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1. STATEMENT OF THE RESULT.

Let © be an open bounded subset of RY and T € (0,+o0]. Let @
denote the set (0,T) x £, Q2 the boundary of §, n(z) the outerward
unit normal to  at a point Z € 9 and ¥ the set (0,7T) x 9. We
consider the following parabolic-hyperbolic problem:

Ou+div A(u) - AB(u)=0 in Q (1.1)
with the initial condition:
u(0,z) = up(z), =€, (1.2)
and the boundary condition:
u(t,z) = u(t,z), (t,z) €L, (1.3)

where the flux function A belongs to C*(R) and the function g is non-
decreasing and Lipschitz continuous. This monotonicity assumption
of 3 allows us some degenerate diffusion cases which dppear in many
i[ntere]sting models, for example, filtration problems in porous media
2,5,8].

In the nondegenerate case (in which the function 3 is strictly increas-
ing), the problem (1.1) is of parabolic type and hence the existence and
uniqueness of solutions are well known. In the case where ' = 0, the
problem (1.1) being a nonlinear hyperbolic problem, the uniqueness
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of weak solutions is not ensured, and one must consider a notion of
entropy solution, relying on the notion of boundary entropy-flux pairs
to recover uniqueness (see [11,16]). When £ is merely a nondecreas-
ing function, in the case of homogeneous boundary data, i.e., uy = 0,
Carrillo [3] succeeded in proving the uniqueness of entropy solutions by
mainly using the dedoubling variable technique developed by Kruzkov
[11]. The equivalence of entropy solutions and weak solutions is also
considered in [10]. In the case of nonhomogeneous boundary data ex-
istence and uniqueness of entropy solutions to (1.1)-(1.3) have been
proved in [1,14,15]. The method used there is also the dedoubling vari-
able technique.

On the other hand Perthame [12,17] proved the uniquness of entropy
solutions to the Cauchy problem of the conservation law (in which
B = 0 and Q = R?) by using the kinetic formulation which is in-
troduced by Lions,Perthame and Tadmor {12], without relying on the
dedoubling variable technique. Imbert and Vovelle [9] developed analo-
gous techniques for conservation laws with boundary conditions, proved
the Comparison Theorem for entropy sub- and supersolutions, and ap-
plied their results to the BGK-like model. This technique was also
applied in [6] to study the parabolic approximation of a multidimen-
sional conservation law with initial and boundary conditions.

The purpose of this note is to give a comparison result for their
sub- and supersolutions by using kinetic techniques. Although the L
contractivity and, therefore, uniquness of entropy weak solutions has
been obtained, it would seem that any comparison theorem for those
solutions is not proven.

According to [14] we introduce the definition of entropy sub- and
supersolution.

Define

1 ifr>0 -1 ifr<0

sgnt(r) = ’ d —(r) = ;

gn” (r) {o ifr<po, 24 sen(n) {0 it r >0,
and 7% = sgn®(r)r.

Definition 1.1. A function u of L*(Q) is said to be a weak solution of
the problem (1.1) - (1.8) if it satisfies: B(u)—PB(w) € L*(0,T; H}(Q)), A(u) €
LYQ)? and

/ up: + (A(u) — VB(u)) - Vodzdt + / upp(0, z)dz = 0
@ f (1.4)

for any ¢ € CX([0.T) x Q).
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Definition 1.2. Letu € L®(Q). u is said to be an entropy subsolution
of (1.1) - (1.8) if it is a weak solution and satisfies:

fQ(u — &) 8,0 + (Ft(u, k) — V(B(u) — B(x))T) - Vdzdt
+ /Q(UO — k)T (0, z)dz + M/E(’ub — k)Tododt > 0 (1.5)

for any & € R and any ¢ € C=([0,T) x R*)*t such that sgn*(8(us) —
B(k))p =0 a.e. on X.
u 1s said to be an entropy supersolution if (1.7) is replaced by

[ (= R0+ () = T (B(w) = B())") - Vipdade

+ /Q(uo — &) (0, z)dz + M/E(ub ~ k) @dodt > 0 (1.6)

for any k € R and any ¢ € CX([0,T) x RY)™ such that sgn™(8(us) —
B(k))e = 0 a.e. on X.Here C2([0,T) x RY)* is the set of nonnegative
functions in C([0,T) x RY).
We also set
M = sup{|A'(r)|; Ir] £ max{|juollz=(q), lusllz=x}  (1.7)
and
L= max 18T 1.9

We are now in a position to state the main theorem which obviously
extends the L' contractive property for entropy solutions

Theorem Assume that the following conditions hold:

(A1) € is a bounded open subset of R¢ whose boundary 09 is C?,
A€ CYR,R) and 8 : R — R is a nondecreasing Lipschitz continuous
function.

(A2) wup € L™(Q) and up € L¥(X).

Let u € L>®(Q) be an entropy subsolution of (1.1) - (1.3) with data
(ug,up) and let i be an entropy supersolution of (1.1) - (1.3) with data
(o, @p). Then we have

—;—,/OT/Q(u(t,m) — a(t, z)) dzdt
< [ﬂ(uo(m) — dp(z)) T dzr + M/OT /m(ub(t,m) — (¢, 1)) T dodt

(1.9)
+ -‘;’- | ' [ (Bt ) ~ Blaa(t, 2)))* dodt.
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2. SKETCH OF PROOF.

The semi-Kruzkov entropies are the convex functions defined by

ne(r) = (r — k)*, k e R,

while the corresponding entropy flux are the function defined by

F=(r, k) = sgn®(r — k)(A(r) — A(k)).

For a function u € L*(Q) and £ € R we set
falt, z,€) = sgn*(u(t, z) — £).

We assume that Q is a C? bounded open subset in R%. Thus, we can

find a finite open cover {B;}¥, of { and a partition of unity {\;}Y,

on § subordinate to {B;}¥, such that, for i > 1, up to a change of
coordinates represented by an orthogonal matrix T;, the set 2N B; is

the epigraph of a C? function h; : R%! — R, that is to say:
QA; N B,’ = {CE & Bi; (T;il?)d > hz(ﬁ)}
and L
6QAi =00NkB; = {.’E € B;; (ﬂx)d = hz(’ﬂx),

where z = (Z,74) € R? and £ = (1, -+ ,74_1). For simplicity we
will drop the index ¢ and we suppose that the change of coordinates
is trivial:Y; = Id. We also write Q) = (0,7) x Q,, £ = (0,T) x
0y, Iy = {Z;2 € supp (A\) N2} and ©) = (0,T) x II,. We dencte by
n(Z) the outward unit normal to 2 at a point (z, A(Z)) of 89, and by
do(Z) the (d — 1)- dimensional area element in 9,:

n(z) = (1 + [V:h(z)|*)"/*(Vzh(z), 1),
do(Z) = (1 + |Vzh(Z)|2)2dz.
'To regularize the functions, for small p, s > 0 let us consider a smooth

function 8, : R — R* such that supp 8, C [ps/2, (1 + p)s], 8,,(r) =
s~! for ps < r < s and [z0,,(r)dr = 1. Then, for v > 0 and € =

(€1, ,€q) € (R*)d, we set 7,.(z) = [T%,; Bp.e;(z:) and 7,,.(t,z) =

HP:V (t) ,YP,C (',E_) . ..
For simplicity, we wii also use the following notations:

n; =/1+|V;h(z)? n,
T, =(Z,h(Z)+71) for T = (21, - ,2a1),
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1,/1_)‘ stands for 1\ and ¥ denotes the restriction of ¢ to X X Ry, i.e.,
D(t, T, 6) = P(t, %, h(z,€)), where 1 is a function on [0,T) x R and

X is an element of the partition of unity {)\;}ir,. Moreover we set

sVt = max{s,t} and s At = min{s, t}.

The proof of the theorem will follow from the following three lemmas
whose proofs will be given in the forthcoming paper.

Lemma 2.1. Let u be an entropy subsolution with data (uo, us) and let
X be an element of the partition of unity {\i}iy. Then we have:
(a) There ezists f1° € L®(Q2 x R) such that

. 1 s _ o
o[ s a] o= ik

for any ¢ € C(2 x R).
(b) For any ¢ € C([0,T) x R+ and any weak™ cluster point f}
of L[5 f+(t, 2, E)dr as s — +0 in L®(Ox x R), we have

fQ XR(f+(3t +a- V)Y =BV [y Vo) dtdzdé
+/;1xm fiowr\((),z)d:cd§+ /(SAxR B (Vh() - V:T:fi)—?p ddzde
+

GMR(—nl - @) fTpAdtdzdE (2.2)

> A
= ‘/Q)‘XRang d(m++n+).

Lemma 2.2. There ezist families of probability measures {v° }zeq and
{77} zeq on Re, called Young measuers, supported in (—o0, llul|z=] and
[—]|gE|| goo, 00)), respectively, and nonnegative functions m§ (z,€) and
mC (z,€)) defined on Q0 x R¢ such that

mS, M € C(Re; w-MT(82)),
gL%mi(m,f) = ﬁg@wﬁﬁ(m,ﬁ) =0 forae z€KQ,
™ (z,£) = v ([€, 00)) = 8emS (z,€) +sgn” (uo(z) — £) 23)

and

F2(2,€) = ~7°((—00,]) = B2 (z,€) + sgn™ (fo(w) — €))-
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Lemma 2.3. Let X\ be an element of the partition of unity {\}Y,
and let fI and fT be weak™ cluster point of % [§ f4(t,Z,,&)dr and
ifos f_(t, Z,,€)dr, respectively ,as s — +0, in L>®(0, x R). Thev‘"e
exist Young measures {v], }g)es and {7, }ey)ex) on Re, supported in
(—o0, |lu|lz=] and . ‘ ,

[~ |||z, 00) ), respectively, and nonnegative functions m’ (t,y,£) and
ml (t,v,€)) defined on © x R¢ such that

im m? = lim = e (¢ 5.,
Jim 8 (4,4,€) = Jim i (6,4,) =0 for a.e. (t,3) €

iy, ) = v, (i€, 00)), fr= ~ 1, ((—00,€]),
(—a-m)f] = gemb + Msgn™(u; — €) (2.4)

(—a-m)fT = 8 + Msgn™ (@ — £),

| (4,70, €77 (t, Zo)dedz > 0 (2.5)
0,

for any @ € C(Z)* satisfying sgn* (B(up) — B(€))F =0 a.e. on T
and

L (2,30, )7t Zo)dtdz > 0
P

for any @ € C(X)7T satisfying sgn~(B(i) — B(€))7 =0 a.e. on X.

We continue the proof of Theorem. Let fy,7n, and . be the func-
tions defined for u as above. fI° denotes the time kinetic traces and
f1 a cluster point of space kinetic traces associated with u. The corre-

sponding ones associated with % will be denoted by f_, fi_,m_, f and
JZ, respectively. We set for (¢,%,£) € O, x R,

F+ (t: z, 6) = —nl(fO) ‘ (Z(é)f:_(t, Zo, 6) + ﬁl(g)vih(j) : vif-?»(ta T, 6)
and
F——(t7 .7_3, f) = _nl(a—:[)) ) a(f)fz (ta 'i‘ﬂy §) + ﬁl(f)vih(f) : Vi.f-b- (ty jU) g)
where f° = sgn” (@ — &). For p,v € Ry and ¢ = (8,€4) € Ry9, set
f+’y’5 = (f—i— X ]'QA) *Ypwes _-;op,s = (f:*r_o X ]‘QA) * Yoes
PP = (Fy x 1x,) * Yower mg—’y’s = (my x 10,) * Youe
and nf™ = (ny x 1g,) * Y,
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Asfor f_, f™ F_, etc., their regularizations f:n’“’a, f_mw, F"_"’“’J, etc.
are similarly defined in the same manner as above, but with different
parameters 7, 4,6. Let ¢ € C®([0,T) x R¥!1)* and apply (2.2) in
Lemma 2.1 to the test function ¢* * 4,,., where 7,,. is defined by

793”35 (t7 $7 5) = (YP’V»E(—t’ —",Z', —E):

Lo (7270t a- V) = g 2% - 0 (26)
+(f?%0,,, + F ”)w’*) dédtdz
> 6§¢Ad(mp’”’

Rd+2

On the other hand we can regularize the equation satisfied by f_ by
the same method and obtain for same ¥’s,

s (P20 @t 0 V) + BV 20 Ty 2.7)
+(F"00,,, + FPH0)y*) dédtdo
> = [ ., O d(mlh 4+ AL,

Now let us fix a test function (t,2) € C°([0,T) x R¥)*. Apply (2.6)

to 9 = —f"0(t, z, €)(t,z) and (2.7) to ¥ = f2*°(t,z, €)p(t, z), and
add the two equations together. After integrating by parts the left hand
side of the resultant inequality, we obtain

/Rm (—f2e fr9 (B + a - V + B A + 28V < - V f10°) prdedtde
- Rd+2 (f_‘*r_oﬂ:ﬁgp’u f “’Z’MS + f zon’égﬂ,ﬂ- -’i)-,u,g
+FPE IO 4 FRd fore) oA dedtda

> = [ GFI A ) = [ 0t P+ )
Notice that if & € F, then fi(t,z,£&) = sgnt(B(u(t,z)) — B(€)) and
hence V f"° = [6(£ — v)VB(u)]P"* = §(€ — u) X 1g] * Ypu,. Similarly,
we have V7 = [§(¢ — @)VB(@)]™?. On the other hand, it is easy
to see that J, f”’"“ = —6(& — u)P"* = —[8(€ — u) x 1g] * Yy and
B fod = —§(& — w)™*?. Noting also that m,. and f_ are nonnegative
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measures, we have

/nmz (—f22e 20 +a -V + A
+28'[6(€ — w)VBW)]Pe10(€ — @)V 5(@)17;,#,5) P dedtds

s £1iky0 FTan,d PWsE
B Rd+2( :;:095 p="f2# +f—0 977,# +
Fpve frud 4 frs goe) o dedids
Y 71:#15 A PE _ PVLE A "7),[1,5
2 i 6(§ — u)M ¢ dny -i—/Rd+2 5(& —u)Pfptdnl

Let successively 7, u, 8 and dq4 go to +0:

/Q (@ a Vo BA
+28'[6(6 — w) VAP <8(£ — @) VA(T)) p*dedtds
= Jooe (7200, - + FP°f_) o dédtda

S R (o e I (T e
QxR QxR

Here we used the fact that regularized functions equal zero at ¢ = 0
and at the boundary. Then, let successively p, v, & and €4 go to +0 and
use (2.2) in Lemma 2.1 to obtain

/%Xﬁ ("‘f+f— (6 +a-V+FA (2.8)
+20'6(¢ — w)d(€ — W)V B(w) - V(L)) ¢’ dédtdz

- /nAxR f;OfIOQD*(O, Ydédz + LAXR ((n1 .a)flfj
—B'(Vzh- Vo f%) f?) PrdEdtdz

> §(€ — @) d — ) .
2 Jouxg (6 — )y n++/QAX}R5(§ u)p di

Next, let successively p, v, £ and ¢4 go to +0 and then let successively
n, i, 6 and &; go to +0: For any weak* cluster point fT and for some
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weak* cluster point fI, we have

[ o (e vHEA (2.9)
+2B8(€ — (€ — B)VA(w) - VA(E)) ¢ dédtda
— [ pimet 0, )dede

Q)‘X

+ /mxu« (01 - Q)f1f7 — B (Vzh - Vaf2)f}) 0 dédtds

> [ se-)gdng+ [ 8(E~u)pidi-.
Q xR QxR

Adding (2.8) and (2.9) yields

/QWR (~f+f_(at +a-V+GA
+20'6(6 — w)b(€ — W)V () - VB(R)) p*dédtdz
- / o frog(0, ) déda

+ ((m .a)fTfT — Eﬁ’Vi.h : Vz(fifﬁ)) D EdtdE

Ty xR

> [ (6(E = T)ne +3(E — i) dectds

for some weak* cluster points f] and f7. Since

20'(€)5(€ — w)é(§ — @) VB (w) - VA(T)
< 15(8)8(€ — w)d(E — D(IVAW)P + [VA@I)
= §(¢ ~ Wn(t, 2, 8) + 0(§ —wA-(t2,8),

we arrive at

S AR ECE I B 8)p*dedtds (2.10)

>/)x fm R, )dgdm—LAXR((nl-a)flfﬁ

-55 Vsh - Vi(fifi)) P dédtdz.
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We compute each term of (2.26). Firstly,

[t F (B +a-V+BA) dedtds (2.11)
AX

@ ((’u - ﬂ)'*' + .7-"+(u, '&)V(p)‘ + (,B(u) _ ﬁ(ﬁ.))_*-AK,DA) dtdz.

Secondly, by virtue of Lemma 2.2 and by using integration by parts one
can calculate:

fRfi"fif’dg
= [ vp( copaetas — [ vp(€ o) ((—oo, ek
— [T demoze((—oo, €D
= 13°([tlo, 00))m (-, @) + f_ : v — / "V v ([€, 00)) 72 (oo, £])dE

I
-+ mi(, ug V ’5,0)17;0((“00, ug V ﬂ:(j]) -+ mﬂ,dﬁf’

ugViig
ugViig _
—[ dé = —(u - @ig) ™.

uo

v

Here we used the fact that dv7([€, 00))/dE = —dvI*(€) and diZ°((—o0, &])/dE =
dv(¢). Thus we have

To Tg . N = A .
/ TR0, e / (a0 =)0, ). -

g‘glally, we calculate analogously the boundary term by using Lemma

f(nl a')f-;-def
_— _/ Bgm Vty 5 OO))dé_—-['ubV'&b(nl G)V{y([g,OO))i)Zy((—-—oo}f])dé’

+ B} aﬁm-:-”’t,y(( 00, £])d€

ULV
upVilg

<M/ dé = M(up — )7,

Up
where y stands for Z, and we used the fact that dif,([£,00)) /d =
~dv{,(€) and di7], ((—o0, £])/dé = di, (£) as well as the fact that m§, >
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0 for € > uy and M2 > 0 for £ < @ by virtue of (2.21) and the
corresponding inequality associated wiyh , respectively. This implies

/ (n - o) f1 fr@tdedtdz < M / (up — ) TP dtdz.
AR | = (2.13)

Moreover
[ZA P OVah(z)- Ve (f f )P dedtdz (2.14)

== [ | (6 dive(@Vah(z)) f2 [ dedtdz
= = [, (Blus) = B(@)* (Beh(2)P + Vsh(z) - V) did

= /zzl(ﬁ(ub) ~ B(@)) T (— L + Vzh(T) - V59" dtdz.

Combining (2.10) with (2.11) through (2.14) and choosing appropriate
test functions ¢’s, we arrive at the estimate

1
— | (u—a)tdtdz
T QA( )
L
< [ (ug—iig)*dz + M [ (uy — ) Fdtd + = f (Blus) — B(d)) " dtds.
Qy T 2 Jzy -
By summing over § = 0,1,--- , N, we obtain the desired estimate (1.9)

and the proof of Theorem is complete.
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