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The partition property of PiA
I ZFJ& (Toshimichi Usuba)*
BEBREAE R LTI

(Graduate School of Information Science, Nagoya University)

Abstract

We study a relationship between the partition property of PcA and the
Shelah property.

1 Introduction

The partition property of P,A was introduced by Jech [5] as a generalization of the
classical partition property of cardinal. In this paper we study a relation between
the partition property and the Shelah property of P.A, the Shalah property is
defined by Carr [2] as a generatizatation of weakly compactness. It is well-known
that there is a essential connection between the partition property of a cardinal
and weakly compactness: for a cardinal &, & is weakly compact iff K — (k)2. In
Carr [4] observed such connection for various partition property and large cardinal
property of P.A, including the Shelah property. We will try more deep analysis.
Let NShy) is the set of all X C P, such that X is not Shelah.

Main Theorem 1 Let I = {X C P\ : X (I5,)3}. Assume A > & is regular,
A<* = X but not weakly compact. Then there ezists a club C of P.\ such that
I|C = NShygy.

Main Theorem 2 Assume ) > & is reqular and A<* = X. Then the following are
equivalent:

(1) & is A-Shelah,

(2) C =5 (14)2 for every club C of Py
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Theorem 2 shows the Shelah property of PiA is right analogue of weakly com-
pactness. In this sense, Theorem 2 is not surprising. However Theorem 1 is in-
teresting, since if A = & then it must false; in fact if A = & the partition ideal
I in Theorem 1 is just unbounded ideal over P\, and NSh,, is just the weakly
compact ideal. Further Theorem 2 shows that the partition ideal I can be locally
normal, but I itself cannot be normal. These results indicate that the partition
ideal I over P, has a strange structure under GCH. Note that, if GCH fails, the
partition ideal can have a simple form, unbounded ideal (see Shioya [9]).

we will give a partial answer of a question of 5.5 in Carr [4] with a method
which will be used to prove theorems.

2 Preliminaries

We refer to Kanamori [7] for general background and basic notation. Throughout
this paper, x denotes an inaccessible cardinal and A a cardinal > &.

An ideal over P, means that x-complete fine ideal over P, A in this paper.
For an ideal I over P\, I* denotes the dual filter of I and I = P(P,A)\ I. An
element of IT is called I-positive set. NSx (Ica) is the set of all X C P,A such
that X is non-stationary (not unbounded) in P,A.

Definition 2.1 For z, y € P\, we define z < y if z C y and |z| < |y N &|. For an
ideal I on P\, I is strongly normalif for all X € I and <-regressive f : X — PiA,
that is, f(z) <  for all z € X with |z N &| > 0, there exists y € P, A such that
{zeX: flz)=ytel™. O

For z € P\, we denote P, = {y € P\ : y < z}. f 2Nk is a regular cardinal,
then properties of P\ can be translated into P, naturally. For example, X C P,
is stationary if for all f : z x z — P, there exists y € X such that {J f“(y xy) C v.

Definition 2.2 For X € P\, X is Shelah if for all (f, :z € X) with f;: v — z,
there exists f : A — X such that the set {z € X : fly = fz|y} is unbounded for all
y € P.). We say that « is A-Shelah if P X is Shelah.

NSh,, is the set of all X C P, such that X is not Shelah. 0

Fact 2.3 (Carr [2, 3]) (1) NShy, is a normal ideal over PeA. Moreover it is
strongly normal if ¢f(\) > &,

(2) if k is 22°"-Shelah then & is A-supercompact,
(3) if k is A-supercompact then & is A-Shelah. [

(2) of the above fact shows that the Shelah property of PcA is a very strong
property.
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Fact 2.4 (Abe [1]) {z € P:A: Ya ez (jzNal < |z|)} € NShy,. [
Now we define the partition property of PcA.

Definition 2.5 Let n be a natural number > 0. For X C P,
[X]Z':{{xlsaxn} QX:xl L v <$n}-

For a function f on [X]%, H is homogeneous set for f ift H C X and |f“[H]%| = 1,

and H is called z-homogeneous if f“[H|2 = {z} for some z. [J

When an element of [X]% is written as {z1,...,Zn}, it is assumed that r; <
<o+ < Zp. For {zy,...,7,} € [X]? and a function f on [X]%, we shall write
f(z1,. .., z,) instead of f({z1,...,2Zn})

Definition 2.6 Let A C P(P.\). For a natural number n, an ordinal & and
X C P\, we say that X —» (A)® holds if for all f : [X]2 — « there exists a
homogeneous set Y € A for f.

For B C P(P.)), B — (A)Z holds if X — (A)2 holds for all X € B.

We say that Part(k, \)% holds if P.X — (IF,)2 holds, and Part*(k, \)% holds
if P.A — (NS7,)2 holds.

As usual, —7—» means the negation of the corresponding partition property.

Remark that Jech’s partition property was defined with the order C, not <.
The partition property with C is stronger than with <, but the author does not
know that there is a essential difference between those properties.

Fact 2.7 (Carr [4], Jech [5], Magidor [8]) (1) If Part(s, )2 holds for some
A then k is weakly compact,

(2) if Part(k, A)}2 holds for all X then k is strongly compact,
(3) & is supercompact iff Part™(x, \)2 holds for all X. O

Fix n a natural number > 0 and put I = {X C P.) : X (IF,)2}. Then it is
easy to check that I forms an ideal over P.A. I is often called the partition ideal
over P, A.

3 The Shelah property and the partition prop-
erty

We start proofs of Theorem 1 and 2. First we prove that the Shelah property of
P.A implies the partition property.



Lemma 3.1 Assume X is regular and A<* = \. For X C P,.A, if X is Shelah then
X satisfies the following property: for any (fy : z € X) with fy : © — z there ezists
f:X— Xsuchthat foralla <A {z e X: flztNa= f,JzrNa} € NShf,.

Proof: Fix (f¢ : £ < A) an enumeration of [J{*A: a < A}. Let Z = {z € P.A:
Vo € 2Vf:zNa — 23¢ € 2 (f = fel(zNa))}. First we claim Z € NShy,. Assume
not. By the normality of NSh,, there exists & < A such that ¥ = {z € P :
3fs 1 3N — V€ € 2 (f, # fel(zNa))} € NSh,. Foreachz € Y, let g, : 2 — zNa
satisfying f(9:(€)) # fe(9:(€)). Then by the Shelah property of Y, there exists
f:a-—Xdand g: X — asuch that {z €Y : fily = fly, .|y = gly} is unbounded
for any y € PgA. Then f = f for some £ < A. Take y € PcA such that y is
closed under g and € € y. Then we can take z € Y such that y C z, fily = fely
and g,|y = gly. Then g(&) = g.(€) € y, hence f,(g(§)) = fe(9(§)) holds. But this
contradict to the definition of g,, namely f,(9.(£)) # fe(g:(£)).

Now let X € NSh},. We may assume that X C Z. For given (f, : z € X),
define (g, : € X) with g, : 2 = z by folz N € = folz NE By a theorem
of Johnson [6], there exists g : A — X such that for any y € P.A {z € X :
g:|v = gly} € NSh,. Now define f: X — A by f(£) = fyum(€) for somen > €. It is
easy to see that f is well-defined. We see that f has the desired property. Let o < A.
Take y € P such that o € y, sup(y) > a and closed under g. Then W = {z € X :
y C 2, 9ly = g-ly} € NShY,. Let z € W. Then filzNa = fo(lzNa = fyxlzNa.
Hence by the definition of f, f(£) = f»(€) holds for any { € 2 Nv. [

Assume A<* = . Let (z¢ : £ < A\) be an enumeration of P,A. Then by the
strong normality of NSh,y, we have {z € P : P, = {z¢ : £ € x}} € NShy,.
Hence we have the following:

Cor. 3.2 Assume X is regular and X* = X\. Let X € NSh!,. Then X has the
following property: for any (fz: x € X) with f, : £ — Py there exists f : A — PgA
such that for alla < A {z € X : foJztNa = fltNna} € NShi,. O

Now we shall prove more strong partition property from the Shelah property.
For X € P\ and A, B C P(P.A), we say that X =, (A, B)" holds if for any

f: [X]2 — 2, either there exists a O-homogeneous set H for f with H € A or

<
1-homogeneous set H for f with H € B.

Lemma 3.3 Assume X is reqular and A<* = X. For X C P, if X is Shelah then
X =5 (NSh,, IF,)? holds.

Proof: Fix an enumeration (z¢ : £ < A) of PcA. For each z € X, we may
assume that P, = {z¢ : € € z}. Let f : [X]2 — 2. For z € X, we define
ge : TNy — X NP, and o, < sup(z) by the induction on £ € z. Let £ €

and assume gy|z N & is defined. If there exists z € P, N X such that z; C z,
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V€ 21 (z & ga(n)) and Vi € 201€ (ga(n) < 2 = F(ga(n), 2) = F(z,2) = 1), then
set g;(£) = z. If there is no such z € X NP,, then we set o, = . Assume g-(€) is
defined for any £ € z, then we set o, = sup(z).

Note that {g.(€) : € € zNa,}U{z} is 1-homogeneous for f and if @, = sup(z)
then {g.(¢) : £ € Ny} is unbounded in P,.

Now we consider the following two cases.

Case 1. {z € X : o, < sup(z)} € NShY,. By the normality of NShyy, there
exists o < A such that {z € X : @, = a} € NSh],. Then by Cor. 3.2, there exists
g:a— XsuchthatY = {z € X : g;JzNa = glzNa} e NSh},. Let H={z €Y :
To < T, V€ < a(g(€) < z = £ € z)}. Then it is easy to see that H € NSh/;,. We
claim that H is 0-homogeneous set. Let z,y € H with z < y. Assume f(z,y) = 1.
If f(gy(n),z) = 1 for all n € yNa with g,(n) < z, then z witness that o € dom(gy).
Hence there must exist 7 € y N« such that g,(n) < z and f(gy(n),z) = 0. Since
gy(n) = g(n) < z, we have n € z. Thus g-(n) = g4(n) = g(n) holds. However
f(92(n), ) = 1 by the definition of g,, a contradiction.

Case 2. {z € X : o, = sup(z)} € NSh/,. Let Y = {z € X : a, = sup(z)}.
Then forz € Y, {g.(€) : £ € z} is a 1-homogeneous set for f and unbounded in P,.
By Cor. 3.2, there exists g : A — X such that {z € Y : g;|zNa = glzNa} € NSh;,
for all @ < A. Let H = g“A. Then it is easy to see that H is an unbounded 1-
homogeneous set for f. [J

Next we will show that if NS, — (I},)2 then & is A-Shelah. To see this, we
need some lemmata.

Lemma 3.4 Let p be a cardinal with k < u < X. Assume A<* = AX. Then there
exists a club C of PcA such that for every unbounded subset X C C, o < p and
fra—-PA X\{zeX: ¥ exzna(f() <)} is not unbounded.

Proof: Let b = (hg + & < A) be an enumeration of {J,,"A and T = (z¢ :
£ < A) an enumeration of P,A. We can enumerate with A-length by our cardinal
arithmetic assumption. Let @ be a sufficiently large regular cardinal and M =
(Hg, €,8, A, h, ). Let C = {NNA: N <M, |N| <&k NNk € k}. Then C
forms a club. Notethat f NNk e Candz € NNPAthenz < NN We
shall check that C satisfies the conclusion of lemma. Fix X an unbounded subset
of C. Let @ < pand f:a — PeA. For f, define h: @ — A by f({) = zp¢). Then
there exists £ < A such that A = h;. By the definition of C, for each z € X if
§ € x then h“(z N ) C z. Further if N < M, NN A € X and h(() € N, then
f(¢) = zy¢) € N, hence f(¢) € N. Therefore for each NNA € X if £ € NN A then
V¢ e NNa(f(¢) < NNA). Since X\ {r € X : £ € X} is not unbounded, we have
done. [J



Lemma 3.5 Let u be a cardinal with k < u < X and assume A<* = X. Then there
ezists some club C of P such that for any X C C if X — (I},)5%" holds then
X has the following property: whenever (a, : t € [X|2) with a; C min(t) N u there
ezists an unbounded subset H C X and A C p such that

V€ < pdze € PAVE € [H]Z (2 < min(t) = ANmin(t) N§ = a; NE)).
Here min(t) is the minimal element of £ with respect to <.

Proof: Let C be a club shown in Lemma 3.4. Let X C C be such that X =,
(I5,)2%! holds. We will see that X has the desired property. Let {a; : ¢ € [X]2)
with a; € min(t) N . We define f : [X]% — 2 as: for {z1,...,Zaq1} € [X]ZF, if
Ogyzn = Opgoznys (1T1, then let f(z1, ..., Znt1) = 0. Assume az,..q,, # Gupny 21
and let a be the minimal element of az,...., A(@ggzny, N%1). If @ € Ggy..z,,,,, then
f(@1,.. Tns1) = 0. If @ € @gy.,, then f(z1,.. . Tnp1) = L.

By X — (I,)2*!, we can take an unbounded homogeneous set H for f. Now
we will construct A € p and (2 : £ < ) by the induction on £ < u. Assume AN
and z, is defined for any 7 < £ and satisfies the following:

(1) zy € PeA,
(2) for any t € [H]?, if 2, < min(¢) then ANy Nmin(t) =a: Nn.

We define z; and decide whether £ € A or not. First assume that H is 0-
homogeneous. Let H = {z € H : In € 2N &(z, £ z)}. By Lemma 3.4, H'
is not unbounded. Fix z € H such that £ € z and z £ z for all z € H'. Note that
if € H and z < z then Vn € zN & (2, < ).

Case 1. If there exists {y1,...,Yn} € [H]% such that z < y; and £ € ay,.. y.,
then set 2 = y, and £ € A. We check that ANE+1 and 2 satisfies the induction
hypotheses. Let {z1,...z,} € [H|% such that 2¢ < z;. Then since z < y; <
L Y=z < Ty < o < Ty, V) € T NE(2y < ) and V) € y; N € (2 < Yi)
hold for any ¢ < n. Hence by the induction hypotheses, for any n € y1 N ¢,
ANy N7 = ay,..yy, 7. This means that ANy NE = ay, .y, NE. By the same reason
we have ANYsNE = ayy...y,z, NE. In particular ay, y, NE = Gy,yna Y1 Né. Further
H is 0-homogeneous and £ € ay,..,,, £ must be an element of ay,...y,qz,- Repeating
this argument n-times, we have £ € ag,..0, a0d AN (E+ 1) = agy0, NE+ 1.

Case 2. If there exists no {y1,...,yn} € [H]2 such that z < y; and £ € ay,...yn;
then set z; = z and € ¢ A. Then it is clear that z and AN ¢+ 1 satisfies the
induction hypotheses.

If H is 1-homogeneous, then we consider the following two cases: there exists
{y1,...,yn} € [H]" such that z < y; and § ¢ ay,..y,, and otherwise. The rest
follows from a similar argument. [
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Now we will prove Theorem 1 and 2 using the above lemma.

Lemma 3.6 Assume ) is reqular, \<* = X and X is not strong limit. Let ] = {X C
P : X (I5,)2}. Then there exists a club D of P such that NShey = I |D
holds.

Proof: Since A<* = X and A is not strong limit, there exists ¥ < A such that
2¥ = X. Fix such a v. Fix (B¢ : £ < ) a bijective enumeration of P(v). Fix 7 :
A x v — X a bijection. Now let C be a club in Lemma 3.5 with the case = A. Let
6 be a sufficiently large regular cardinal and M = (Hy, €, &, A, 7, (Be : £ < A),...).
Nowlet D={NNAe€C:N <M, |N| <k, NNk € «}. Then D is a club subset
of P.)\. We will show that D works. Note that for any z € D, n“(z x (zNv)) =z
and for all §, n € z, if £ # n then BeNz # B, Nz

Since NSh,y is normal, if X € NShf, then X N D € NSh{,. Hence by Lemma
3.3 X € (I|D)* holds.

To see converse, let X € (I|D)*. We may assume that X C D. Let (f, : z € X)
with fy:z —z. Forz € X, let a, = 7“{(n,{) : n € z, ( € Bp,(yy Nz} C z. Then
by Lemma 3.5, there exists an unbounded H C X, A C A and (2 : £ < A) such
that V€ < AWz € H(ze <z => ANz NE =a, NE). For each n < A, define 4, Cv
by ¢ € A, iff 7((n,¢}) € A. Then define f : A — A by A; = By). We clam for
any y € P\ there exists z € H such that y C z and f|y = f.|y, this completes a
proof. Let y € P.A. If necessary we may assume that y is closed under f. Take a
large £ < A such that sup(y) < £ and 7%(¢ x v) = €. Then we can take z € H such
that ze < z, y <z and ANz N = a, NE. We check that fly = fz|y. Note that
“((zng) x (zNu)) =zNE Let n € y. Since f(n), fz(n) € z, it suffices to show
that By Nz = By, Nz. Let { € By, Na. Then 7({n,()) € a,. Since n < &,
7({n,{)) € a; NE = ANz NE. Then by the definition of A, we have ¢ € By(;. The
converse can be verified by the same argument. O

Lemma 3.7 Assume X is regular, \* = X\ and there exists a A-Aronsjazn tree.

Let | ={X CPA: X 7?—» (I1,)3}. Then there exists a club D of PcX such that
NShey = I|D holds.

Proof: Fix T = (T, <r) a A-Aronsjazn tree. We may assume that 7 = A. For
a < A, T, denotes the a-th level of 7. Fix 7 : A X A — A a bijection. Let & be
a sufficiently large regular cardinal. Let M = (Mg, €,4,\,T,7,...). Let C be a
club in Lemma 3.5 with the case uy=Aand D= {NNXe C: N < M, |[N| < &,
NNk € k}. We will show that D works.

I|D C NShy, is Lemma 3.3. Let X € (I|D)* be such that X C D. For
(fo 1 z € X) with f, : £ — z, define a, for z € X as follows: for 5 € z, take
oy € Ty, Nz. Note that such an of exists since z = NN A for some N < M. Let



by = {eT: <y af}} Nz. Hence of is the max element of b with respect to
the order <r. Now let a, = 7“{(n,{} :n €2, (€ b} C =

We take an unbounded H C X, A C A (2 : £ < A) by Lemma 3.5. For each
n < A, define B, C Aby ( € B, <= n((n,{)) € A

Fix n < A. We check B, forms a chain of T. Let (;, {; € B,. Take £ < A
such that 7{{n, (1)), 7({n,{2)) < €. Then we can take z € H such that 7 ({n, (1)),
7((n, () € z and a,NE = ANzNE. Thus 7{{n, (1)), 7({n,{2)) € ANzNE = a,NE.
By the definition of a,, both ¢; and (, belong &7, hence (i, (; are compatible. As
the above argument, we can show that if (; € B, and (3 <7 (; then {; € B,,.

Since T is an Aronsjazn tree, B, is not cofinal in T. Take 6, < A such that
B, & Ug<s, To but B,NT;, = (. Now we claim that §, is a successor ordinal, hence
B, has the max element. Assume not. Take £ < ) such that 5,6, < £, <5, Is © &
and 7“(§ x &) C €. Take z € H such that §, € x and ANzNE{ = a,NE. By Lemma
3.4 and the fact H C C, we may assume that for each 8 € zN4,, the 3-th element
of B, (with respect to <r) is in z. If f;(n) > &,, there exists v € &, N T;, Nz
But since (Jzes, Ts Nz € 2N E, we have 7((n,7))) € ez N{ = ANz NE. Hence
v € B,NT;s, # 0, a contradiction. Thus fz(n) < &. If fa(n) +1 < 4y, then
fz(n) + 1 € z. Hence we can take v € z N Ty, (+1 N By. Then v < £ Thus
7({n,7)) € ANz NE = a, NE. However then v € b N Ty, (41, & contradiction.
Therefore we have d, = f,(n) + 1. Further notice that this arguments indicates the
max element of b7 is equal to of B,,.

For n < A, let o, be the max element of B,. Now define f : A — A by f(n) =
the height of ;. We will see that for any y € P.A there exists z € H such that
y C z and fly = foly. Let y € PcA. If necessary we may assume that ¥ is closed
under f. Take a large £ < X such that sup(y) < £ and f“ C €. Then we can take
z € Hsuchthat y Czand ANz NE = a, NE As the above argument, we may
assume that for any 7 € y, the max element of b is equal to of B,. Then by the
definition of b7 and f, we have fi(n) = f(n) holds for alln € y. [

This completes the proof of Main Theorem 1.

Cor. 3.8 Assume X is reqular, X* = X but not weakly compact. Then for X C
P, the following are equivalent:

(1) X is Shelah,
(2) (NSaX)* = (I1,)3 holds, |
(3) X = (NSZ,,I1)? holds,

(4) X = (NSh},,I},)? holds. O
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Proof: (4) = (3) is trivial. (1) = (4) is Lemma 3.3. (2) = (1) follows from
Lemma 3.6 and 3.7.

(3) = (2). Assume X N C—f (I7,)2 for some club C of P.A. Since (3) holds,
it must hold that X \ C —» (NS}, I},)2. However this is impossible; consider the
constant function f: [X \ C]2 — {0}. O

In the next section, we will prove that we cannot delete the assumption “A is
not weakly compact” of the above Lemma.

For a proof of Theorem 2, we must prove the case that A is weakly compact.
To see this, we need the following lemma.

Lemma 3.9 Let v be a cardinal with k < v < A and assume N’ = \. If NS;, =
(I1,)2 holds then P, satisfies the following property: whenever (aq : € Pgv) with
az; C x, there exists A C v such that {z € Pyv : a = ANV} is unbounded in Pyy.

Remark that the above property of P.v is known as almost ineffability (see Carr
[3]). Almost ineffability of P,y is stronger than the Shelah property, so the above

lemma, also shows that if ¥ = A and NS*, = (I},)2 holds then  is v-Shelah.

Proof: Let (a, : z € P.v) be a sequence such that a, C z. For each z € P.A,
let by = @zrw € zNv. Then by Lemma 3.5 with the case v = u, there exists
unbounded H C P, A, B C v and z € P, A such that for any z € H if z < = then
by =BNz. Let H* ={zNv:z € H, 2 < z}. Then it is easy to see that H* is
unbounded in P.v and for all z € H*, a, = BNz. O

Lemma 3.10 Assume X is weakly compact. Then the followings are eguivalent:

(1) & is A\-Shelah,
(2) NS%, = (I4,)2 holds.

Proof: The case that A = & is well-kknown. Thus we may assume that A > «.
(1) = (2) is Lemma 3.3. We see (2) = (1). By Lemma 3.9, k is u-Shelah for
any < A. Now assume that « is not A-Shelah. Let f = (f, : z € PA) be
a counterexample of the Shelah property of P.A. Consider the structure {Vj, €
,f,'P,g/\), The assertion that f is a counterexample of the Shelah property of
PcA” can be describable as II}-sentence over (Vj, €, f, P.A). Since weakly compact
cardinal is TI}-indescribable, this assertion is reflected to u for some inaccessible
¢ < A. However this means that « is not p-Shelah, a contradiction. [J

Therefore we conclude the following:

Cor. 3.11 Assume ) is regular and A<* = X. Then the following are equivalent:



(1) & is A-Shelah,

(2) NSp, — (I})3 holds,

(3) Ped = (NSH, TH)? holds,

(4) P.A = (NSh},,IH)? holds. O

This and corollary 3.8 are partial answers of a question of 5.5 in Carr [4].

Using Lemma 3.9, we have a slit improvement of a Magidor’s theorem((3) of

Fact 2.7). Notice that Part*(x,A\)2 implies NS}, —5 (I1,)2, but the converse does
not hold in general.

Cor. 3.12 The followings are eguivalent:
(1) k is supercompact,
(2) NS%, — (I4,)2 holds for any A,

(3) for any countable language structure M with k C M and f : [{N € PM :
N < M, NNk € k}]2 — 2 there exists an H such that H is unbounded in
P.M and homogeneous for f. Where for X C P.M, [X]2 = {{N,N'} C X :
NCN,|N|<|N'nkl}. O

4 Some related results

In Theorem 1 and Cor. 3.8, it was assumed that X is not weakly compact. Now we
show that this assumption is needed.

Fact 4.1 Let 6 be a sufficiently large regular cardinal and p < 8 a cardinal. Let
A be a well-order of He. Let M = (Ho,€,0,p,...). For N <M and a < p, let
Nla] = {f(): f €*NNN}. Then N C Nlo], a € N[o] and N[a] < M. U

In fact N[o] is just the Skolem hull of N U {a} under M.

Lemma 4.2 Assume ) is weakly compact > k and & is A-Shelah. Let W = {z €
P : Ja € z(lg| = [zNal)}. Then for any club C of PeA, (CNOW) =5 (If,)3
holds.

Proof: Let C be an arbitrary club and g : A x A — X generating C, that is, if
zNk € k and z is closed under g then z € C. Fix a sufficiently large regular cardinal
g and a well-order A on Hy. Let M = {Hg, €,A,k,A,g). Let M* = Skull™ ()).
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Then by Carr [2], there exists a A-complete proper M*-normal ultra filter F* over
A, here M*-pormal ultra mean that for all A € M* N P(A), either A € F or
A\ A € F, and for any regressive f € *A N M* there exists § < A such that
{a<A: fla)=p}€F.

By Abe [1], we can take Y € NShy, such that

(1) for each z € Y, N & € & and Skull®(z) N A = z, here Skull¥(z) is the
Skolem hull of z under M,

(2) for z,y €Y, if z # y then sup(z) # sup(y).

For z € Y, let M, = Skull™(z). Note that |M,| = |z|. Now define (s, : z € Y)
by the induction on sup(z) < A. Let z € Y and assume s, < A is defined for any
y € Y with sup(y) < sup(z). Consider A =({B € F: Be M,NP(A)}. Since F
is A-complete, A € F. Hence we can take s, € A such that s; > sup(M,[s,] N A)
for any y € Y with sup(y) < sup(z).

Now we claim the following:

Claim 4.3 {z € Y : M,[s,] N's, # x} is non-stationary.

Proof: Assume not. Let 7 : A — M* be a bijection. Then {z € P, : M,NA =z,
n%c = M,} isclub, so Z = {z € Y : 7"z = M,, M,[s;] N s, # z} is stationary.
Let z € Z. Then by the definition of M,{s,], there exists f; € M, such that
fo(82) € (M[sz] Ns;) \ z. Then we may assume that f, € *) and f; is regressive.
By Fodor's lemma, there exists f € M* N*X such that {z € Z : f, = f} is
stationary. Since f € M* and f is regressive, there exists 3 < A such that {a < A:
f(a) = B} € F. Then we can take z € Z such that f = f, and 8 € 2. Since
f,Bexz, wehave {a < A: fla)=p0} € FNM,. Then s, € {a < A: f(a) =}
thus f,(s;) = 8 € z, a contradiction. O

Let X = {z € Y : My[s;] N s, = z}. By the above claim X € NShy,. Note
that for x € X, My[s;] Nk = Nk € K, and M,[s,] is closed under g. Thus we
have My[s,] N A € C. For z € X, |z| = |My[s,] N 8| = |My[sz] N A]. Therefore
{Mpfs;]NA:ze X} CCNn{z € PA:3a € z(jz| = |znal|)}. We will see
that {Mz[sz] N A:z € X} = (I},)2. To see this, we claim the following: for any
z,y € X, if My[s;] N A < My[sy] N A then z < y. Since |z| = |Mg[s,] N A| and
lyl = |My[sy] N A], we have |z| < |y N k|. We check that z C y. We consider three
cases.

1. If sup(z) = sup(y), then z = y by the definition of Y, a contradiction.

2. If sup(z) > sup(y). Then s, > sup(M,[s,] N A) by the choice of s,. Hence
sz & My[s,] N A, but this contradict to M[s.] N A C M[s,] N A.

3. If sup(z) < sup(y). Note that then s, < s,. Hence z = M,[s,] N s, C
M,[s,] N s, =y and we have done.



For given f : [{M,[s;]NA: 2z € X}2 — 2, define f': [X]2 — 2 by f'(z,y) =
F{(M[s] N X, My[s,]NA) if Mp[s;]NA < My[s,]NA. Since X € NShy,, there exists
an unbounded homogeneous set H for f’. Then it is easy to see that {M,[s;]NA:
z € H} is unbounded homogeneous set for f. [

Combing the above lemma and Fact 2.4, we have the following.

Cor. 4.4 Assume )X is weakly compact > k and k is A-Shelah. Then I|C' C NShy)
holds for any club C of Pe), here I = {X C P : X~ (I1)3}. O

Next we argue more possibility of the local normality of the partition ideal. The
local normality of the 2-array partition ideal was shown. We see the case n > 2
with a bit weak assumption.

Lemma 4.5 Let n be a natural number > 0 and I = {X C P : X7 (I5)5).
Assume X = 2 for some v < X. Then there exists a club D of PcA such that I|D
is normal.

Proof: Fix v < X with 22 = A. Note that k < v < cf(A) and ¥ = X holds.
Fix A = {A; : € < \) a bijective enumeration of P(v). Take a club C shown in
Lemma 3.5 with the case u = v*. Fix a sufficiently large regular cardinal 6 and let
M= (Hg,€,6,MA). Lt D={NNAXeC:N <M, |N|<k NNk€r}. We
will prove D is a desired club.

Let X € (I|D)* with X € D. Let g : X — X be a regressive function.
Assume X, = {z € X : g(z) = a} € [ forall @ < A. Let fo : [Xo]2™ — 2 be
a couterexample of X, — (It)3. For t € [X]%, set ay = Ag(miney) N min(t) €
min(t) Nv. Now define f: [X]2! — 2 as: for {z1,...,Zas} € [X]ZH, if g(z1) =
coo= g(Tpy1) = @, then f(z1,...,Zns1) = falZ1,.- ., Tns1). Suppose not. Assume
gy F Qpoznyy 121 and let € = min(ag,..op Nggezyyy NT1) K€ € Ayzny, N2
then set f(x1,...,Tns1) =0. If € € ag,..5, then set f(zy,...,Tn1) = 1.

Then, by a similar argument of Lemma 3.5, there exists an unbouned homoge-
neous set H C X for f, A C v and z € P\ such that for any ¢ € [H]? if 2 < min(%)
then A Nmin(t) = a;. Take o < ) such that A = A, and put H* = {z € H :
2z <z, a €z} It is easy to check that H* C X,. Then by the definiton of f, H*
is an unbouned homogeneous set for f,, a contradiction. [

Note that the above lemma shows that the partition ideal over P, can be

locally normal even if A is singular.
Combing an arguments of Lemma 3.7 with Lemma 4.5, we have the following.

Lemma 4.6 Let n be a natural number > 0 and I = {X C P : X (IH)5H}.
Assume \ is inaccessible but not weakly compact. Then there exists a club D of
P such that I|D is normal. U
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