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1 Introduction

A graph I" with diameter d is said to be distance-regular if there are integers b; (i =
0,---,d = 1) and ¢; (i = 1,---,d) such that for any two veritices z and y such that

dz,y) =1,

b, = F{z |z vertex, d(z,z) =i+ 1,d(y,2) = 1},

¢ = F#{z|zvertex, d(z,2) =1—1,d(y,z) = 1}.
Let g be a prime power and n,e be integers such that n/2 > e > 2. The Grassmann
graph J,(n, e) is a graph on the e-dimensional subspaces in an n-dimensional vector space
over the finite field GF(g) where two e-dimensional subspaces are adjacent if and only

if they intersect in a (e — 1)-dimensional subspace. The Grassmann graph J(n,e) is a
distance-regular graph whose parameters are

b; :—'Q%—H[ezi} [n—f—z}’ c = [71’}2

where [T] =¢" M4+ g+ L
The twisted Grassmann graphs jq (2e+1,e), which is constructed by E. van Dam and
J. Koolen [1], is defined as follows: let H be a hyperplane of the (2e + 1)-dimensional
vector space V over GF(g). Put
B, = {W :subspaceof V | dmW =e+1,W ¢ H},
B, {W :subspace of H | dimW =e — 1}.

The vertex set of J,(2¢ + 1,¢) is By U B, and the adjacency is defined as follows: for
W, W, e B, U Bs,

dlm(W1 N Wg) =€ if Wl, W2 € Bi,
Wl ~ W2 if and only if d1m(W1 N WQ) =e—2 if W1, W2 < Bz,
dim(W; NW,) =e—~1 otherwise .
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Theorem 1 [1} The twisted Grassmann graph J,(2e + 1,e) is distance-regular and its
parameters are same as the Grassmann graph J,(2e + 1, €). Moreover the automorphism
group of the twisted Grassmann graph acts on the vertez set with fwo orbits By and B,.

M. Tagami determined the automorphism group of J(2e+1, e) and later J. Koolen showed
another proof of the coincidence (see [3)).

Theorem 2 The automorphism group of J(2e+ 1, e) s just PCL(2e +1,q)g.

Let X = (X, {R;}o<i<a) be a commutative association scheme. Suppose that X is Q-
polynomial. For i € {0,--,d}, let 4; be a matrix indexed by X defined as follows: for
two vertices z, y,

_ |1 if(z,y) € R,
(Aeday = { 0 i (zy) ¢ R;

Fix a vertex z. For i € {0, --,d}, let Ef = E*(z) be a diagonal matrix indexed by
the vertex set of I' defined by, for each vertex y,

o J 1 ifd(z,y) =1,
(B )y = { 0 otherwise

The algebra T = T'(z) generated by Ay, - - -, 4; and Ej, .-+, B} over the complex field is
called the Terwilliger algebra with respect to z. For an irreducible T-module W, if for any
i € {0,---,d}, dim(EfW) < 1, we say that W is thin, and if any irreducible T-module
is thin, we say T is thin. Every Terwilliger algebra 7 has a thin module T'1 where 1
is an all-one vector. This module satisfies dim(E}W) = 1 for any 4. If an irreducible
T-module W has an integer j of {0,---,d} such that dim(E;W) = 0 for any ¢ < j and
dim(E;W) # 0, we say that W is of endpoint j (ref. [4].) P. Terwilliger conjectured the
following: If a commutative association scheme X = (X » {Ri}o<i<a) is Q-polynomial, then
one of the following holds (1) X is formally self-dual or (2) for any z € X, the Terwilliger
algebra T'(z) is thin. : ’

It is well-known that the association scheme obtained from the Grassmann graph is
Q-polynomial. The association scheme is not formally self-dual but for any z € X, the
Terwilliger algebra T'(z) is thin, that is, the above conjecture holds. Since conditions
of Q-polynomial and self-dual depends only on the parameters b; and ¢;, the association
scheme obtained from the twisted Grassmann graph is also Q-polynomial but not formally
self-dual.

For a graph T', let A = Ar be the adjacency matrix of I'. We call the eigenvalues and
multiplicities of A the eigenvalues and multiplicties of T' respectively. Let 01,09, ,0;
and my, My, + - -, M are respectively the eigenvalues and corresponding multiplicities of T".
Then for any non-negative integer 1,

¢
Zmp(?;, = Trace A® = #{ closed path of length 7 in ['}
p=1

where closed path of length ¢ means that a sequence z;,z,---,z; of vertices satisfying
any consective two vertices are adjacent and z; and z, is also adjacent. Define that a
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closed path of length 0 is a vertex. For a distance-regular graph I' with parameters b;
and c¢;, let A be a adjacency matrix of the local graph with respect to a vertex z. We can
easily see that

Trace A® = by, Trace A' = 0, and Trace A® = by(by — by — 1).

In particular, for the Grassmann graph J,(2e + 1,e) and the twisted Grassmann graph
Jo(2¢ + 1,e), we have that Trace A® = q[e} [SH] Trace A = 0 and Trace A* =

1] 1|
afs][*1] (ata+ 1]5] - 1).
A distance-regular graph T has classic parameter (d, ¢, o, ) if
d ) )
b = (H B [1]) (6—0‘[1D
1 ri—1
o = [ (rral'71)
The Grassmann graph J,(n,e) has classic parameter (e,q, q,q["IeD. Similarly the
twisted Grassmann graph jq(2e + 1,e) also has calssic parameter (e, a,q,q [‘”{1])

2 Computing the eigenvalues of graphs

In this section, we show the method to compute the eigenvalues of graphs. For a graph T’
on the vertex set V' and for an automorphism group G, not necessarily Aut(G), consider
actions of G on V and V x V. Let 01,04, O, be the orbits on V and 01,04, -+, 0y
be the orbits on V x V. Suppose that Oy, --, O, satisfies that U}_,O; = O; x V. For
1<4,j <sandfor (z,y) € O,

P(i,j) = #{z: vertex | (z,2) € O; and y, z are adjacent}

is independent of the choice of (z,y) and only depends on ¢ and j. Let P; = (P(i, j))1<i j<s-
Similarly we can construct matrices P, - -, P,

Proposition 3 The union of eigenvalues of P;’s is just the eigenvalues of I.
From now on, we put I" as the twisted Grassmann graph jq(Ze +1,€e). We consider an

action of the stabilizer of U € By U B, in G = PT'L(2e + 1,¢)g as automorphism group.
Then we need to separate computation of eigenvalues in each case U € By or U € B;.

2.1
Fix U € B;. Then the neighbors of U in " consists of the following two sets:

A= {W € B;| W is adjacent to U}, B :={W € B,| W is adjacent to U}.
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The A and B forms the Gy-orbitals on the neighbors of U and Gy-orbitals on AU B are
following:

Ay = {(W, W) | Wy € A},
Ay = {(WI,WZ)EAXA]WlﬂUzwgﬂU,(Wl,U>=(Wg,U),W;#Wg},
Ay = AWM W) € Ax A WinU =WonU, (Wi, U) # (Ws, U)},
(In the cases of A; and Ay, Wy, "W, is a (e — 2)-dimensional subspace in U)
Ay = {(W,Wy) € Ax A| Wy N W, : (e — 2)-dimensional subspace not in U H
Ay = {(W, W) e AX A| WiNWs: (e — 3)-dimensional subspace},
(In this case, Wi N W, is in U.)
AB, = {(W,Wh) € Ax B |W, C W},

AB, = {(W,W;)€AxB | Wy g Wy},
BA;, = {(W,W,) ¢ B x A | W, C Wi}(= transpose of AB,),
BA2 = {(Wl, W2 €EBxA i Wz g W]_}(= transpose of ABQ),

: )
By = {(Wy,W;)| W, € B},
By = {(W,Wy) € Bx B|W,NW,: e-dimensional subspace in & }
= {(W,W,) € BXx B| Wi NW,: e-dimensional subspace not in H }
By = {(Wy,Wy)€BxB|W,nW,=U)}

o
i

For two Gy-orbitals K and K’ and for (W, W,) € K, put
p(K,K'):={W € AUB | (W;,W) € K', W is adjacent to W,}.

Then the following holds:

p(Ka K[) AG AI A2 A3 A4 AB} ABZ
Ap 0 ¢g-1 @3 ¢ e;j 0 q° 0
A 1 ¢g—2 ¢ q° EIQJ 0 q° 0
Ay 1 ¢g-1 q2 [; —1 0 q2 {6;2} 0 ¢
A5 1 ¢g-1 0 ¢ [6;2] -1 2[5 ¢ 0
A4 0 0 q q Z q°
AB, 1 ¢-1 0 ¢ 0 g1 2[¢]
AB, 0 0 q 0 qz[ezz} q qz[i] gt —g—1

where z = ¢° ([i] + [BIQD — g — 1. Considering the above array as a 7 x 7 matrix,

the eigenvalues are g(¢+1) [‘;] -1, 4 {iji -1,¢% {ezl] —1, —g—1 and —1. Similarly, we
have the following results: :
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By, B B, B, BA, BA,
B 0 ¢-1  ¢[i 0 ¢ ‘Z?J 0
Bi 1 ¢-2 ¢ @7 o N
B, 1 g¢-—1 qz’[ell} +¢* -1 gq(¢*-1) Hﬁl] 0 fTZl
By 0 ¢ g(g+1) y 0 g
BA, 1 ¢-1 0 0 q[e;l] —1 q2[§
BA;, O 0 q g°—q q z

where y = ¢° {‘I‘] +¢*-2¢—-1,z= qQ([‘;:{ + [eIQD — 1. Considering the above array
as a 6 X 6 matrix, the eigenvalues are ¢(g + 1){;‘} —1,¢° [i] -1,¢° {ezl} —land —¢g—1.

Therefore we have the following conclusion.

Proposition 4 For the local graph of jq(26 +1,e) around W € By, the eigenvalues are
q(g + 1)[‘;] -1, ¢ [f} -1, 4% [ezl} -1, —q—1 and —-1.

The number of 3-cycles in I'(U) is equal to gz(gz + 1)(2¢°2* + (¢* — ¢® — ¢* — 3¢)z +
¢* — ¢* +2). Let my,mg, m3 and my be the multiplicities of ¢? [f} -1, ¢ [ezl] -1, —¢~-1

and —1 respectively. From them, we conclude that my = I:EII:I,TTLQ = q[e'i'l} —1,mg =

(R e T

2.2
Fix U € B,. Then the neighbors of U in I consists of the following three G-invariant sets:

C = {WeB, | WnU=UnH},
D = {WeB, |WNU#UNH, W is adjacent to U},
E = {WebB, |WcCU}

These three set forms the Gy-orbits on the neighbors of U. The Gy-orbitals on C are
following:

Co = {(W,Wy) | Wy € C},
Cr = {(W,Ws) € Cx C | (Wy,U) = (W, U, W, W2},
02 = {(WI,WQ) e(CxC ‘ <W1,U> # (Wz,U)}

The Gy-orbitals on C' x D are following:
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ODl = {(Wl,Wz) eCxD } dlle n Wz = 6},'
CDQ = {(Wl,WQ) eCxD ] dIIIlW1 ﬂWQ =€ — 1}

The Gy-orbitals on D x C are DC, := (CD,)t and DC, := (CD,)*. The sets C x E
and F x C form Gy-orbitals. . Let Wy € D. Then since W N U is an e-dimensional
subspace distinct from UNH, U; =W, NUNH is an (e ~ 1)-dimensional subspace and
for some vectors up,uy € H and w; ¢ H, U = (Uy,ug,u1) and Wy = (Uh,ug,u1). The
(Gy)w,-orbitals on D are following:

Do = {W1},
D, = {{U1,us, u) lue (uﬂ’ﬂ/é})}:
Dy = {{Us,uy,u) | u€ H\ (up,uy)},

Dy = {(Uy,aup + uy, up) | a€F},
Dy = {{Ur,auo +w,u) | a € F,u € (g, up) \ {{uo), (ug)}},
Ds = {{Uy,aup+ui,u) | a € Fy,ue H\ (U, up,up)},

De = {{U},au+uy,bu+up, cu+ug) | a,b,c € Fy, Uy = (U], u),dim U} = e — 2},
Dy = {{U},au+u,bu+uy,v) | a,b € Fy, Uy = (U], u),dimU] = e — 2,
v E H\ <U1,U0,’Lb6>}.

The Gy-orbitals on Dx E are DE, := {(W;, W;NUNH) | W, € D} and its complement
DE,. ED, := (DE:)* and ED, = (DE,)* form the Gy-orbitals on E x D. The Gy-
orbitals on E x E are Ey := {(W:,W;) | W; € E} and its complement F,. Consider
matrices whose entries are p(K, K'). First we can obtain the following table:

Co G Cs cD, CDy, CxE
Co 0 ¢g—-2 ¢ —gq 3 0 :
Cy 1 ¢g—-3 ¢ —¢ |3 0 1
Co 1 ¢g—2 ¢—-q-1 0 QQH :
CD, 1 ¢g—2 0 qﬁm -1 qﬁ[eﬂ {
CDy, 0 0 g-—1 g « 1
CxE 1 ¢q—2 ¢—g ¢ 43[";1} q{eﬂ

where o = ¢? ({‘;] + {ezl} ) —g—1. Considering the above array as a 6 x 6 matrix, the

eigenvalues are ¢(g+1) [ﬂ -1,¢° [6;1] ~1, —1 and the roots of 2% — (q2 [i] —g- 2) 7
¢ {f] + ¢+ 1= 0. The eigenvalue —1 has multiplicity 2
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We note that the equation z2 — (q"’[ﬂ —-q— 2) z—q° [ﬂ -+¢+ 1 = 0 has no roots in
Qlg]. Next we obtain the following table:

B  E ED: ED, ExC

E, 0 q l:e-l—l] 7 [;] 0 ¢ —1
E, 1 q[ezl} -1 0 q° [f} ¢ —1
ED; 1 0 @[]+t e[ g—1
ED, 0 1 g’ (g +1) [E;l] 1 -1
Fro 1 o] ¢ ] e

Considering the above array as a 5 x 5 matrix, the eigenvalues are ¢(q + l)[ﬂ -1,
q[ﬂ —1, ¢ [ef} — 1, —¢— 1 and —1. Finally we have the following tables:

(1):

Dy D, D, Ds Dy Dy Dg Dy
Dy 0 g-1 %"} q¢-1 (-1 0 ¢l 0
Di 1 -2 @7 ¢-1 (@-17 0 ¢ 0
Dp1og-1 ¢[]=1 0 0 q(g—1) 0 qg{eﬂ
Dy 1 ¢g-1 0 g—2 (g—-1)% ¢ e;l e Fc—l-l 0
Di 1 ¢=1 0 g-1 ¢-2 @7 &7 0
Dy 0 0 q 1 qg—1 o 0 qa e;l
Dg 1 g-1 0 g—1 (g—1)? 0 e [e;l] —1 g2
D, 0 0 q 0 0 qg—1) q ;

where o = ﬂeﬂ +q%—2g—1and =g+ 1)[311] — g — 1. Put this table Dy,.
(ii):
DC, DC, DE, DE,

Dy g—1 0 1 0
Dy g-1 0 1 0
D, 0 g¢g-1 1 0
Dy g—1 0 1 0
Dy g—1 0 1 0
Ds 0 g—1 1 0
Ds g—1 0 0 1
D, 0 g-1 0 1

Put this table Dlg.
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(ii): |
Do Di Dy, Dy D, D; Ds D,
DG, 1 ¢g—-1 0  g—1 (qg—1)? 0 e [fﬂ 0
DC, 0 0 g 0 0 glg-1) 0 ¢ [ezl]
DE, 1 ¢g—1 ¢ [eﬂ a—1 (¢-1? ¢(¢'—1) 0 0
DE, 0 0 0 0 0 0 R [6;1]
Put this table Dsy;.
(iv):

DC, DC, DE; DE,
DCy ¢-2 ¢ —gq 1
DCy g-1 ¢°—g—-1 1
DE, g—1 q¢°—q 0 g7
DE, ¢g—-1 ¢ —q 1

Put this table DQQ.
Dy D
Let Z =
Dy Do
plicities are as follows:

) be a 12 x 12 matrix. Then the eigenvalues and their multi-

Eigenvalue Multiplicities
alg+1)[5] -1 1
q i} -1 1
q2 e;l} -1 9
—q—1 3
-1 3
01,62 (for each root)

1
where 6, and 8, are the roots of % — (q2 [i] —q- 2) z—q [‘;] +qg+1=0.

Proposition 5 For the local graph of jq(Qe + 1,¢e) with respect to W € B,, the eigen-
values are q(g + 1){?} -1, q[;”] —1, ¢ [6;1] —1, =g —1, =1 and the roots of z* —
(@[] —g-2)z-¢s] +g+1=0.

The number of 3-cycles in T'(U) is equal to the sum of mumbers obtained from (1) to

(9), which is gz(¢®z® + ¢*z® + 3¢*3® — 6¢°2? + ¢*z* 4 5¢°x — 6¢°2%2 + 2). 'The multiplicities
™y, Ma, M3, my and ms satisfy that for any 7 > 0,

(glg+ Dz — 1) +(gz—1)'mi+(gz—q—1)’ma+(—¢— D'mg+(=1)'mg+ayms = TrA* (1)

where a; is defined by as follows: ag = 2, a1 = ¢*z — ¢ —2, ¢; = (¢*z — ¢ —2)a;1 + ¢z —
g~ 1)ai_s for i > 2, which means that 6% + 6§ = a; for any . From them, we can see that

my = Q{ezl} , My = ¢, mg = ¢° {i] [eﬂ:m = (¢*** - 1) [;] - Q[ezl}, and ms = Q{e?]
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3 Thin and non-thin irreducible modules

Let T be a distance-regular graph with classic parameter (d, g, c, 3). For a local graph
D(z), if A # by — b; — 1 is an eigenvalue of the local graph, there exists an eigenvector v
of Ft A Ff whose eigenvalue is A. Then T'v forms an irreducible T-module of endpoint 1.
Moreover any irreducible T-module of endpoint 1 is 7'v for some eigenvector v of E} A1 F{.
P. Terwilliger proved the following [4]:

Theorem 6 In the above assumption, the irreducible module T is thin if and only if

,\E{a[dzlJ ——l,ﬁ—-a—l,—q—l,~1}

As we noted, the Grassmann graph J,(2e+1, e) and the twisted Grassmann graph Jo(2e+

e+1
1

[ e Y e

1,e) have classic parameter (e, q, ¢, [ ). In these cases,

Hence the above set in the Theorem is just the eigenvalues of the local graph of Grassmann
graph except by — by — 1 =g(¢+1) [;] -1

For the twisted Grassmann graph j’q(Ze +1,€), let U € B;. Then, from results in the
previous section, we can see that the Terwilliger algebra T'(U) has 4 irreducible modules
of endpoint 1. Moreover the above theorem, all such modules are thin. On the other
hand, let U € By. Then there are 6 irreducible T'(U)-modules of endpoint 1. From results.
in the previous section, we can see that three of them are thin and the other are non-

thin. Therefore, the twisted Grassmann graph is a counterexample of the conjecture of
Terwilliger.
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