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HIGHER ORDER PAINLEVE EQUATIONS OF TYPE D"

MEKE REGERREHER EF ## (YUSUKE SASANO)
DEPARTMENT OF MATHEMATICS KOBE UNIVERSITY

ABSTRACT. A series of systems of nonlinear equations with affine Weyl group of
type Dlm is studied. This series gives a generalization of Painlevé equations Pyr
and Py to higher orders.

0. INTRODUCTION

In this paper we propose a series of systems of nonlinear differential equations
which have symmetry under the affine Weyl group of type Dfl) (I = 4,5,8,..).
These systems are considered as higher order analogues of the Painlevé equations
Py and Py. For each n = 1,2, ..., we find an algebraic ordinary differential system
with symmetry under the affine Weyl group of type Dé}z_*_g for 2n unknown functions
1,01, G2, P2, -+ Gn, Pn, CONtaining complex parameters (a}), (a3), ..., (o). Here the
symbol (o) denotes the set (af) = (oé"),ai”, ...,a,@)). Our differential system is a
Hamiltonian system, whose Hamiltonian is given as follows:

dg; OH dp; OH

- @i _ _ i =1,2,..,n),
it~ op;’ i g (i=1,2.n)

R(Qz,pz, dms Pm., t; ag))
t(t-—1) ’

H =3 Hyi(g it o, 0,0, 0l o)+ Y

i=1 1<i<m<n
where

R{a, Pty Gy Pras 1 02) 1= 2@t = )P1Gm((@m = 1P + 02,
and the parameters satisfy the following relations:

a§-°> + agl) + 2a§2) + ags) + oz?" =1(=12,.,n),
oV + 20 + ol — o, — o =0 (j=1,2,.,n— 1),
aj(,«s) - a§4) - 2(}_51)_1 e 05521 + 01521 =0 (] = 19 27 ST L 1)7

and Hy(q,p,t; o, 1, g, a3, ) denotes the Hamiltonian of the second-order Painlevé
VI equations; (see Section 1).

Moreover, for each n = 1,2,3,..., we find a (2n + 3)-parameter family of cou-
pled Painlevé V systems for 2n unknown functions gi, pi, g2; P2, - Gns P contain-
ing complex parameters (a1*), (), ..., (o). Here the symbol (a}) denotes the set
(af) = (¥, agz),a?)). Our differential system is a Hamiltonian system, whose

Hamiltonian is given as follows:
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R(Qz, Diy Gmy P, t; a'grzr,))
t ?

H=%" S Hy(gpo ;o0 e+ X

1,-—1 1<i<msn
where

R{(q1, D1, Grs P £ &) = 201G (G — 1)pm + 22),
and the parameters satisfy the following relations:
ag(-l) - ag-s) §f31 + Zam 5521 =0(j=12,.,n—1),
and Hy(q,p,t; 1,02, as) denotes the Hamiltonian of the second-order Painlevé V
equations; (see Section 5).
In this paper, We will study the case of d1mens1on 4, that is to say, the systems

of type D(l) and D5 ), respectively.
1. MOTIVATION AND MAIN RESULTS

In the works [10],[11],{12], the author studied higher order Painlevé equations from
the viewpoint of algebraic and Hamiltonian vector fields. In the case of the second-
order Painlevé vector fields, it is well-known that each of Painlevé vector fields can
be expressed as an algebraic vector field satisfying the following conditions:

(A) € H(P?, Op(—logH)(nH)) (n=1,2,3).
Here, Op:2(—log H) is the subsheaf of Ops whose local section v satisfies v(f) € (f)
for any local equation f of the boundary divisor H of P?2. Moreover, each Painlevé
vector field has the symmetry under the affine Weyl group (except for the first
Painlevé vector field, which does not have the required symmetry). Here, let us
summarize the following important properties of the Painlevé vector fields; (see

(8],[19))-

Notation.
o H € C(t)[z,y], e deg(H): degree with respect to z,y.
Painlevé equations Py Py Pry Prrr Prr
symmetry WD) | W(AY) [ W(A) [ W(Cy”) | W(AT)
degree of Hamiltonian H 5 4 3 4 3
ve HY(P? Op(—logH)(nH)) | n=3 | n=2 | n=1 | n=2 | n=1

We are interested in the condition (A) and symmetry under the affine Weyl group,
and wish to search for higher order Painlevé vector fields in algebraic vector fields
with these favorable properties. As examples of higher order Painlevé vector fields,
in 1998, Noumi and Yamada proposed a system of autonomous ordinary differential
equations for ! + 1 unknown functions fy, f1,.., fi involving complex parameters
Qo, 01, .., oy satisfying ag+oq +- - -+ = 1; (see [6]). This system’s salient feature is
that it has the symmetry under the affine Weyl group of type Al(l), where oy, a1, .., g
are considered as simple roots of the affine root system of type Al(l'). When [ =2

(resp. 3), this system of type A{” (resp. A{) is equivalent to the fourth (resp. fifth)
Painlevé equation Py (resp. Py/). When ! > 3, the higher order Painlevé equations

corresponding to these systems are not known to satisfy the Painlevé property, but
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it is widely believed that this is the case. They are considered to be higher order
versions of Py (resp. Pry) when [ is odd (resp. even). These two examples by Noumi
and Yamada motivated the author to find the examples of higher order versions other
than Py and Py in this paper. Let us summarize important properties of these two
systems as follows:

Notation. .
o H e C(t)[z,y, 2, w], e deg(H): degree with respect to x,y, 2, w.
symmetry w(Ag") WAL
Hamiltonian H Hy(z,y,t) + Hy(z,w,t) | Hv(z,y,t) + Hv(z, w, 1)
—Qyzw + 2 +2yzw
form of equations coupled Painlevé V' coupled Painlevé 1V
degree of Hamiltonian H , 4 3
o € H(P%, Ops(—log H)(nH)) n=2 n=1

These properties suggest the possibility that there exists a procedure for searching
_for such higher order versions with symmetry under the affine Weyl group of type
Dél). Here, let us consider the following problem 1.

Problem 1.

Can we show ezistence of a vector field v associated with coupled Painlevé VI
systems in dimension four satisfying the following conditions (A1),(A2)? If yes, can
we find it explicitly and is it unique?

Condition.

(A1) deg(H) = 5 with respect to z,y, z, w.

(A2) The vector field v has symmetry under the affine Weyl group of type D

To answer this, in this paper, we present an explicit 6-parameter family of fourth-
order algebraic ordinary differential equations that can be considered as coupled
Painlevé VI systems in dimension four with symmetry under the extended affine
Weyl group of type Dé , and which is given as follows:

(D)
& Ot e 2~ (a0~ Ve D - e =t
- q4(z —t){z — 1)+ 2(z - t)z((z = Dw + B2)},
% O - piie-dE-N+@-tz+- Da}y® +{(a0 ~ )2z - 1)
{ + o3(22 — t) + aa(22 — t — D)}y — anon + o) — 2y2((z — Dw + B)],
%i- = W{Zw(z —t)(z— 1)z — (Bo— 1)(z— 1)z — Bs(z — t)z
B~ 1)z — 1)+ 2z~ ez — D,
% - %"(%1-_1)[“{(’” —t)(z=1)+(z—t)z+(z— Db+ {(Bo - )22~ 1)
| 820 - 1)+ Bu(22 -t = 1)}w — Ba(f1 + B2) — 2(z — t)y((2z — Dw + Ba)]-
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Here z,y, z and w denote unknown complex variables, and ag, a1, .., as, 5o, B1, .-, Ba

are complex parameters satisfying the following relations:

gt +2mtastas=1 B+ +260+B+0.=1,

ar+20+as -0 —fa=0, s =y —2B,— B3+ B4 =0.

From the above relations, it is easy to see that the parameters ajz, oy, 8o, 51 also
satisfy the following relations:

l-—ag—a1 =20+ 20+ 55— b o = l—ay—ay — 203 — 20 — B3+ By

a3 5 4 5

1t ag—ar—20—208— s~ b B = 1—au+01+20!2“2ﬁ2—ﬂ3“‘/5’4-

Bo

2 2

Our differential system is equivalent to a Hamiltonian system, whose Hamiltonian
H is given as follows:

H = Hyi(z,y,t; aq, 01, 2, a3, o) + Hy1(2,w,t; Bo, b1, Ba, B3, Ba)
(2) N 2(z — tyyz{(z — Dw + Bo}
#Ht— 1) '

The symbol Hy{q,p,t; ag, a1, @2, 3, 04) denotes the Hamiltonian of the second-
order Painlevé VI equations, which is given as follows:

Hy (g, p,1; a0, 01, 0, 03, 01) = 55 (P*(q ~ t)(q — g =~ {(c0 — 1)(g— 1)g +s(g -
t)g+as(qg—t)(g—1)}p+ aoon + a2)(g — 1)) (o + a1 + 200 + a3 + a4 = 1).

Remark 1.1. Taking the holomorphic boundary coordinate system (X,Y,Z2, W) =
(z,y,1/2,—2(zw + B2)) of the system (1), the interaction term of the Hamiltonian
(2) changes as follows:
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20X —O)Y(Z-1)W
tt—1)
—ty(Z - 1)W
t(t—1) ’

H = Hy(X,Y,t) + H'vi(Z, W, 1) +

(3)

2
— Hyila,ut) + Hyr(Z2, W,1) + 2

Here, H'y(Z,W,t) is the Hamiltonian in the holomorphic boundary coordinate sys-
tem (Z, W) = (1/z, —z(zw + B2)), which satisfies the following condition:

dz A\ dw - dHV](Z, w,t; ﬁg,,@l,ﬁz, ﬁg, ,64) Adt = ClZ A dW - dH’V](Z, W, t) Adt.

Theorem 1.1, The system (1) is invariant under the transformations sy, s1, .., Ss, T,
7o, w3 and wy defined as follows: with the notations v = o4 — By and (x) =
(iE, Y,z,w, tv Qp, &, 02, V1,4 ﬁ?y 1637 184)’

g

o'
so 1 (%) = (x,y—z—_ﬂ—t,z,w,t; —ag, 01y, Q00 V1, Bo, B3y Ba)s
s1: (%) = (2,9, 2, W, T 00, —ay, Qatar, M, B, B3, Ba);

[84
Sg 1 (*) — ($+'&%2 Z},Z,w,t;ao+a2, 01+Of2, —‘C‘(2,’)/1+O£2,/52,,63, ﬁ4)7

e 7sz+'—11—7t;a07a1)a2+71a”712ﬂ2+71:ﬁ37ﬁ4))
r—=z r—2z

531 (%) = (2,9
S4¢ (*) — (3:7 Y, Z—i—%, w7t; g, 01, O, ’Yl+ﬁ2’ _521 63"}_)82; ﬁ4+ﬁ2))

S5 ! (*) — (CE, Y, z, w“;@f'—la tJ Qp, O3, A2, V1, ﬁ2+53a —'63; 184)7

147
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g : () = (2,9, z,w—%,t; ag, a1, 2,1, B2 4084, Bs, —B4),

tt-D)+tz—-t) (z-t)((z—ty+a) tlt—1)+tz—1)
m () = z—t - #(t — 1) ’ Z 1 ’

_(z=t(z = thw + B)
tt— 1)

7ta o1, Og, (2,71, 627 641 éB3)>

t  zlzw+ t z{zy+ o
g - (*) - (_7_ ( 182): T ( Y 2):t;ﬁ3) ﬂ47/82:717a27a0;a1)1
z t T 1

UEIE (*) - (1_£7 -Y, 1_Z1 —w, 1'—t> Qg, &1, A2, 71, ;321 ﬂ41 ﬂS);

(tt—_lm)m» (t~z)§t(3£1:f)y—ae) ’ Ft;l‘”’)z’ (t—z)(:z;’:f)w—ﬁz)) 1—t; a1, 0o, @2, V1, B2, B3, Ba).-

g (%) = (

Remark 1.2. It is easy to see that the parameters og, oy, 02, 04, B, B3, B4 satisfy
the relation: ‘

ap+ oy + 20+ 2(as— Ba) + 282+ B+ B =1,

and the generators me, s, Ty satisfy the relation:

Tg = T9TM3Tg.

Remark 1.3. Taking the holomorphic boundary coordinate system (X,Y,Z, W) =
(1/z, —z(zy + 3), 2, w), it is easy to see that the transformation s; can be explicitly
written as follows: :

s1: (X, Y, Z, W, t; ag, a1, 02,71, B2, B3, Ba)

(XY — a1/ X, Z, W, t; o0, —01, 1 + 03,M1, B2, B3, Ba)-

Proposition 1.1. The transformations described in Theorem 1.1 define a repre-
sentation of the affine Weyl group of type Dél), that is, they satisfy the following
relations:

502 = 81 = 892 = 53 = 82 = 857 = 852 = (m?) = (M?) = (M) = (n?) =
(5081)* = (5083)° = (s084)® = (5085)> = (8086)" = (5183)* = (s5184)" = (s185)" =
(5156)2 = (5954)2 = (5955)7 = (5286)% = (8385)% = (8386)% = (s586)% = 1,(8082)* =
(5182)% = (8283)° = (5384)% = (8485)% = (8486)° = 1,

T1(80, 51, 52, 83, 84, 55, 55) = (1, 50, 52, 53, 54, S6, 85)71, Ta(So0, 81, 82, 83, 84, S5, 85) =
(85, 86, 84, 53, S2, S0, 51)T2, T3{50, 51, S2, 83, 84, S5, 86) = (50, 81, 82, 53, S4, 86, 55)73,
71—4(30) 81, S2, 83, 84, Ss, Sﬁ) = (817 89, 52, 83, 84, Ss, SG)WII-

2

Proposition 1.1 is proved by straightforward computations.
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Remark 1.4. The following algebraic and Hamiltonian differential system

()
(dz 1

@ tE-1)
+ (=1 + ag + a3 + 2tas + 2tay + tas + as + tag)z — t{as + o)
-2t — z)z(—w + 2w + a4) },

{223y — 2(t + Day + (1 — ap — 203 — 204 — a5 — 05)z° + 2ty

dy 2,2
2 - -3 2 _ 2 _ _ _ _ 3
dt  t{t- 1){ zhy® +2(t + Vzy” — ty” — 2(1 — g — 203 — 204 — 05 — 05)TY
_ (—1 + ap + a3 + 2taz 4 2tag + tas + ag + tae)y
3 + ag(—1+ ap + ag + 203 + 204 + a5 + ag) — uz(~w + zw + ay)},
dz 1
gt‘ = m{Zzaw — Z(t + 1)22'{1) + (]_ — Qg — Q3 — Qg — a6)22 + 7w

-+ (—1 + ag + &3 + ta5 + og + taﬁ)z - tOdﬁ — Q(t - z)y(—l + Z)Z},

d 1
_c% = -t(t—_l—){——3zzw2 +2t + 1)zw2- —tw® —2(1 — ay — 03 — a5 — 0g)ZW
—(-1+op+as + tas + ag + tag)w + ag(—1 + ap + az + ag + o5 + ag)

L +2(t — 2)y(—w + 22w + 04)}

coincides with the system (1) when (s, oy, as, ag) is rewritten as (cw— B4, Ba, B3, Ba),
and this system is invariant under the affine Weyl group < wp,ws, .., ws > of type
Dél), whose generators w; are ezplicitly written as follows:

wy : (¥) = (z,y—ao/(z—1), z, w,t; —ag, 1, 02 +0p, O3, ay, 05, Og),

wy - (*) - ("l"7 Y, z,w, t; Qp, — 04, a2+a1; 3, 4, O3, 055),

wy 1 (%) = (z+0a/y, 4, 2, w, t; aptag, o+, —0, Az, 0y, s, s),

wy : (%) = (z,y — as/(z — 2),z,w + as/(z = 2),t;00,01,00 + a3, —03, Qs +
Qa3, &5, 016),

Wy - (*) - (ib”, Y, z+a4/w, w, t; Qg, 0, O, a3+a4, —Qy, a5+a4, a6+a4)1

ws 2 (%) = (2,7, 2, w—as/(z—1), t; ag, 01, 2, O3, Au+05, — 05, )

We : (*) — ($1y1 Z, w“Cfs/Z; t) Qy, 01, Oz, O3, a4+aﬁv s, '—Ota)-
Here the parameters satisfy the relation og + ay + 20 + 203 + 204 + 05 + Qs = 1.
We give this alternate formulation (4) to the system (1), because the system (4) will
be useful in the proof of Theorem 1.2.

In addition to Theorem 1.1, we give an explicit description of a confluence to the
system of type Agl):

Theorem 1.2. For the system (4) of type Dél), we make the change of parameters
and variables

ao=¢"1, a1 = Az, ag = Ay, a3 =A1—B1, a4y = By, a5 = By—Ba—¢™", ag = By,
By=1-24;-24y—As+B1—B,, t = 14T, (a—-1)(X-1)=1, (z-1)(Z-1) =1,

(z-1y+ (X -1)Y =4, (z-Nw+(Z-1)W=-5B,,
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fmm Qag, O3, 02, O3, 4, ﬂﬂ; ﬁls ;623 63’ ;347 tv z.Y,2W to Ala AZ; A31 Bll B?: €, T; X: },: Z# W.
Then the system (4) can also be written in the new variables T, X,Y, Z, W and pa-
rameters Ay, A, As, By, By, € as a Hamiltonian system. This new system tends to

the system of type Agl) ase — 0.

1
2. REVIEW OF THE SYSTEMS OF TYPE Aff) AND TYPE Ag )

Let us recall the system of type Aé”, which is explicitly written as follows:

(3)
( 2 2
do _ 2%y +2maw T o gyt BTN Lo ta,
dt t t t
dy —2zy®—2yzw 45, 23y o) + a3+ 05 oy
& e e
) dt - { Ty t ( + 13 )y t
d 2 2 2
dt t t :
dw —2zw? - 2zyw s 22w oq +as+ as o3
e " +w +~t—+2yw—(1+ : )w-{—T.

Here, z,y, z and w denote unknown complex variables, and ag, o, .., @5 are complex
parameters with ag + o1 + s + o3 + a4 +as = 1. The above differential system (5)
is a Hamiltonian system, whose Hamiltonian H ,¢) is explicitly written as follows:

5

2,,2

2
Yy - oy + a3+ o a1z
HA?) (33, Y, 2, w1t; Qag, -+, a5) = *ﬁ‘E”_y'_my2+(l+;_‘;—_—é)xy+(a2+a4)y“_;_
2,,,2 2
z — Z'w 2
+__’(_1).TZ_ — Z‘wz 4+ (1 _E_ a_l_t?_:i.i__?’_s)zw +O.’4'£U —_— 9_?_ — 2yzw+ x?izw_

The system (5) admits action of the affine Weyl group < s, 51, S2, 53, $¢, 85 > of
type Ag) as group of the Biicklund transformations. By using the notation (x) ==
(z,y, z, w, t; ag, a1, (g, A3, Q4 Os), the generators s, sy, .., 55 are explicitly written as
follows:

Sg - (*) - (‘767 y_aﬂ/(x_t)a Z,w, t; —0Qy, Qy-+0Ql, Oig, i3, O, a5+ag)7

s1: (%) = (342, y, 2,w, 1; ao+on, —ou, o0y, 03, 0, Os),

82t (*) - (xs y—'ma_zz: Z, w+f_221 t: Oy, o +0, —0, Q3+0g, Oy, Cl5),

83 ¢ (*) - (33, Y, Z—}—%}, w, t; &g, O, a2+a3; —Qs, Cgt03, a5)3

541 (%) = (2,9, 2, w— 2, t; ag, 1, Oz, Q3+, — O, A5+0),

851 () — ($+y—ff:7;y;z+;ﬁf_—pw;t; ap+as, o1, G, g, Q4+Qs, —Qs).

There is the following relation between the generators of type A;) and holomor-

phic boundary coordinate systems of the system (5):

s: (2,9, 2,w) — (z+a/y,y,z,w) <= (X,Y,Z,W) = (1/z, —z(yz + ), 2,w).

Let us describe the above relation between all generators of type Agl) and holo-
morphic boundary coordinate systems as follows:

Holomorphic boundary coordinate systems with regard to the transformations s;

8p * Tp = “((LL'—t)y— aO)yv Yo = 1/y1 =2, Wy =W,
siizy=1/z, yy=—(zy+ o)z, 1 =2, Wy =w,
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s2::2=—(z -2y -y, p=1/y, =2, wy=w+Y,
S3:T3=2, Ys=1y, 23 =1/z, wy=—(2w+ a3)z,

Se:Ta=1, Ys =1, 2= —(2w— alw, wy=1/w,

ss:xs =1/, ys = —((y+w—-1)y +os)z, 25 =21, W =W.

Remark 2.1. Considering the relation between the generator sy and the boundary
coordinate system (za,Ya, 22, W), we take the linear symplectic transformation m :
(z,9,2,w) = (z — 2,9, z,w+y). Then it is easy to see that

m™lsom s (z,y, z,w) = (z,y — o2/, 2, w).

Each coordinate system is a holomorphic coordinate system with a three-parameter
family of meromorphic solutions of the system of type Agl) as the initial conditions.
These coordinate systems can be obtained by blowing up accessible singular points
in the boundary divisor H = P3 of P*.

By using the above relations, we can show the following proposition.

Proposition 2.1. Let us consider an algebraic and Hamiltonian differential system
with Hamiltonian H € C(t)[z,y, z, w]. We assume that

(A1) deg(H) = 4 with respect to ©,y, 2, w.

(A2) This system has holomorphic boundary coordinate systems (@5, ys, 2i,w;) (8=
0,1,..,5).
Then such a system coincides with the system (5).

By Proposition 2.1, we will now see that — rather than assuming the condition
that algebraic and Hamiltonian differential systems have symmetry under the affine
Weyl group of type Aél) — we can research the algebraic ordinary differential systems
here under the assumption that algebraic and Hamiltonian differential system has
holomorphic boundary coordinate systems associated with the generators of the
affine Weyl group of type A?),

Next, let us recall the system of type A,(;l), which is explicitly written as follows:

( %=x2+23y+2zw—t$—a2—a4
d
%:—yz—%y-l-ty—al
(6) < dz 5
Et.:z +2zw+2yz—tz— oy
C%;_:—wz—2zw—2@,,'Lc)—i-tw--053-

Here, z,y, z and w denote unknown complex variables, and ag, @, .., &4 are complex
parameters with o +a1 + 02 +ag + o4 = —1. The above differential system (6) is
a Hamiltonian system, whose Hamiltonian H,,w) is explicitly written as follows:

H (2,9, 2,w,t 00, -, ) = Ty + 2" — toy + en® — 0z + )y
4

422w + z2u? — tzw + azz — cuw + 2yzw.

The system (6) admits action of the affine Weyl group < Sg, 81, S2, 3,84 > of
type A as group of the Bicklund transformations. By using the notation (¥) =

151
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(z,y,2,w,t ap, 01, a2, (3, ), the generators sp, sy, .., 84 are explicitly written as
follows:

z+ 3:+'y—i—w —3, W, §; —Q, a1 + 0, 2, O3, Qg +

(*) ( :C+y+w —t? y- :s+yTw—-t’
ao),
s1: (%) = (2+2,y,2,w, 8 aoton, —ou, 0o, 03, 0),

s2: (%) = (2,y— 2%, 2, w22, 15 o, g +Qg, — g, A3+0tg, Q)

s3: (x) = (z,y, 24+%, w,t; ap, a1, 0y +03, — 03, s +03),

Sg: (%) — (m,y,z,w—%,t; Qo+, 01, Qg O3+, —Q4).

There is the following relation between the generators of type Aff) and holomor-
phic boundary coordinate systems of the system (6):

s:(z,y,2,w) — (T + a/y,y,z,'w) &= (XY, Z,W) = (1/z, —z(yz + a), z, w).

Let us describe the above relation between all generators of type A,(;l) and holo-
morphic boundary coordinate systems as follows:

Holomorphic boundary coordinate systems with regard to the transformations s;
so:zo=—((z+y+w—1y—ao)y, =1y, % =2+Yy, wo=w,

siiy=1/z, p=—(ay+ o)z, z1 =2, w =w,
satmy=—((z—2)y—0ay, a=1/y, n=2 wy=w+y,
S3:T3=2, Ys=1Y, 23 = 1/z, ws = —(2w + a3)z,

S4:XTa =2, Yo=Y, 24 = —(2w — ag)w, wy =1/w.

Remark 2.2. Considering the relation between the generator sy and the boundary
coordinate system (z3,%ys, 22, Ws), we take the linear symplectic transformation m :
(z,y,z,w) = (z — z,y,z,w-+y). Then it is easy to see that

mTsom : (z,y,z,w) — (2,y — aa/T, 2, W).
Each coordinate system is a holomorphic coordinate system with a three-parameter
family of meromorphic solutions of the system (6) as the initial conditions. These
coordinate systems can be obtained by blowing up accessible singular points in the
boundary divisor H = P? of P4.
By using the above relations, we can show the following proposition.

Proposition 2.2. Let us consider an algebraic and Hamiltonian differential system
with Hamiltonian H € C(t)[z,y, z,w]. We assume that

(A1) deg(H) = 3 with respect to z,y, z, w.

(A2) This system has holomorphic boundary coordinate systems (z;, y;, zi, w;) (i =
0,1,...4).
Then such a system coincides with the system (6).

By Proposition 2.2, we will now see that — rather than assuming the condition
that algebraic and Hamﬂtoman differential systems have symmetry under the affine
Weyl group of type A4 — we can research the algebraic ordinary differential systems
here under the assuraption that algebraic and Hamiltonian differential systems have
holomorphic boundary coordmate systems associated with the gemerators of the
affine Weyl group of type A4 .
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3. AN APPROACH FOR OBTAINING SYSTEM (1)

Much effort has been made to investigate the algebraic ordinary differential sys-

tems with symmetry under the affine Weyl group of type Dél), but these systems

have not yet been found. Taking a hint from the representation of the affine Weyl
groups of type A,&l) and Agl); (see [7]), we consider Problem 1. We do not yet have

the explicit description of the symmetry under the affine Weyl group of type Dél)
with respect to z,¥, z,w, so we will construct the symmetry under the affine Weyl

group of type Dél) by using a part of the symmetry under the affine Weyl groups
of type Ail) and type Agl). In the case of the Painlevé systems, the affine Weyl
groups W(Agl)), W (ALY and W(D{) have a common subgroup, which is isomor-
phic to the classical Weyl group W(Ay). Here, the elements u; of the subgroup
W(A2) =< u1,uy > are explicitly written as follows:

uy : (z,y) = (.7;+-7j,y), uy : (z,y) = (2,9 — :;3)

Here, y; and y; are constant parameters.

Agl) Aél) Dil)
Py

Pry Py
These transformations us,uy correspond to holomorphic boundary coordinate sys-
tems (z;,%:) (2 = 1,2), which are explicitly written as follows:

(z1,31) = (1/z, ~(2y + 71)7), (22,72) = (—(zy — Y)Y, 1/y)-
Moreover, these transformations u;, us correspond to the accessible singular points
Py, P, on the boundary divisor of P2.

P ~

Q P2 P],/ _flﬂ PQ'\ *_P‘}}, Pll _I:l Pz ‘_f)2f
\/ \/ . v ‘¥2f/
Py Py

Py

Proposition 3.1. Let us consider an algebraic and Hamiltonian differential system
with Hamiltonian H € C(t)[z,y]. We assume that

(A1) deg(H) = 5 with respect to z,y.

(A2) This system has holomorphic boundary coordinate systems (z:,9:) (1 =1,2)
associated with the generators of the Weyl group W(Ay) =< uy,up >, which are
explicitly given as follows:
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(/5 (-’Bl) yl) = (1/1‘7 ‘“(:L'y + Vl)z))
ug : (2, 32) = (=(zy — 1)y, 1/v).
Then such a system 1s explicitly given as follows:

dz
yr = 2a1:53y + 3a2$2y2 + 2a3332y + a4z’ + 2057y + Q6T — Yols — ’722112

%3—:- = —30,2%% — 2057y° — 2a37Y* — asy® — 204ZY — QY — V104 + M1°C1.
Here, ay, as, .., ag are unknown rational functions in t.

By the above proposition, if algebraic and Hamiltonian differential systems in
dimension two with the condition (A) (given in Section 1) have symmetry under the
group W{Ajy) =< uy,uy >, then the part of degree 2 with respect to z,y in the right
hand side of this differential system is determined by the transformations u;, u,. In
the case of dimension 4, it is easy to see that the affine Weyl groups W(A?)) and
W(Af,})) have a common subgroup W, which is isomorphic to the classical Weyl
group W(A,). Here, the elements g; of the subgroup W(A,) =< g1, 92,93, 94 > are
explicitly written as follows:

A(l)

g1t (:v,y,z,w) — (.’E,y,z-l—%,w), g2 (:':,y,z,w) - (m’yazaw—l—%x

Y4 zw VY4 )
T —2z T — 2z

93 (2,9, 2,w) = (z+ -Z-f,y,z,w), 94 (T, 9, 2,w) = (2,9 —
Here, 71, 72,73 and -4 are constant parameters.

Proposition 3.2. Let us consider an algebraic and Hamiltonian differential system
with Hamiltonian H € C(t)[z,y, z,w]. We assume that

(A1) deg(H) = 5 with respect to z,y, z, w.

(A2) This system has holomorphic boundary coordinate systems (z;, yi, 2;, ;) (1 =
1,2,3,4) associated with the generators of the Weyl group W(Ay) =< g1, 92, 93, 9s >,
which are explicitly given as follows:

=z, =y, a=1/z, vy =—z(zw+m),

P2 T2=2, Y=Y, 2= —"LU(Z'LU +/Y2)y W = 1/w7

931 T3 =1/z, y3 = —~z(zy +13), 23 = 2, W3 = W,

g0:2e=—((z—2)y+7)y, ya=1/y, za=2, wy=y+w.

Then such a system is explicitly given as follows:
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( dz
= = (by + ba)zy + (b3 + ba)zy + bs2” + 2bs7Y + (b — Yabs + Yabs)x + (72 + 74)bs

+ 2bgzw + baxzw + byxlzw + bsz®w + byz2Pw + Y bsz + Yibezz,

dy  3(by + by)ziy?
= SO EBITY L bay? — ey — 2bsy — (b — s + by

dt )
by + ba)ys?
+ & '2“"—“2)73 — vsbs — byyzw ~ 2byTYZW — boy2 w — byy1yz — biyazw,
d _— —
z (b + ba) P+ (b + )P + 2bs + 2v1by — 2v3b1 + Yaby 74()222

2

+ 2bgzw + brz + Yobg + 2bgyz + bazyz + bi2’yz + bsyz® + byzyz® + ysbi2z,
é’lﬁ - _3(171 + bg)zzwz
dt 2

b — Y1(2bs — by + b — 273by + Yaby — v4bo)
2
— 2bsyzw — 2byzyzw — y1bzy — N1bazy — Y3bixw.

dt

- (ba + b4)zw2 - bsw2 — (255 + 2v1bg — 2v3by + v4by — 74b2)zw

— 2bgyw — byzyw — byziyw

Here, by, by, .., by are unknown rational functions in t. Furthermore, the Hamiltonian
H 1s explicitly written as follows:

zhy? + bsmzy + bezy? + (b7 — 11bs + vsbs)xy + (72 + va)bsy

2
+ (¥5b5 — G +2b2)73 Yz + (b ; b2)23w2 n (b3 ‘;‘ bs) 2uw?

(2b5 + 2v1by — 2v3by + Yaby — Yaba) 5 . (25 — y1by + 11by — 2y3by + sy — vaby)
“+ 9 2w+ 5 z
+ 2bgyzw + byzyzw + bz yzw + bayz’w + byzyz®w + Ybsyz + 1ibaezyz + biyszzw.

= (b, + b2)m3y2 N (b3 + ba)
2

2

+ bgzw? + brzw + Yabgw

By the above proposition, if algebraic and Hamiltonian differential systems in
dimension 4 with the condition ¥ € H®(P*, Ops(—logH)(nH)) (n = 1,2,3) have
symmetry under the group W(A4) =< g1, g2, g3, 94 >, then the part of degree 2 with
respect to z,y, z,w in the right hand side of this differential system is determined

by the transformations g1, g2, 93, 4-

4. PROOF OF THEOREM 1.2
As is well-known, the degeneration from Py to Py; (see [16],[17]) is given by

-1 -
y Og = Al’

agms"l, i :Ag, ango—Ag—'E
t=14+eT, (z- )X -1 =1, (z—-1y+ (X ~-1)Y =~A,.
Notice that Ay + A; + A; + As = g + a3 + 202 + a3 + a4 = 1 and the change of
variables from (g, p) to (@, P) is symplectic.
As the fourth-order analogue of the above confluence process, we consider the
following coupling confluence process from the system (4). We take the following
coupling confluence process Py; — Py for each coordinate system (z,y) and (z,w)

of the system in (4)
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— —1
Qg =& 1, =A3, ap = Az, ag = Ay — By, oy = By, Cl‘5=BO“Bz“€ , ag = By,

BQ = 1—2A1—2A2“A3+31—B2, t= 1+ET, (Z’-‘l)(X—l) = 1, (Z—].)(Z—‘l) = 1,

-y + (X 1Y =-A, (z—Dw+(Z-1)W =-B,,

and take the limit £ — 0. Moreover, by the following transformation ¢

P . (X1.Y; Z7W T; Al; AQyA?n Bl: BQ) - ("‘tlE, —y/t’ —tz7 *w/ta .-t7 a?+a47 a1, O, Oy, 03)’

we obtain the system of type Aél), which is explicitly written as follows:

(d 2z2y + 2 2 +a3+a

dt ~ A t i

dy —2xy?—2yzw o 2zy oy + a3+ os o

ay _ A G e S B . PP R

dt ? LRt t Wt

d 2 2 22 +o3+a
j—w__~22w_2yz+(l+W}z+a4,
dit t t

d —2zw? — 2 2 Q

\E%;-: zwt i w2+—°zt£)-+2yw—(1+9~%j~f;it——5}w+%§.

Here, g+ oy +ag + a3+ o+ a5 =1

5. THE SYSTEM OF TYPE D)

In this section, we present a 5-parameter family of algebraic ordinary differential
equations that can be considered as coupled Painlevé V systems in dimension four,
and which is given as follows:

7 .
(')%:2%“_9 m2_2§2—(1 2a2+2a3t+a5+a4)$+ag—i-a5+22((z—§)w+a3),
dy 2:cy y? 2009 + 203 + a5 + Qg
LE ”;Z““w ey
de_2u, o Bu_ g cotar, o Beo)
2
L%{:—%f +%~——2zw (1+_ii-9fi)w—a _Qy(-—w—}-t?zw-i—ag).

Here z,v, z and w denote unknown complex variables, and ag, a1, .., a5 are complex
parameters satisfying the following relation:
Qg + Qi +2a2+2a3+a4+a5= 1.

Theorem 5.1. The system (7) is invariant under the transformations so, 1, .-, 85,71, 72,
w3 and w4 defined as follows: with the notation (x) == (z,y, z,w, t; ag, 01, 02, 043, Oy, O'5),



8o

81

89 ¢

S3

S4

85

Ty s

Uy

T3

Ty .

Sz, y, 2, w, t; 0p, iy, 2, O3, O, 05 ) = (T+

Az, y, 2,w, 1 Q, Q1, Qa, O3, Ay, O5) — (2, Y, z,w—(
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Dynkin diagrczzm of type D5

Qg
+ ¢

Y, z, wat) -0, &1, a2+a0; i3, Olg, Cts),

- - al
. (CL', Y, z, 'LU,t, Qg, 1, 02, (3, a4705> - (Z+'§"3y7 sz,t; g, '—Ci]_,Cl{Q—!"CZl, 3, a4,a5),

(1‘1 Y, z, wat;QO: oy, g, (g, (g, aS) —

Qg
(z,y — , 2, W+ P Z,i;ao + g, 01 + g, —Qi2, 3 + ag, 04, 0i5),

r—=z

a3
: (.’L', Y, Zawit;ao';al;aQa Qag, 0‘4aa5) - (x1y7 Z+anﬂ tv OZ(),C!]_,Q2+C\:’3, —-ag,a4+a3,as+a3),

3 t; Qp, O, a2,03+a4, —Qg, Ofs),

Qg
z—1)

Qs
: (3"7 y,Z,’LL‘,t; O, O, Qg (3, (Xg, C‘(s) - (93:% Z, w"?vts a05a17a2:a3+a5:a47 -—(15),

(z,y,z,w,t; ap, 01, 02, O3, Qg as) = (1—z,—y—t,1—z, —w, t; o, O, ag, a3, O, 0 ),

! (33, Yy, z,w, t; g, Or1, i, O3, iy, CE5) - (<y+w+t)/t7 —t(z_l)7 (y+t)/t7 —t(m—z), -—t*

Q5, Oy, O3, (g, i, a()):

Az, y, z,w, t; o, 011, Oz, O3, Ol as) = (1—z, -y, 1=z, —w, —t: g, O, 09, O3, s, A ),

(*’L‘) Y, z, W, tv g, 01, g, (3, O, C{5) - (.'E, y+t1 Z,W, —ty oy, O, O, O3, 04, 0!5).

Remark 5.1. It is easy to see that the generators my, s, M Salisfy the following
relation:

Tqg = T3 Mo.
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Theorem 5.2. The transformations described in Theorem 5.1 define a representa-
tion of the affine Weyl group of type D , that is, they satisfy the following relations:
2 62 o2 o2 o2 2m(ﬂ,2‘x(7{2)ml(55)2:(55)2=
S0 81 83 83 84 S5 %) 2 (5081 083)
(s084)® = (s085)° = (s155)° = (8184)" = (5185)° = (5284)% = (5285)° = 1, (s483)” =
(5052)3 = (3182)3 = (3283)3 = (3334)3 = (5385)3 = 1, mi(S0,51,52,53,84,85) =
(81, 80, 52, 53, S5, 84)71, Wz(30,31,82,83,84,3a) = (85>S4783,82,81780)7%73(30,81,32, 35
84,85) = (30,51552,33,35,84)%7 T4(S0, 81, 82, 83, 54, 85) = (51,80, 82, 53, 54, 85) 4.

Dynkin diagram of twe@p

b

Dynkin diagram of type DsY

Our differential system (7) is equivalent to a Hamiltonian system, whose Hamil-
tonian H is given as follows:

2]

H= HV(m’yat;QQ + Qs, Qy, Qg + 203 + 01’4) + HV(Z,‘ZU,t; s, (3, Cl44,)
(8) 2yz{(z — L)w + as}
+ 7 .

Here, the symbol Hy (g, p,t;71,72,7vs) denotes the Hamiltonian of the second-order
Painlevé V systems, which is given as follows:

—Uplp+t) —(n+ +71p + ot
HV(Qup:t;'Yl;'YZ”Yﬁ):q(q )p(p + 1) (”f; Y5)ap + P + natq

In addition to Theorems 5.1 and 5.2, we will prove that the system (7) degenerates
to the system of type A, by taking the coupling confluence process of Py — Pry.

Theorem 5.3. For the system (7) of type Dél}, we make the change of parameters
and variables

1
ag = Ag — Ay —A3+§€_2, oy = Ay, oy = Ay, a3 =A4;, oy = %5_2, as = Ay,
t= E6"2(1 +2T), z=— eX y=—H1l-eX)[Y —e(4; + XY)]
2 ’ 1“-€X7 1 1
eZ 1
2= =0, w=—¢ (1-eZ)[W —e(4s + XY)],
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from oy, a1, o, a3, g, s, t, T, Y, 2, W to Ag, A1, As, Az, Ay, e, T, X, Y, Z,W. Then the
system (7) can also be written in the new variables T, X,Y,Z,W and parameters
Ag, A1, Ag, A3, Ay, € as a Hamiltonian system. This new system tends to the system

of type Aff) ase — 0.

It is well-known that the fifth Painlevé equation Py has a confluence to the third
Painlevé equation P;;;, where two accessible singularities come together into a single
singularity. This suggests the possibility that there exists a procedure for search-
ing for fourth-order versions of Painlevé III, by using Takano’s description of the
confluence process; (see [16],[17]) from Py to Pyy for the coordinate systems (z,y)
and (z,w), respectively. In this vein, the goal of this work is to find a fourth-order
version of the Painlevé III equation with symmetry under the group which degen-
erates from the affine Weyl group of type Dél) by the coupling confluence process.
In this paper, we also present a 4-parameter family of algebraic ordinary differential
equations that can be considered as coupled Painlevé III systems in dimension four,
and which is given as follows:

(dz 22y — 22 + (1 — 20p — 203 — 204)T + 2037 + 22%W
dt 1
dy _ —2zy% + 20y — (1 — 209 — 203 — 204)y + 1
©® 3T s o
dz _22%w-—z + (1 - 204)z + 2yz +1
dt t
dw  —2zw? + 2zw ~ (1 — 20)w — 203y — dyzw + o3
\dt t '

Here «,y, z and w denote unknown complex variables and ag, o1, 02, 03 and a4 are
complex parameters satisfying the following relation:

ao—l—a1+2a2+2ag+2a4:1.

Theorem 5.4. The system (7) is invariant under the transformations so, 51, .., 84,1,
Ty defined as follows: with the notation (x) := (2,9, 2, w,t; &, 01, 02, A, ),

651
(07 o o
m <;: m )
Qo

Qg
S0 (¥) — (:c-*-—-———l,y,z,w,i; — 0, i1, Q-+, O3, ),
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‘ oy
81 ¢ (*) - (CL’-F‘;‘, Y, 2, W, t; oo, — i, ayt0oy, 03, C¥4),

2 83
y 2, W+ z:t; a0+a2,a1+a2,~a2,a3+a2,a4),

523(*)—*($,y—x—z PR

as
531 (¥) = (2,9, 24— w, b a0k, 0, e+, —ag, a4+03),

]

2&4 t
8q ¢ (*) - (:E’ya Z,w— . +;§7 —ta Qg, Oy, O, C):3"}—2(147 —a‘l);

Tyoe (*) - (—$>1—y’ —Z, =W, ——tv alaa07a27a3wa4)r

t z t z
G (*) - (;’ mZ(Zw+a3)= ;7 _z(xy+al)7 t? 204+03, ag, Qg, (ao—al)/27 &1)-

Theorem 5.5. The transformations described in Theorem 5.4 define a representa-
tion of the affine Weyl group of type BS), that is, they satisfy the following relations:

502 = 812 = 897 = 832 = 8,2 = (m?) = (m?) =1, (s051)* = (5083)* = (s084)% =
(s5183) = (5184)% = (5284)? = 1, (5082)° = (81%2)° = (5983)% = 1, (szsq)* =
1, m18g = 817y, W81 = STy, M1S2 = 81, M183 = 837y, M1S4 = 54771

Our differential system is equivalent to a Hamiltonian system. The Hamiltonian
H is given as follows:

- iyly — 1) + z{(1 — 200 — 203 — 204)y — 01 } +2y

t
10
(10) N 2Z2w(w — 1) + 2{(1 — 2a4)w — as} + tw N 2yz(zw + a3)

t t

Dynkin diagram of type Ds() Dynkin diagram of type By

Theorem 5.6. For the system (7) of type Dél), we make the change of parameters
and variables

1
ag = Ap, a1 = Ay, ag = Ay, a3z = As, 04422:44“";, a5 =,
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X
Bo=Ay, Ba =243~ t=—eT, 2 =1+, y=£TY, Z=1+—Z;, w=eTW,
el eT

from o, o1, 0z, O3, g, @5, £, T, Y, 2, W 10 Ag, A1, Az, As, Ay, e, T, X, Y, Z,W. Then the
system (7) can also be written in the new variables T, X,Y, Z,W and parameters
Ag, A1, Ay, Az, As, € as a Hamiltonian system. This new system tends to the system

9) of type BM ase — 0.
9) )

By the following theorem, we show how the degeneration process in Theorem 5.6
works on the Backlund transformation group W(Dél)) =< 8g, 81, .-, 55 > described
in Theorem 5.1.

Theorem 5.7. For the degeneration process in Theorem 5.6, we can choose a sub-
group Wy g of the Bécklund transformation group W(Dél)) so that Wy, p
5 4 5 4

converges to W(BL) as e — 0.

6. PROOF OF THEOREM 5.3

As is well-known, the degeneration from Py to Pry; (see [16]) is given by

1
ao = Ag + %5—2, a1 = Ay, o =43, az = _*2“5'2,
t= ~1—5'2(1 +2T), ¢ = — ex y=—eH1-eX)[Y —e(4 + XY)],
2 ’ 1—-eX’

As the fourth-order analogue of the above confluence process, we consider the
following coupling confluence process from the system (7) by taking the above pro-
cess for each coordinate system (z,y) and (z,w) in (7), respectively. If we take the
following coupling confluence process Py — Pry for each coordinate system (z,y)
and (z,w) in (7)

1 1 _
aoZAo*Az—As“F—Z‘S—Z, a; = Ay, o = Ay, a3 = As, 04:“55 2, as = Ay,

eX

L y=—H1- — (A + XY
o YT (1 —eX)[Y —e(A + XY,

1
t= -2-5—2(1 +2T), ==

B ez
1—¢e2’

2 =

w=—c"Y1—eZ)[W - e(ds + XY)],

and take the limit € — 0, then we can obtain the system of type A,(f), which is given
as follows:

161
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’ CZ = —z% + 4oy + 4w — 2z — 24, — 24,4
d
‘ dﬁ —2° 4 2zy + 2y + A
(11) ) dz 9
= =7 + dzw + dyz — 2tz — 2A,4
g%z —2uw? + 22w — dyw + 2tw + As.

Remark 6.1. The system (11) is invariant under the transformations sg, si, .., 4
defined as follows: with the notation (x) := (z,y,z, w, t; Ao,Al,Ag,Ag,A4),

s (¥) = (z— a:—~2y2:420w+2t’y :c-»2yf2w+2t’z 200 — Ao, Ar1-+4g, Az, Az, As+
Ap),

81 (*) - (Z‘+A Yy Y, 2, W, t A0+A1, Al,A2+A1,A3,A4)

83 @ ( )“) (.’E y—x z,z w—f—x z,t AQ,Al—f—Ag, A2,A3+A2,A4),

s3: (%) = (2,9, 2+, w, t; Ay, Ai, Ap+As, —As, As+As3),
84t (*) (‘T?yr va_ffzt; A0+A4,A1,A2,A3—§—A4, —'A4)-

These transformations are generators of the affine Weyl group < sg, s1, 82, 3,84 >
1)
of type A" .

7 ay—2utai W

7. PROOF OF THEOREM 5.7

The degeneration process from the system (7) to the system (9) in Theorem 5.6
is given by

1 1
ayg = Ay, a1 = Ay, ap = Ay, a3 = A3, 0y =244 — = 05 = o,

Z
Bo = Ay, Bs =243 -¢7t t = —¢T, 9:=1+—}~(—, y=€elY, z=14+—, w=eTW,
eT eT

from ap, o1, a2, 03,04, 05,1, 7,7y, 2, w to Ag, Ay, Ay, Az, Ay, e, T, X, Y, Z,W. Notice
that Ag+ A1+ 245+ 243+ 244 = og+ oy +2as + 205 + a4 + o5 = 1 and the change
of variables from (z,y, z,w) to (X, Y, Z, W) is symplectic. Choose S;,4=0,1,2,3,4
as

So =g, Sy 1= 81, Sp 1= 8y, S31=83, Sy 1= 8455 = 8554
which are reflections of

oy -+ a5
Ag = oo, Ay = ay, Ay =0y, Ay=a3, Ag=

respectively.

By using the notation (x) := (Ao, A;, As, A3, A4, €), we can easily check

So(x) = (—Ag, A1, Ay + Ap, As, Ay, ),

Sl(*) = (A()! _A11 A2 + AI;A3> A4,E),

Sz( ) (A0+A21A1+A27 A2;A3+A2:A41€):
33(*) (AO, Al, A:z + A3, ~A3,A4 + Ag, 1+EA3)
Sa(x) = (Ag, A1, Ag, Az + 244, — Ay, —).
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By the above relation, we will see that the group < Sy, Si,S2, 55,54 > can be

considered to be an affine Weyl group of the affine Lie algebra of type B§1) with
respect to simple roots Ay, A;, Ag, Az, As.

Now we investigate how the generators of < Sy, 51, 52,53,5¢ > act on T, XY, Z

and W. By using the notation (sx) := (X,Y, Z, W, T}, we can verify

SQ(**) = (X + YLA'_QT,Y;meT)’

Sl(**) = (X + WJ%L;KZ7WT)7

Salwx) = (X,Y = 4, 2, W + 4. T),
53(**) = (.X,Yr, Z + %; WT(]’ + EA'?'))’

2
Su(xx) = (X, Y, 2, BGZEEE — e, T,

The proof of Theorem 5.7 has thus been completed.

{1
2]
(3]
[4]
(5]
[6]
7]
8l
9
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