A KINETIC APPROACH TO A COMPARISON THEOREM FOR DEGENERATE PARABOLIC EQUATIONS

早稲田大学・教育学部 小林和夫 (Kazuo Kobayasi)

Department of Mathematics, School of Education, Waseda University e-mail: kzokoba@waseda.jp

1. STATEMENT OF THE RESULT.

Let Ω be an open bounded subset of \mathbb{R}^d and $T \in (0, +\infty]$. Let Q denote the set $(0, T) \times \Omega$, $\partial \Omega$ the boundary of Ω , $\mathbf{n}(\bar{x})$ the outerward unit normal to Ω at a point $\bar{x} \in \partial \Omega$ and Σ the set $(0, T) \times \partial \Omega$. We consider the following parabolic-hyperbolic problem:

$$\partial_t u + \operatorname{div} A(u) - \Delta \beta(u) = 0 \quad \text{in} \quad Q$$
 (1.1)

with the initial condition:

$$u(0,x) = u_0(x), \quad x \in \Omega, \tag{1.2}$$

and the boundary condition:

$$u(t,x) = u_b(t,x), \quad (t,x) \in \Sigma, \tag{1.3}$$

where the flux function A belongs to $C^1(\mathbb{R})$ and the function β is non-decreasing and Lipschitz continuous. This monotonicity assumption of β allows us some degenerate diffusion cases which appear in many interesting models, for example, filtration problems in porous media [2,5,8].

In the nondegenerate case (in which the function β is strictly increasing), the problem (1.1) is of parabolic type and hence the existence and uniqueness of solutions are well known. In the case where $\beta' \equiv 0$, the problem (1.1) being a nonlinear hyperbolic problem, the uniqueness

of weak solutions is not ensured, and one must consider a notion of entropy solution, relying on the notion of boundary entropy-flux pairs to recover uniqueness (see [11,16]). When β is merely a nondecreasing function, in the case of homogeneous boundary data, i.e., $u_b \equiv 0$, Carrillo [3] succeeded in proving the uniqueness of entropy solutions by mainly using the dedoubling variable technique developed by Kružkov [11]. The equivalence of entropy solutions and weak solutions is also considered in [10]. In the case of nonhomogeneous boundary data existence and uniqueness of entropy solutions to (1.1)-(1.3) have been proved in [1,14,15]. The method used there is also the dedoubling variable technique.

On the other hand Perthame [12,17] proved the uniquness of entropy solutions to the Cauchy problem of the conservation law (in which $\beta' \equiv 0$ and $\Omega = \mathbb{R}^d$) by using the kinetic formulation which is introduced by Lions, Perthame and Tadmor [12], without relying on the dedoubling variable technique. Imbert and Vovelle [9] developed analogous techniques for conservation laws with boundary conditions, proved the Comparison Theorem for entropy sub- and supersolutions, and applied their results to the BGK-like model. This technique was also applied in [6] to study the parabolic approximation of a multidimensional conservation law with initial and boundary conditions.

The purpose of this note is to give a comparison result for their sub- and supersolutions by using kinetic techniques. Although the L^1 contractivity and, therefore, uniquness of entropy weak solutions has been obtained, it would seem that any comparison theorem for those solutions is not proven.

According to [14] we introduce the definition of entropy sub- and supersolution.

Define

$$\operatorname{sgn}^+(r) = \begin{cases} 1 & \text{if } r > 0, \\ 0 & \text{if } r \le 0, \end{cases}$$
 and $\operatorname{sgn}^-(r) = \begin{cases} -1 & \text{if } r < 0, \\ 0 & \text{if } r \ge 0, \end{cases}$

and $r^{\pm} = \operatorname{sgn}^{\pm}(r)r$.

Definition 1.1. A function u of $L^1(Q)$ is said to be a weak solution of the problem (1.1) - (1.3) if it satisfies: $\beta(u) - \beta(u_b) \in L^2(0, T; H_0^1(\Omega)), A(u) \in L^1(Q)^d$ and

$$\int_{Q} u\varphi_{t} + (A(u) - \nabla\beta(u)) \cdot \nabla\varphi dx dt + \int_{\Omega} u_{0}\varphi(0, x) dx = 0$$
(1.4)

for any $\varphi \in C_c^{\infty}([0.T) \times \Omega)$.

Definition 1.2. Let $u \in L^{\infty}(Q)$. u is said to be an entropy subsolution of (1.1) - (1.3) if it is a weak solution and satisfies:

$$\int_{Q} (u - \kappa)^{+} \partial_{t} \varphi + (\mathcal{F}^{+}(u, \kappa) - \nabla(\beta(u) - \beta(\kappa))^{+}) \cdot \nabla \varphi dx dt
+ \int_{\Omega} (u_{0} - \kappa)^{+} \varphi(0, x) dx + M \int_{\Sigma} (u_{b} - \kappa)^{+} \varphi d\sigma dt \ge 0$$
(1.5)

for any $\kappa \in \mathbb{R}$ and any $\varphi \in C_c^{\infty}([0,T) \times \mathbb{R}^d)^+$ such that $\operatorname{sgn}^+(\beta(u_b) - \beta(\kappa))\varphi = 0$ a.e. on Σ .

u is said to be an entropy supersolution if (1.7) is replaced by

$$\int_{Q} (u - \kappa)^{-} \partial_{t} \varphi + (\mathcal{F}^{-}(u, \kappa) - \nabla(\beta(u) - \beta(\kappa))^{-}) \cdot \nabla \varphi dx dt
+ \int_{\Omega} (u_{0} - \kappa)^{-} \varphi(0, x) dx + M \int_{\Sigma} (u_{b} - \kappa)^{-} \varphi d\sigma dt \ge 0$$
(1.6)

for any $\kappa \in \mathbb{R}$ and any $\varphi \in C_c^{\infty}([0,T) \times \mathbb{R}^d)^+$ such that $\operatorname{sgn}^-(\beta(u_b) - \beta(\kappa))\varphi = 0$ a.e. on Σ . Here $C_c^{\infty}([0,T) \times \mathbb{R}^d)^+$ is the set of nonnegative functions in $C_c^{\infty}([0,T) \times \mathbb{R}^d)$.

We also set

$$M = \sup\{|A'(r)|; |r| \le \max\{\|u_0\|_{L^{\infty}(\Omega)}, \|u_b\|_{L^{\infty}(\Sigma)}\}$$
 (1.7)

and

$$L = \max_{1 \le i \le N} \|\Delta_{\bar{x}} h_i(\overline{T_i x})\|_{L^{\infty}(\Sigma_{\lambda_i})}.$$
 (1.8)

We are now in a position to state the main theorem which obviously extends the L^1 contractive property for entropy solutions

Theorem Assume that the following conditions hold:

(A1) Ω is a bounded open subset of \mathbb{R}^d whose boundary $\partial\Omega$ is C^2 , $A \in C^1(\mathbb{R}, \mathbb{R})$ and $\beta : \mathbb{R} \to \mathbb{R}$ is a nondecreasing Lipschitz continuous function.

(A2) $u_0 \in L^{\infty}(\Omega)$ and $u_b \in L^{\infty}(\Sigma)$. Let $u \in L^{\infty}(Q)$ be an entropy subsolution of (1.1) - (1.3) with data (u_0, u_b) and let \tilde{u} be an entropy supersolution of (1.1) - (1.3) with data $(\tilde{u}_0, \tilde{u}_b)$. Then we have

$$\frac{1}{T} \int_{0}^{T} \int_{\Omega} (u(t,x) - \tilde{u}(t,x))^{+} dx dt
\leq \int_{\Omega} (u_{0}(x) - \tilde{u}_{0}(x))^{+} dx + M \int_{0}^{T} \int_{\partial\Omega} (u_{b}(t,x) - \tilde{u}_{b}(t,x))^{+} d\sigma dt
+ \frac{L}{2} \int_{0}^{T} \int_{\partial\Omega} (\beta(u_{b}(t,x)) - \beta(\tilde{u}_{b}(t,x)))^{+} d\sigma dt.$$
(1.9)

2. Sketch of Proof.

The semi-Kružkov entropies are the convex functions defined by

$$\eta_k^{\pm}(r) = (r-k)^{\pm}, \qquad k \in \mathbb{R},$$

while the corresponding entropy flux are the function defined by

$$\mathcal{F}^{\pm}(r,k) = \operatorname{sgn}^{\pm}(r-k)(A(r) - A(k)).$$

For a function $u \in L^{\infty}(Q)$ and $\xi \in \mathbb{R}$ we set

$$f_{\pm}(t, x, \xi) = \operatorname{sgn}^{\pm}(u(t, x) - \xi).$$

We assume that Ω is a C^2 bounded open subset in \mathbb{R}^d . Thus, we can find a finite open cover $\{B_i\}_{i=0}^N$ of $\overline{\Omega}$ and a partition of unity $\{\lambda_i\}_{i=0}^N$ on $\overline{\Omega}$ subordinate to $\{B_i\}_{i=0}^N$ such that, for $i \geq 1$, up to a change of coordinates represented by an orthogonal matrix T_i , the set $\Omega \cap B_i$ is the epigraph of a C^2 function $h_i : \mathbb{R}^{d-1} \to \mathbb{R}$, that is to say:

$$\Omega_{\lambda_i} \cap B_i = \{ x \in B_i; (T_i x)_d > h_i(\overline{T_i x}) \}$$

and

$$\partial\Omega_{\lambda_i} = \partial\Omega \cap B_i = \{x \in B_i; (T_ix)_d = h_i(\overline{T_ix}),$$

where $x=(\bar{x},x_d)\in\mathbb{R}^d$ and $\bar{x}=(x_1,\cdots,x_{d-1})$. For simplicity we will drop the index i and we suppose that the change of coordinates is trivial: $Y_i=Id$. We also write $Q_\lambda=(0,T)\times\Omega_\lambda,\ \Sigma_\lambda=(0,T)\times\partial\Omega_\lambda,\ \Pi_\lambda=\{\bar{x};x\in\operatorname{supp}(\lambda)\cap\Omega\}$ and $\Theta_\lambda=(0,T)\times\Pi_\lambda$. We denote by $\mathbf{n}(\bar{x})$ the outward unit normal to Ω_λ at a point $(\bar{x},h(\bar{x}))$ of $\partial\Omega_\lambda$ and by $d\sigma(\bar{x})$ the (d-1)- dimensional area element in $\partial\Omega_\lambda$:

$$\mathbf{n}(\bar{x}) = (1 + |\nabla_{\bar{x}} h(\bar{x})|^2)^{-1/2} (\nabla_{\bar{x}} h(\bar{x}), -1),$$

$$d\sigma(\bar{x}) = (1 + |\nabla_{\bar{x}} h(\bar{x})|^2)^{1/2} d\bar{x}.$$

To regularize the functions, for small $\rho, s > 0$ let us consider a smooth function $\theta_{\rho,s} : \mathbb{R} \to \mathbb{R}^+$ such that supp $\theta_{\rho,s} \subset [\rho s/2, (1+\rho)s], \ \theta_{\rho,s}(r) = s^{-1}$ for $\rho s \leq r \leq s$ and $\int_{\mathbb{R}} \theta_{\rho,s}(r) dr = 1$. Then, for $\nu > 0$ and $\epsilon = (\epsilon_1, \dots, \epsilon_d) \in (\mathbb{R}^+)^d$, we set $\gamma_{\rho,\epsilon}(x) = \prod_{i=1}^d \theta_{\rho,\epsilon_i}(x_i)$ and $\gamma_{\rho,\nu,\epsilon}(t,x) = \theta_{\rho,\nu}(t)\gamma_{\rho,\epsilon}(x)$.

For simplicity, we wii also use the following notations:

$$\mathbf{n}_1 = \sqrt{1 + |\nabla_{\bar{x}} h(\bar{x})|^2} \quad \mathbf{n},$$

 $\bar{x}_r = (\bar{x}, h(\bar{x}) + r) \quad \text{for } \bar{x} = (x_1, \dots, x_{d-1}),$

 ψ^{λ} stands for $\psi\lambda$ and $\overline{\psi}$ denotes the restriction of ψ to $\Sigma \times \mathbb{R}_{\xi}$, i.e., $\overline{\psi}(t, \overline{x}, \xi) = \psi(t, \overline{x}, h(\overline{x}, \xi))$, where ψ is a function on $[0, T) \times \mathbb{R}^{d+1}$ and λ is an element of the partition of unity $\{\lambda_i\}_{i=0}^N$. Moreover we set $s \vee t = \max\{s, t\}$ and $s \wedge t = \min\{s, t\}$.

The proof of the theorem will follow from the following three lemmas whose proofs will be given in the forthcoming paper.

Lemma 2.1. Let u be an entropy subsolution with data (u_0, u_b) and let λ be an element of the partition of unity $\{\lambda_i\}_{i=0}^N$. Then we have:

(a) There exists $f_+^{\tau_0} \in L^{\infty}(\Omega \times \mathbb{R})$ such that

$$\lim_{s \to +0} \int_{\Omega \times \mathbb{R}} \left[\frac{1}{s} \int_0^s f_+(t, x, \xi) dt \right] \phi \, dx d\xi = \int_{\Omega \times \mathbb{R}} f_+^{\tau_0} \phi \, dx d\xi \tag{2.1}$$

for any $\phi \in C_c^{\infty}(\Omega \times \mathbb{R})$.

(b) For any $\psi \in C_c^{\infty}([0,T) \times \mathbb{R}^{d+1})^+$ and any weak* cluster point f_+^{τ} of $\frac{1}{s} \int_0^s f_+(t,\bar{x}_r,\xi) dr$ as $s \to +0$ in $L^{\infty}(\Theta_{\lambda} \times \mathbb{R})$, we have

$$\int_{Q_{\lambda}\times\mathbb{R}} (f_{+}(\partial_{t} + a \cdot \nabla)\psi^{\lambda} - \beta'\nabla f_{+} \cdot \nabla\psi^{\lambda}) dt dx d\xi
+ \int_{\Omega\times\mathbb{R}} f_{+}^{\tau_{0}}\psi^{\lambda}(0, x) dx d\xi + \int_{\Theta_{\lambda}\times\mathbb{R}} \beta'(\nabla_{\bar{x}}h(\bar{x}) \cdot \nabla_{\bar{x}}f_{+}^{b}) \overline{\psi^{\lambda}} dt d\bar{x} d\xi
+ \int_{\Theta_{\lambda}\times\mathbb{R}} (-\mathbf{n}_{1} \cdot a) f_{+}^{\tau} \overline{\psi^{\lambda}} dt d\bar{x} d\xi
\geq \int_{Q_{\lambda}\times\mathbb{R}} \partial_{\xi}\psi^{\lambda} d(m_{+} + n_{+}).$$
(2.2)

Lemma 2.2. There exist families of probability measures $\{\nu_x^{\tau_0}\}_{x\in\Omega}$ and $\{\tilde{\nu}_x^{\tau_0}\}_{x\in\Omega}$ on \mathbb{R}_{ξ} , called Young measures, supported in $(-\infty, ||u||_{L^{\infty}}]$ and $[-||\tilde{u}||_{L^{\infty}}, \infty)$, respectively, and nonnegative functions $m_+^0(x, \xi)$ and $\tilde{m}_-^0(x, \xi)$) defined on $\Omega \times \mathbb{R}_{\xi}$ such that

$$m_{+}^{0}, \tilde{m}_{-}^{0} \in C(\mathbb{R}_{\xi}; w\text{-}\mathcal{M}^{+}(\Omega)),$$

$$\lim_{\xi \to \infty} m_{+}^{0}(x, \xi) = \lim_{\xi \to -\infty} \tilde{m}_{-}^{0}(x, \xi) = 0 \quad \text{for a.e. } x \in \Omega,$$

$$f_{+}^{\tau_{0}}(x, \xi) = \nu_{x}^{\tau_{0}}([\xi, \infty)) = \partial_{\xi} m_{+}^{0}(x, \xi) + \operatorname{sgn}^{+}(u_{0}(x) - \xi)$$

$$(2.3)$$

and

$$\tilde{f}_{-}^{\tau_0}(x,\xi) = -\tilde{\nu}_x^{\tau_0}((-\infty,\xi]) = \partial_{\xi}\tilde{m}_{-}^0(x,\xi) + \operatorname{sgn}^{-}(\tilde{u}_0(x) - \xi)).$$

Lemma 2.3. Let λ be an element of the partition of unity $\{\lambda_i\}_{i=0}^N$ and let f_+^{τ} and \tilde{f}_-^{τ} be weak* cluster point of $\frac{1}{s} \int_0^s f_+(t, \bar{x}_r, \xi) dr$ and $\frac{1}{s} \int_0^s \tilde{f}_-(t, \bar{x}_r, \xi) dr$, respectively ,as $s \to +0$, in $L^{\infty}(\Theta_{\lambda} \times \mathbb{R})$. There exist Young measures $\{\nu_{t,y}^{\tau}\}_{(t,y)\in\Sigma}$ and $\{\tilde{\nu}_{t,y}^{\tau}\}_{(t,y)\in\Sigma}$ on \mathbb{R}_{ξ} , supported in $(-\infty, ||u||_{L^{\infty}}]$ and

 $[-\|\tilde{u}\|_{L^{\infty}}, \infty)$), respectively, and nonnegative functions $m_{+}^{b}(t, y, \xi)$ and $\tilde{m}_{-}^{b}(t, y, \xi)$) defined on $\Sigma \times \mathbb{R}_{\xi}$ such that

$$\lim_{\xi \to \infty} m_{+}^{b}(t, y, \xi) = \lim_{\xi \to -\infty} \tilde{m}_{-}^{b}(t, y, \xi) = 0 \quad \text{for a.e. } (t, y) \in \Sigma.,$$

$$f_{+}^{\tau}(t, y, \xi) = \nu_{t, y}^{\tau}([\xi, \infty)), \quad \tilde{f}_{-}^{\tau} = -\tilde{\nu}_{t, y}^{\tau}((-\infty, \xi]),$$

$$(-a \cdot \mathbf{n}_{1}) f_{+}^{\tau} = \partial_{\xi} m_{+}^{b} + M \operatorname{sgn}^{+}(u_{b} - \xi) \qquad (2.4)$$

$$(-a \cdot \mathbf{n}_{1}) \tilde{f}_{-}^{\tau} = \partial_{\xi} \tilde{m}_{-}^{b} + M \operatorname{sgn}^{-}(\tilde{u}_{b} - \xi),$$

$$\int_{\Theta_{\lambda}} m_{+}^{b}(t, \bar{x}_{0}, \xi) \overline{\varphi}^{\lambda}(t, \bar{x}_{0}) dt d\bar{x} \geq 0 \qquad (2.5)$$

for any $\overline{\varphi} \in C(\Sigma)^+$ satisfying $\operatorname{sgn}^+(\beta(u_b) - \beta(\xi))\overline{\varphi} = 0$ a.e. on Σ

$$\int_{\Theta_{\lambda}} \tilde{m}_{-}^{b}(t, \bar{x}_{0}, \xi) \overline{\varphi}^{\lambda}(t, \bar{x}_{0}) dt d\bar{x} \ge 0$$

for any $\overline{\varphi} \in C(\Sigma)^+$ satisfying $\operatorname{sgn}^-(\beta(\tilde{u}_b) - \beta(\xi))\overline{\varphi} = 0$ a.e. on Σ .

We continue the proof of Theorem. Let f_+, n_+ and m_+ be the functions defined for u as above. $f_+^{\tau_0}$ denotes the time kinetic traces and f_+^{τ} a cluster point of space kinetic traces associated with u. The corresponding ones associated with \tilde{u} will be denoted by $\tilde{f}_-, \tilde{n}_-, \tilde{m}_-, \tilde{f}_-^{\tau_0}$ and \tilde{f}_-^{τ} , respectively. We set for $(t, \bar{x}, \xi) \in \Theta_{\lambda} \times \mathbb{R}$,

$$F_{+}(t,\bar{x},\xi) = -\mathbf{n}_{1}(\bar{x}_{0}) \cdot a(\xi) f_{+}^{\tau}(t,\bar{x}_{0},\xi) + \beta'(\xi) \nabla_{\bar{x}} h(\bar{x}) \cdot \nabla_{\bar{x}} f_{+}^{b}(t,\bar{x}_{0},\xi)$$
 and
$$\tilde{F}_{-}(t,\bar{x},\xi) = -\mathbf{n}_{1}(\bar{x}_{0}) \cdot a(\xi) \tilde{f}_{-}^{\tau}(t,\bar{x}_{0},\xi) + \beta'(\xi) \nabla_{\bar{x}} h(\bar{x}) \cdot \nabla_{\bar{x}} \tilde{f}_{-}^{b}(t,\bar{x}_{0},\xi)$$
 where $\tilde{f}_{-}^{b} = \operatorname{sgn}^{-}(\tilde{u}_{b} - \xi)$. For $\rho, \nu \in \mathbb{R}_{+}$ and $\varepsilon = (\bar{\varepsilon}, \varepsilon_{d}) \in \mathbb{R}_{+}^{d}$, set
$$f_{+}^{\rho,\nu,\varepsilon} = (f_{+} \times \mathbf{1}_{Q_{\lambda}}) * \gamma_{\rho,\nu,\varepsilon}, \quad f_{+}^{\tau_{0}\rho,\varepsilon} = (f_{+}^{\tau_{0}} \times \mathbf{1}_{\Omega_{\lambda}}) * \gamma_{\rho,\varepsilon},$$

$$F_{+}^{\rho,\nu,\varepsilon} = (F_{+} \times \mathbf{1}_{\Sigma_{\lambda}}) * \gamma_{\rho,\nu,\varepsilon}, \quad m_{+}^{\rho,\nu,\varepsilon} = (m_{+} \times \mathbf{1}_{Q_{\lambda}}) * \gamma_{\rho,\nu,\varepsilon}$$
 and
$$n_{+}^{\rho,\nu,\varepsilon} = (n_{+} \times \mathbf{1}_{Q_{\lambda}}) * \gamma_{\rho,\nu,\varepsilon}.$$

As for \tilde{f}_- , $\tilde{f}_-^{\tau_0}$, \tilde{F}_- , etc., their regularizations $\tilde{f}_-^{\eta,\mu,\delta}$, $\tilde{f}_-^{\tau_0\eta,\delta}$, $\tilde{F}_-^{\eta,\mu,\delta}$, etc. are similarly defined in the same manner as above, but with different parameters η, μ, δ . Let $\psi \in C_c^{\infty}([0,T) \times \mathbb{R}^{d+1})^+$ and apply (2.2) in Lemma 2.1 to the test function $\psi^{\lambda} * \check{\gamma}_{\rho,\nu,\varepsilon}$, where $\check{\gamma}_{\rho,\nu,\varepsilon}$ is defined by $\check{\gamma}_{\rho,\nu,\varepsilon}(t,x,\xi) = \gamma_{\rho,\nu,\varepsilon}(-t,-x,-\xi)$:

$$\int_{\mathbb{R}^{d+2}} \left(f_{+}^{\rho,\nu,\varepsilon} (\partial_{t} + a \cdot \nabla) \psi^{\lambda} - \beta' \nabla f_{+}^{\rho,\nu,\varepsilon} \cdot \nabla \psi^{\lambda} \right) \\
+ \left(f_{+}^{\tau_{0}\rho,\varepsilon} \theta_{\rho,\nu} + F_{+}^{\rho,\nu,\varepsilon} \right) \psi^{\lambda} d\xi dt dx \\
\geq \int_{\mathbb{R}^{d+2}} \partial_{\xi} \psi^{\lambda} d(m_{+}^{\rho,\nu,\varepsilon} + n_{+}^{\rho,\nu,\varepsilon}). \tag{2.6}$$

On the other hand we can regularize the equation satisfied by \tilde{f}_{-} by the same method and obtain for same ψ 's,

$$-\int_{\mathbb{R}^{d+2}} \left(\tilde{f}_{-}^{\eta,\mu,\delta} (\partial_{t} + a \cdot \nabla) \psi^{\lambda} + \beta' \nabla \tilde{f}_{-}^{\eta,\mu,\delta} \cdot \nabla \psi^{\lambda} \right)$$

$$+ (\tilde{f}_{-}^{\tau_{0}\eta,\delta} \theta_{\eta,\mu} + \tilde{F}_{-}^{\eta,\mu,\delta}) \psi^{\lambda} d\xi dt dx$$

$$\geq -\int_{\mathbb{R}^{d+2}} \partial_{\xi} \psi^{\lambda} d(\tilde{m}_{-}^{\eta,\mu,\delta} + \tilde{n}_{-}^{\eta,\mu,\delta}).$$

$$(2.7)$$

Now let us fix a test function $\varphi(t,x) \in C_c^{\infty}([0,T) \times \mathbb{R}^d)^+$. Apply (2.6) to $\psi = -\tilde{f}_-^{\eta,\mu,\delta}(t,x,\xi)\varphi(t,x)$ and (2.7) to $\psi = f_+^{\rho,\nu,\varepsilon}(t,x,\xi)\varphi(t,x)$, and add the two equations together. After integrating by parts the left hand side of the resultant inequality, we obtain

$$\begin{split} \int_{\mathbb{R}^{d+2}} \left(-f_{+}^{\rho,\nu,\varepsilon} \tilde{f}_{-}^{\eta,\mu,\delta} (\partial_{t} + a \cdot \nabla + \beta' \Delta + 2\beta' \nabla f_{+}^{\rho,\nu,\varepsilon} \cdot \nabla \tilde{f}_{-}^{\eta,\mu,\delta}) \varphi^{\lambda} d\xi dt dx \\ - \int_{\mathbb{R}^{d+2}} \left(f_{+}^{\tau_{0}\rho,\varepsilon} \theta_{\rho,\nu} \tilde{f}_{-}^{\eta,\mu,\delta} + \tilde{f}_{-}^{\tau_{0}\eta,\delta} \theta_{\eta,\mu} f_{+}^{\rho,\nu,\varepsilon} \right. \\ \left. + F_{+}^{\rho,\nu,\varepsilon} \tilde{f}_{-}^{\eta,\mu,\delta} + \tilde{F}_{-}^{\eta,\mu,\delta} f_{+}^{\rho,\nu,\varepsilon} \right) \varphi^{\lambda} d\xi dt dx \\ \geq - \int_{\mathbb{R}^{d+2}} \partial_{\xi} \tilde{f}_{-}^{\eta,\mu,\delta} \varphi^{\lambda} d(m_{+}^{\rho,\nu,\varepsilon} + n_{+}^{\rho,\nu,\varepsilon}) - \int_{\mathbb{R}^{d+2}} \partial_{\xi} f_{+}^{\rho,\nu,\varepsilon} \varphi^{\lambda} d(\tilde{m}_{+}^{\eta,\mu,\delta} + \tilde{n}_{+}^{\eta,\mu,\delta}) \end{split}$$

Notice that if $\xi \in F$, then $f_+(t, x, \xi) = \operatorname{sgn}^+(\beta(u(t, x)) - \beta(\xi))$ and hence $\nabla f_+^{\rho,\nu,\varepsilon} = [\delta(\xi - u)\nabla\beta(u)]^{\rho,\nu,\varepsilon} \equiv \delta(\xi - u)\times \mathbf{1}_Q] * \gamma_{\rho,\nu,\varepsilon}$. Similarly, we have $\nabla \tilde{f}_-^{\eta,\mu,\delta} = [\delta(\xi - \tilde{u})\nabla\beta(\tilde{u})]^{\eta,\mu,\delta}$. On the other hand, it is easy to see that $\partial_{\xi} f_+^{\rho,nu,\varepsilon} = -\delta(\xi - u)^{\rho,\nu,\varepsilon} \equiv -[\delta(\xi - u)\times \mathbf{1}_Q] * \gamma_{\rho,\nu,\varepsilon}$ and $\partial_{\xi} \tilde{f}_-^{\eta,\mu,\delta} = -\delta(\xi - \tilde{u})^{\eta,\mu,\delta}$. Noting also that m_+ and \tilde{m}_- are nonnegative

measures, we have

$$\int_{\mathbb{R}^{d+2}} \left(-f_{+}^{\rho,\nu,\varepsilon} \tilde{f}_{-}^{\eta,\mu,\delta} (\partial_{t} + a \cdot \nabla + \beta' \Delta + 2\beta' [\delta(\xi - u) \nabla \beta(u)]^{\rho,\nu,\varepsilon} [\delta(\xi - \tilde{u}) \nabla \beta(\tilde{u})]^{\eta,\mu,\delta} \right) \varphi^{\lambda} d\xi dt dx
- \int_{\mathbb{R}^{d+2}} \left(f_{+}^{\tau_{0}\rho,\varepsilon} \theta_{\rho,\nu} \tilde{f}_{-}^{\eta,\mu,\delta} + \tilde{f}_{-}^{\tau_{0}\eta,\delta} \theta_{\eta,\mu} f_{+}^{\rho,\nu,\varepsilon} + F_{+}^{\rho,\nu,\varepsilon} \tilde{f}_{-}^{\eta,\mu,\delta} + \tilde{F}_{-}^{\eta,\mu,\delta} f_{+}^{\rho,\nu,\varepsilon} \right) \varphi^{\lambda} d\xi dt dx
\geq \int_{\mathbb{R}^{d+2}} \delta(\xi - \tilde{u})^{\eta,\mu,\delta} \varphi^{\lambda} dn_{+}^{\rho,\nu,\varepsilon} + \int_{\mathbb{R}^{d+2}} \delta(\xi - u)^{\rho,\nu,\varepsilon} \varphi^{\lambda} d\tilde{n}_{-}^{\eta,\mu,\delta}$$

Let successively $\eta, \mu, \bar{\delta}$ and δ_d go to +0:

$$\int_{Q_{\lambda}\times\mathbb{R}} \left(-f_{+}^{\rho,\nu,\varepsilon} \tilde{f}_{-}(\partial_{t} + a \cdot \nabla + \beta' \Delta + 2\beta' [\delta(\xi - u)\nabla\beta(u)]^{\rho,\nu,\varepsilon} \delta(\xi - \tilde{u})\nabla\beta(\tilde{u}) \right) \varphi^{\lambda} d\xi dt dx
- \int_{Q_{\lambda}\times\mathbb{R}} \left(f_{+}^{\tau_{0}\rho,\varepsilon} \theta_{\rho,\nu} \tilde{f}_{-} + F_{+}^{\rho,\nu,\varepsilon} \tilde{f}_{-} \right) \varphi^{\lambda} d\xi dt dx
\geq \int_{Q_{\lambda}\times\mathbb{R}} \delta(\xi - \tilde{u})\varphi^{\lambda} dn_{+}^{\rho,\nu,\varepsilon} + \int_{Q_{\lambda}\times\mathbb{R}} \delta(\xi - u)^{\rho,\nu,\varepsilon} \varphi^{\lambda} d\tilde{n}_{-}.$$

Here we used the fact that regularized functions equal zero at t=0 and at the boundary. Then, let successively $\rho, \nu, \bar{\varepsilon}$ and ε_d go to +0 and use (2.2) in Lemma 2.1 to obtain

$$\int_{Q_{\lambda}\times\mathbb{R}} \left(-f_{+}\tilde{f}_{-}(\partial_{t}+a\cdot\nabla+\beta'\Delta) + 2\beta'\delta(\xi-u)\delta(\xi-\tilde{u})\nabla\beta(u)\cdot\nabla\beta(\tilde{u})\right)\varphi^{\lambda}d\xi dt dx
-\int_{\Omega_{\lambda}\times\mathbb{R}} f_{+}^{\tau_{0}}\tilde{f}_{-}^{\tau_{0}}\varphi^{\lambda}(0,\cdot)d\xi dx + \int_{\Sigma_{\lambda}\times\mathbb{R}} \left((\mathbf{n}_{1}\cdot a)f_{+}^{\tau}\tilde{f}_{-}^{\tau}\right) -\beta'(\nabla_{\tilde{x}}h\cdot\nabla_{\tilde{x}}f_{+}^{b})\tilde{f}_{-}^{b})\overline{\varphi}^{\lambda}d\xi dt d\tilde{x}
\geq \int_{Q_{\lambda}\times\mathbb{R}} \delta(\xi-\tilde{u})\varphi^{\lambda}dn_{+} + \int_{Q_{\lambda}\times\mathbb{R}} \delta(\xi-u)\varphi^{\lambda}d\tilde{n}_{-}.$$
(2.8)

Next, let successively $\rho, \nu, \bar{\varepsilon}$ and ε_d go to +0 and then let successively $\eta, \mu, \bar{\delta}$ and δ_d go to +0: For any weak* cluster point \tilde{f}_-^{τ} and for some

weak* cluster point f_+^{τ} , we have

$$\int_{Q_{\lambda}\times\mathbb{R}} \left(-f_{+}\tilde{f}_{-}(\partial_{t} + a \cdot \nabla + \beta'\Delta) + 2\beta'\delta(\xi - u)\delta(\xi - \tilde{u})\nabla\beta(u) \cdot \nabla\beta(\tilde{u}) \right) \varphi^{\lambda}d\xi dt dx
- \int_{\Omega_{\lambda}\times\mathbb{R}} f_{+}^{\tau_{0}}\tilde{f}_{-}^{\tau_{0}}\varphi^{\lambda}(0,\cdot)d\xi dx
+ \int_{\Sigma_{\lambda}\times\mathbb{R}} \left((\mathbf{n}_{1} \cdot a)f_{+}^{\tau}\tilde{f}_{-}^{\tau} - \beta'(\nabla_{\tilde{x}}h \cdot \nabla_{\tilde{x}}\tilde{f}_{-}^{b})f_{+}^{b} \right) \overline{\varphi}^{\lambda}d\xi dt d\bar{x}
\geq \int_{Q_{\lambda}\times\mathbb{R}} \delta(\xi - \tilde{u})\varphi^{\lambda}dn_{+} + \int_{Q_{\lambda}\times\mathbb{R}} \delta(\xi - u)\varphi^{\lambda}d\tilde{n}_{-}.$$
(2.9)

Adding (2.8) and (2.9) yields

$$\int_{Q_{\lambda}\times\mathbb{R}} \left(-f_{+}\tilde{f}_{-}(\partial_{t}+a\cdot\nabla+\beta'\Delta) + 2\beta'\delta(\xi-u)\delta(\xi-\tilde{u})\nabla\beta(u)\cdot\nabla\beta(\tilde{u})\right)\varphi^{\lambda}d\xi dt dx \\
-\int_{\Omega_{\lambda}\times\mathbb{R}} f_{+}^{\tau_{0}}\tilde{f}_{-}^{\tau_{0}}\varphi^{\lambda}(0,\cdot)d\xi dx \\
+\int_{\Sigma_{\lambda}\times\mathbb{R}} \left((\mathbf{n}_{1}\cdot a)f_{+}^{\tau}\tilde{f}_{-}^{\tau} - \frac{1}{2}\beta'\nabla_{\bar{x}}h\cdot\nabla_{\bar{x}}(f_{+}^{b}\tilde{f}_{-}^{b})\right)\overline{\varphi}^{\lambda}d\xi dt d\bar{x} \\
\geq \int_{\Omega_{\lambda}\times\mathbb{R}} \left(\delta(\xi-\tilde{u})n_{+} + \delta(\xi-u)\tilde{n}_{-}\varphi^{\lambda}d\xi dt dx.\right)$$

for some weak* cluster points f_+^{τ} and \tilde{f}_-^{τ} . Since

$$2\beta'(\xi)\delta(\xi-u)\delta(\xi-\tilde{u})\nabla\beta(u)\cdot\nabla\beta(\tilde{u})$$

$$\leq \mathbf{1}_{F}(\xi)\delta(\xi-u)\delta(\xi-\tilde{u})(|\nabla\beta(u)|^{2}+|\nabla\beta(\tilde{u})|^{2})$$

$$=\delta(\xi-\tilde{u})n_{+}(t,x,\xi)+\delta(\xi-u)\tilde{n}_{-}(t,x,\xi),$$

we arrive at

$$-\int_{Q_{\lambda}\times\mathbb{R}} f_{+}\tilde{f}_{-}(\partial_{t} + a \cdot \nabla + \beta' \Delta) \varphi^{\lambda} d\xi dt dx \qquad (2.10)$$

$$\geq \int_{\Omega_{\lambda}\times\mathbb{R}} f_{+}^{\tau_{0}} \tilde{f}_{-}^{\tau_{0}} \varphi^{\lambda}(0, \cdot) d\xi dx - \int_{\Sigma_{\lambda}\times\mathbb{R}} \left((\mathbf{n}_{1} \cdot a) f_{+}^{\tau} \tilde{f}_{-}^{\tau} - \frac{1}{2} \beta' \nabla_{\bar{x}} h \cdot \nabla_{\bar{x}} (f_{+}^{b} \tilde{f}_{-}^{b}) \right) \overline{\varphi}^{\lambda} d\xi dt d\bar{x}.$$

We compute each term of (2.26). Firstly,

$$-\int_{Q_{\lambda}\times\mathbb{R}} f_{+}\tilde{f}_{-}(\partial_{t} + a \cdot \nabla + \beta' \Delta) \varphi^{\lambda} d\xi dt dx$$

$$= \int_{Q_{\lambda}} \left((u - \tilde{u})^{+} + \mathcal{F}^{+}(u, \tilde{u}) \nabla \varphi^{\lambda} + (\beta(u) - \beta(\tilde{u}))^{+} \Delta \varphi^{\lambda} \right) dt dx.$$
(2.11)

Secondly, by virtue of Lemma 2.2 and by using integration by parts one can calculate:

$$\begin{split} \int_{\mathbb{R}} f_{+}^{\tau_{0}} \tilde{f}_{-}^{\tau_{0}} d\xi \\ &= \int_{-\infty}^{\tilde{u}_{0}} \nu_{x}^{\tau_{0}} ([\xi, \infty)) \partial_{\xi} \tilde{m}_{-}^{0} d\xi - \int_{\tilde{u}_{0}}^{u_{0} \vee \tilde{u}_{0}} \nu_{x}^{\tau_{0}} ([\xi, \infty)) \tilde{\nu}_{x}^{\tau_{0}} ((-\infty, \xi]) d\xi \\ &- \int_{u_{0} \vee \tilde{u}_{0}}^{\infty} \partial_{\xi} m_{+}^{0} \tilde{\nu}_{x}^{\tau_{0}} ((-\infty, \xi]) d\xi \\ &= \nu_{x}^{\tau_{0}} ([\tilde{u}_{0}, \infty)) \tilde{m}_{-}^{0} (\cdot, \tilde{u}_{0}) + \int_{-\infty}^{\tilde{u}_{0}} \tilde{m}_{-}^{0} d\nu_{x}^{\tau_{0}} - \int_{\tilde{u}_{0}}^{u_{0} \vee \tilde{u}_{0}} \nu_{x}^{\tau_{0}} ([\xi, \infty)) \tilde{\nu}_{x}^{\tau_{0}} ((-\infty, \xi]) d\xi \\ &+ m_{+}^{0} (\cdot, u_{0} \vee \tilde{u}_{0}) \tilde{\nu}_{x}^{\tau_{0}} ((-\infty, u_{0} \vee \tilde{u}_{0})) + \int_{u_{0} \vee \tilde{u}_{0}}^{\infty} m_{+}^{0} d\tilde{\nu}_{+}^{\tau_{0}} \\ &\geq - \int_{\tilde{u}_{0}}^{u_{0} \vee \tilde{u}_{0}} d\xi = -(u - \tilde{u}_{0})^{+}. \end{split}$$

Here we used the fact that $d\nu_x^{\tau_0}([\xi,\infty))/d\xi = -d\nu_x^{\tau_0}(\xi)$ and $d\tilde{\nu}_-^{\tau_0}((-\infty,\xi])/d\xi = d\tilde{\nu}_-^{\tau_0}(\xi)$. Thus we have

$$\int_{\Omega_{\lambda} \times \mathbb{R}} f_{+}^{\tau_{0}} \tilde{f}_{-}^{\tau_{0}} \varphi^{\lambda}(0, \cdot) d\xi dx \ge -\int_{\Omega_{\lambda}} (u_{0} - \tilde{u}_{0})^{+} \varphi^{\lambda}(0, \cdot) dx.$$
(2.12)

Finally, we calculate analogously the boundary term by using Lemma 2.4:

$$\int_{\mathbb{R}} (\mathbf{n}_{1} \cdot a) f_{+}^{\tau} \tilde{f}_{-}^{\tau} d\xi$$

$$= -\int_{-\infty}^{\tilde{u}_{b}} \partial_{\xi} \tilde{m}_{-}^{b} \nu_{t,y}^{\tau}([\xi, \infty)) d\xi - \int_{\tilde{u}_{b}}^{u_{b} \vee \tilde{u}_{b}} (\mathbf{n}_{1} \cdot a) \nu_{t,y}^{\tau}([\xi, \infty)) \tilde{\nu}_{t,y}^{\tau}((-\infty, \xi]) d\xi$$

$$+ \int_{u_{b} \vee \tilde{u}_{b}}^{\infty} \partial_{\xi} m_{+}^{b} \nu_{t,y}^{\tau}((-\infty, \xi]) d\xi$$

$$\leq M \int_{\tilde{u}_{b}}^{u_{b} \vee \tilde{u}_{b}} d\xi = M(u_{b} - \tilde{u}_{b})^{+},$$

where y stands for \bar{x}_0 and we used the fact that $d\nu_{t,y}^{\tau}([\xi,\infty))/d\xi = -d\nu_{t,y}^{\tau}(\xi)$ and $d\tilde{\nu}_{t,y}^{\tau}((-\infty,\xi])/d\xi = d\tilde{\nu}_{t,y}^{\tau}(\xi)$ as well as the fact that $m_+^b \geq$

0 for $\xi \geq u_b$ and $\tilde{m}_-^b \geq 0$ for $\xi \leq \tilde{u}_b$ by virtue of (2.21) and the corresponding inequality associated with \tilde{u} , respectively. This implies

$$\int_{\Sigma_{\lambda} \times \mathbb{R}} (\mathbf{n}_{1} \cdot a) f_{+}^{\tau} \tilde{f}_{-}^{\tau} \overline{\varphi}^{\lambda} d\xi dt d\bar{x} \leq M \int_{\Sigma_{\lambda}} (u_{b} - \tilde{u}_{b})^{+} \overline{\varphi}^{\lambda} dt d\bar{x}.$$
(2.13)

Moreover

$$\int_{\Sigma_{\lambda}\times\mathbb{R}} \beta'(\xi) \nabla_{\bar{x}} h(\bar{x}) \cdot \nabla_{\bar{x}} (f_{+}^{b} \tilde{f}_{-}^{b}) \overline{\varphi}^{\lambda} d\xi dt d\bar{x} \qquad (2.14)$$

$$= -\int_{\Sigma_{\lambda}\times\mathbb{R}} \beta'(\xi) \operatorname{div}_{\bar{x}} (\overline{\varphi}^{\lambda} \nabla_{\bar{x}} h(\bar{x})) f_{+}^{b} \tilde{f}_{-}^{b} d\xi dt d\bar{x}$$

$$= -\int_{\Sigma_{\lambda}} (\beta(u_{b}) - \beta(\tilde{u}_{b}))^{+} (\Delta_{\bar{x}} h(\bar{x}) \overline{\varphi}^{\lambda} + \nabla_{\bar{x}} h(\bar{x}) \cdot \nabla_{\bar{x}} \overline{\varphi}^{\lambda}) dt d\bar{x}$$

$$\geq \int_{\Sigma_{\lambda}} (\beta(u_{b}) - \beta(\tilde{u}_{b}))^{+} (-L \overline{\varphi}^{\lambda} + \nabla_{\bar{x}} h(\bar{x}) \cdot \nabla_{\bar{x}} \overline{\varphi}^{\lambda}) dt d\bar{x}.$$

Combining (2.10) with (2.11) through (2.14) and choosing appropriate test functions φ 's, we arrive at the estimate

$$\frac{1}{T} \int_{Q_{\lambda}} (u - \tilde{u})^{+} dt dx
\leq \int_{\Omega_{\lambda}} (u_{0} - \tilde{u}_{0})^{+} dx + M \int_{\Sigma_{\lambda}} (u_{b} - \tilde{u}_{b})^{+} dt d\bar{x} + \frac{L}{2} \int_{\Sigma_{\lambda}} (\beta(u_{b}) - \beta(\tilde{u}_{b}))^{+} dt d\bar{x}.$$

By summing over $i = 0, 1, \dots, N$, we obtain the desired estimate (1.9) and the proof of Theorem is complete.

REFERENCES

- [1] C. Bardos, A. Y. LeRoux and J.-C. Nédélec, First order quasilinear equations with boundary conditions, Comm. Partial Differential Equations, 4 (1979), pp. 1017–1034.
- [2] J. Carrillo, On the uniqueness of the solution of the evolution dam problem, Nonlinear anal., 22 (1994), pp. 573-607.
- [3] J. Carrillo, Entropy solutions for nonlinear degenerate problems, Arch. Rational Mech. Anal. 147 (1999), pp. 269–361.
- [4] G. -Q. Chen and H. Frid, Divergence-Measure fields and the Euler equations for gas dynamics, Commun. Math. Phys. 236 (2003), pp. 251–280.
- [5] J. I. Diaz and R. Kershner, On a nonlinear degenerate parabolic equation on filtration or evaporation through a porous medium, J. Differential Equations 69 (1987), pp. 368-403.
- [6] J. Droniou, C. Imbert and J. Vovelle, An error estimate for the parabolic approximation of mutidimensional scalar conservation laws with boundary conditions, Ann. I. H. Poincaré 21(2004), pp. 689–714.
- [7] L. C. Evans and R. F. Gariepy, Measure theory and fine properties of functions, CRC Press Inc., Boca Raton, Ann Arbor, London, 1992

- [8] G. Gagneux and M. Madaune-Tort, Analyse mathématique de modèles non linéaires de l'ingénierie pétrolière, Mathématique and Applications 22, Springer-Verlag, Berlin, Heidelberg, New York, 1996.
- [9] C. Imbert and J. Vovelle, A kinetic formulation for multidimensional scalar conservation laws with boundary conditions and applications, SIAM J. Math. Anal., 36 (2004), pp. 214–232.
- [10] K. Kobayasi, The equivalence of weak solutions and entropy solutions of nonlinear degenerate second order equations, J. Differential Equations, 189 (2003), pp. 383–395.
- [11] S. N. Kružkov, First order quasilinear equations with several independent variables, Mat. Sbornik, 81 (1970), pp. 228-255.
- [12] P. L. Lions, B.Perthame and E. Tadmor, A kinetic formulation of mutidimensional scalar conservation laws and related equations, J. Amer. Math. Soc., 7 (1994), pp. 169-191.
- [13] J. Málek, J. Nečas, M. Rokyta and M. Ružička, Weak and measure-valued solutions to evolutionary PDEs, Chapman & Hall, London, 1996.
- [14] C. Mascia, A. Porretta and A.Terracina, Nonhomogeneous Dirichlet problems for degenerate parabolic - hyperbolic equations, Arch. Rational Mech. Anal., 163 (2002), pp. 87–124.
- [15] A. Michel and J. Vovelle, Entropy formulation for parabolic degenerate equations with general Dirichlet boundary conditions and application to the convergence of FV methods, SIAM Numer. Anal., 41 (2003), pp. 2262–2293.
- [16] F. Otto, Initial-boundary value for a scalar conservation laws, C. R. Acad. Sci. Paris Sér I Math., 322 (1996), pp. 729-734.
- [17] B. Perthame, Uniqueness and error estimates in first order quasilinear conservation laws via the kinetic entropy defect measure, J. Math. Pures Appl., 77 (1998), pp. 1055-1064.
- [18] B. parthame, Kinetic formulation of conservation laws, Oxford Univ. Press, Oxford, UK, 2002.
- [19] A. Vasseur, Strong traces for solutions of multidimensinal scalar conservation laws, Arch. Rational Mech. Anal., 160 (2001), pp. 181–193.