. Shioya, Partition properties of subsets of $P_{\kappa}\lambda$. Fund. Math. 161 (1999), no. 3, 325–329.