On the structure of the twisted Grassmann graphs

藤崎 竜也 (Tatsuya Fujisaki) 筑波大学 (University of Tsukuba)

Jack Koolen 韓国・浦項工科大学 (POSTECH, Korea)

November 30, 2005

1 Introduction

A graph Γ with diameter d is said to be distance-regular if there are integers b_i $(i = 0, \dots, d-1)$ and c_i $(i = 1, \dots, d)$ such that for any two veritices x and y such that d(x, y) = i,

$$b_i = \#\{z \mid z : \text{vertex}, d(x, z) = i + 1, d(y, z) = 1\},\ c_i = \#\{z \mid z : \text{vertex}, d(x, z) = i - 1, d(y, z) = 1\}.$$

Let q be a prime power and n, e be integers such that $n/2 \ge e \ge 2$. The Grassmann graph $J_q(n,e)$ is a graph on the e-dimensional subspaces in an n-dimensional vector space over the finite field GF(q) where two e-dimensional subspaces are adjacent if and only if they intersect in a (e-1)-dimensional subspace. The Grassmann graph $J_q(n,e)$ is a distance-regular graph whose parameters are

$$b_i = q^{2i+1} {e-i \brack 1} {n-e-i \brack 1}, \quad c_i = {i \brack 1}^2.$$

where
$${m \brack 1} = q^{m-1} + \dots + q + 1$$
.

The twisted Grassmann graphs $\tilde{J}_q(2e+1,e)$, which is constructed by E. van Dam and J. Koolen [1], is defined as follows: let H be a hyperplane of the (2e+1)-dimensional vector space V over GF(q). Put

$$\mathcal{B}_1 = \{W : \text{subspace of } V \mid \dim W = e+1, W \not\subseteq H\},$$

 $\mathcal{B}_2 = \{W : \text{subspace of } H \mid \dim W = e-1\}.$

The vertex set of $\tilde{J}_q(2e+1,e)$ is $\mathcal{B}_1 \cup \mathcal{B}_2$ and the adjacency is defined as follows: for $W_1, W_2 \in \mathcal{B}_1 \cup \mathcal{B}_2$,

$$W_1 \sim W_2$$
 if and only if
$$\begin{cases} \dim(W_1 \cap W_2) = e & \text{if } W_1, W_2 \in \mathcal{B}_1, \\ \dim(W_1 \cap W_2) = e - 2 & \text{if } W_1, W_2 \in \mathcal{B}_2, \\ \dim(W_1 \cap W_2) = e - 1 & \text{otherwise}. \end{cases}$$

Theorem 1 [1] The twisted Grassmann graph $\tilde{J}_q(2e+1,e)$ is distance-regular and its parameters are same as the Grassmann graph $J_q(2e+1,e)$. Moreover the automorphism group of the twisted Grassmann graph acts on the vertex set with two orbits \mathcal{B}_1 and \mathcal{B}_2 .

M. Tagami determined the automorphism group of $\tilde{J}_q(2e+1,e)$ and later J. Koolen showed another proof of the coincidence (see [3]).

Theorem 2 The automorphism group of $\tilde{J}_q(2e+1,e)$ is just $P\Gamma L(2e+1,q)_H$.

Let $\mathcal{X} = (X, \{R_i\}_{0 \leq i \leq d})$ be a commutative association scheme. Suppose that \mathcal{X} is Q-polynomial. For $i \in \{0, \dots, d\}$, let A_i be a matrix indexed by X defined as follows: for two vertices x, y,

$$(A_i)_{xy} = \begin{cases} 1 & \text{if } (x,y) \in R_i, \\ 0 & \text{if } (x,y) \notin R_i, \end{cases}$$

Fix a vertex x. For $i \in \{0, \dots, d\}$, let $E_i^* = E_i^*(x)$ be a diagonal matrix indexed by the vertex set of Γ defined by, for each vertex y,

$$(E_i^*)_{yy} = \begin{cases} 1 & \text{if } d(x,y) = i, \\ 0 & \text{otherwise} \end{cases}$$

The algebra T=T(x) generated by A_0,\cdots,A_d and E_0^*,\cdots,E_d^* over the complex field is called the T-envilliger algebra with respect to x. For an irreducible T-module W, if for any $i\in\{0,\cdots,d\}$, $\dim(E_i^*W)\leq 1$, we say that W is thin, and if any irreducible T-module is thin, we say T is thin. Every Terwilliger algebra T has a thin module T1 where T is an all-one vector. This module satisfies $\dim(E_i^*W)=1$ for any i. If an irreducible T-module W has an integer j of $\{0,\cdots,d\}$ such that $\dim(E_i^*W)=0$ for any i< j and $\dim(E_j^*W)\neq 0$, we say that W is of endpoint j (ref. [4].) P. Terwilliger conjectured the following: If a commutative association scheme $\mathcal{X}=(X,\{R_i\}_{0\leq i\leq d})$ is Q-polynomial, then one of the following holds (1) \mathcal{X} is formally self-dual or (2) for any $x\in X$, the Terwilliger algebra T(x) is thin.

It is well-known that the association scheme obtained from the Grassmann graph is Q-polynomial. The association scheme is not formally self-dual but for any $x \in X$, the Terwilliger algebra T(x) is thin, that is, the above conjecture holds. Since conditions of Q-polynomial and self-dual depends only on the parameters b_i and c_i , the association scheme obtained from the twisted Grassmann graph is also Q-polynomial but not formally self-dual.

For a graph Γ , let $A = A_{\Gamma}$ be the adjacency matrix of Γ . We call the eigenvalues and multiplicities of A the eigenvalues and multiplicities of Γ respectively. Let $\theta_1, \theta_2, \dots, \theta_t$ and m_1, m_2, \dots, m_t are respectively the eigenvalues and corresponding multiplicities of Γ . Then for any non-negative integer i,

$$\sum_{p=1}^{t} m_p \theta_p^i = \text{Trace } A^i = \#\{ \text{ closed path of length } i \text{ in } \Gamma \}$$

where closed path of length i means that a sequence x_1, x_2, \dots, x_i of vertices satisfying any consective two vertices are adjacent and x_i and x_1 is also adjacent. Define that a

closed path of length 0 is a vertex. For a distance-regular graph Γ with parameters b_i and c_i , let A be a adjacency matrix of the local graph with respect to a vertex x. We can easily see that

Trace
$$A^0 = b_0$$
, Trace $A^1 = 0$, and Trace $A^2 = b_0(b_0 - b_1 - 1)$.

In particular, for the Grassmann graph $J_q(2e+1,e)$ and the twisted Grassmann graph $\tilde{J}_q(2e+1,e)$, we have that Trace $A^0=q{e\brack 1}{e+1\brack 1}$, Trace $A^1=0$ and Trace $A^2=q{e\brack 1}{e+1\brack 1}$ $q(q+1){e\brack 1}-1$.

À distance-regular graph Γ has classic parameter (d, q, α, β) if

$$b_{i} = \left(\begin{bmatrix} d \\ 1 \end{bmatrix} - \begin{bmatrix} i \\ 1 \end{bmatrix} \right) \left(\beta - \alpha \begin{bmatrix} i \\ 1 \end{bmatrix} \right)$$

$$c_{i} = \begin{bmatrix} i \\ 1 \end{bmatrix} \left(1 + \alpha \begin{bmatrix} i - 1 \\ 1 \end{bmatrix} \right)$$

The Grassmann graph $J_q(n,e)$ has classic parameter $\left(e,q,q,q\begin{bmatrix}n-e\\1\end{bmatrix}\right)$. Similarly the twisted Grassmann graph $\tilde{J}_q(2e+1,e)$ also has calssic parameter $\left(e,q,q,q\begin{bmatrix}e+1\\1\end{bmatrix}\right)$.

2 Computing the eigenvalues of graphs

In this section, we show the method to compute the eigenvalues of graphs. For a graph Γ on the vertex set V and for an automorphism group G, not necessarily $\operatorname{Aut}(G)$, consider actions of G on V and $V \times V$. Let $O_1, O_2, \cdots O_p$ be the orbits on V and $O_1, O_2, \cdots, O_{p'}$ be the orbits on $V \times V$. Suppose that O_1, \cdots, O_s satisfies that $\bigcup_{i=1}^s O_i = O_1 \times V$. For $1 \leq i, j \leq s$ and for $(x, y) \in O_i$,

$$P(i,j) = \#\{z : \text{ vertex } | (x,z) \in \mathcal{O}_j \text{ and } y,z \text{ are adjacent}\}$$

is independent of the choice of (x, y) and only depends on i and j. Let $P_1 = (P(i, j))_{1 \le i, j \le s}$. Similarly we can construct matrices P_2, \dots, P_p .

Proposition 3 The union of eigenvalues of P_i 's is just the eigenvalues of Γ .

From now on, we put Γ as the twisted Grassmann graph $\tilde{J}_q(2e+1,e)$. We consider an action of the stabilizer of $U \in \mathcal{B}_1 \cup \mathcal{B}_2$ in $G = P\Gamma L(2e+1,q)_H$ as automorphism group. Then we need to separate computation of eigenvalues in each case $U \in \mathcal{B}_1$ or $U \in \mathcal{B}_2$.

2.1

Fix $U \in \mathcal{B}_1$. Then the neighbors of U in Γ consists of the following two sets:

$$A := \{W \in \mathcal{B}_1 | W \text{ is adjacent to } U\}, \ B := \{W \in \mathcal{B}_2 | W \text{ is adjacent to } U\}.$$

The A and B forms the G_U -orbitals on the neighbors of U and G_U -orbitals on $A \cup B$ are following:

$$A_0 := \{(W_1, W_1) \mid W_1 \in A\}, \\ A_1 := \{(W_1, W_2) \in A \times A \mid W_1 \cap U = W_2 \cap U, \langle W_1, U \rangle = \langle W_2, U \rangle, W_1 \neq W_2\}, \\ A_2 := \{(W_1, W_2) \in A \times A \mid W_1 \cap U = W_2 \cap U, \langle W_1, U \rangle \neq \langle W_2, U \rangle\}, \\ \quad \text{(In the cases of } A_1 \text{ and } A_2, W_1 \cap W_2 \text{ is a } (e-2) \text{-dimensional subspace in } U.) \\ A_3 := \{(W_1, W_2) \in A \times A \mid W_1 \cap W_2 : (e-2) \text{-dimensional subspace not in } U\}, \\ A_4 := \{(W_1, W_2) \in A \times A \mid W_1 \cap W_2 : (e-3) \text{-dimensional subspace}\}, \\ \quad \text{(In this case, } W_1 \cap W_2 \text{ is in } U.) \\ AB_1 := \{(W_1, W_2) \in A \times B \mid W_1 \subset W_2\}, \\ AB_2 := \{(W_1, W_2) \in A \times B \mid W_1 \not\subseteq W_2\}, \\ BA_1 := \{(W_1, W_2) \in B \times A \mid W_2 \subset W_1\} (= \text{transpose of } AB_1), \\ BA_2 := \{(W_1, W_2) \in B \times A \mid W_2 \not\subseteq W_1\} (= \text{transpose of } AB_2), \\ B_0 := \{(W_1, W_1) \mid W_1 \in B\}, \\ B_1 := \{(W_1, W_2) \in B \times B \mid W_1 \cap W_2 : e\text{-dimensional subspace in } H\} \\ B_2 := \{(W_1, W_2) \in B \times B \mid W_1 \cap W_2 : e\text{-dimensional subspace not in } H\} \\ B_3 := \{(W_1, W_2) \in B \times B \mid W_1 \cap W_2 = U\}$$

For two G_U -orbitals K and K' and for $(W_1, W_2) \in K$, put

$$p(K, K') := \{W \in A \cup B \mid (W_1, W) \in K', W \text{ is adjacent to } W_2\}.$$

Then the following holds:

where $x=q^2\left(\left[\frac{e}{1}\right]+\left[\frac{e-2}{1}\right]\right)-q-1$. Considering the above array as a 7×7 matrix, the eigenvalues are $q(q+1)\left[\frac{e}{1}\right]-1,\ q^2\left[\frac{e}{1}\right]-1,\ q^2\left[\frac{e-1}{1}\right]-1,\ -q-1$ and -1. Similarly, we have the following results:

where $y=q^3{e\brack 1}+q^e-2q-1$, $z=q^2\left({e\brack 1}+{e-2\brack 1}\right)-1$. Considering the above array as a 6×6 matrix, the eigenvalues are $q(q+1){e\brack 1}-1$, $q^2{e\brack 1}-1$, $q^2{e-1\brack 1}-1$ and -q-1. Therefore we have the following conclusion.

Proposition 4 For the local graph of $\tilde{J}_q(2e+1,e)$ around $W \in \mathcal{B}_1$, the eigenvalues are $q(q+1){e\brack 1}-1,\ q^2{e\brack 1}-1,\ q^2{e-1\brack 1}-1,\ -q-1\ and\ -1.$

The number of 3-cycles in $\Gamma(U)$ is equal to $qx(qx+1)(2q^3x^2+(q^4-q^3-q^2-3q)x+q^3-q^2+2)$. Let m_1,m_2,m_3 and m_4 be the multiplicities of $q^2\begin{bmatrix} e\\1\end{bmatrix}-1,\ q^2\begin{bmatrix} e-1\\1\end{bmatrix}-1,\ -q-1$ and -1 respectively. From them, we conclude that $m_1=\begin{bmatrix} e-1\\1\end{bmatrix},m_2=q\begin{bmatrix} e+1\\1\end{bmatrix}-1,m_3=q^2\left(\begin{bmatrix} e+1\\1\end{bmatrix}-q^{e-1}\right)\begin{bmatrix} e-1\\1\end{bmatrix}$, and $m_4=\begin{bmatrix} e-1\\1\end{bmatrix}(q^{e+1}-1)$.

2.2

Fix $U \in \mathcal{B}_2$. Then the neighbors of U in Γ consists of the following three G-invariant sets:

$$C := \{W \in \mathcal{B}_2 \mid W \cap U = U \cap H\},$$

$$D := \{W \in \mathcal{B}_2 \mid W \cap U \neq U \cap H, W \text{ is adjacent to } U\},$$

$$E := \{W \in \mathcal{B}_1 \mid W \subset U\}.$$

These three set forms the G_U -orbits on the neighbors of U. The G_U -orbitals on C are following:

$$C_{0} := \{(W_{1}, W_{1}) \mid W_{1} \in C\},\$$

$$C_{1} := \{(W_{1}, W_{2}) \in C \times C \mid \langle W_{1}, U \rangle = \langle W_{2}, U \rangle, W_{1} \neq W_{2}\},\$$

$$C_{2} := \{(W_{1}, W_{2}) \in C \times C \mid \langle W_{1}, U \rangle \neq \langle W_{2}, U \rangle\}.$$

The G_U -orbitals on $C \times D$ are following:

$$\begin{array}{lll} CD_1 &:=& \{(W_1,W_2) \in C \times D \mid \dim W_1 \cap W_2 = e\}, \\ CD_2 &:=& \{(W_1,W_2) \in C \times D \mid \dim W_1 \cap W_2 = e - 1\}. \end{array}$$

The G_U -orbitals on $D \times C$ are $DC_1 := (CD_1)^t$ and $DC_2 := (CD_2)^t$. The sets $C \times E$ and $E \times C$ form G_U -orbitals. Let $W_1 \in D$. Then since $W \cap U$ is an e-dimensional subspace distinct from $U \cap H$, $U_1 := W_1 \cap U \cap H$ is an (e-1)-dimensional subspace and for some vectors $u_0, u_0' \in H$ and $u_1 \notin H$, $U = \langle U_1, u_0, u_1 \rangle$ and $W_1 = \langle U_1, u_0', u_1 \rangle$. The $(G_U)_{W_1}$ -orbitals on D are following:

```
D_{0} := \{W_{1}\},\
D_{1} := \{\langle U_{1}, u_{1}, u \rangle \mid u \in \langle u_{0}, u'_{0} \rangle \},\
D_{2} := \{\langle U_{1}, u_{1}, u \rangle \mid u \in H \setminus \langle u_{0}, u'_{0} \rangle \},\
D_{3} := \{\langle U_{1}, au_{0} + u_{1}, u'_{0} \rangle \mid a \in \mathbf{F}_{q}^{\times} \},\
D_{4} := \{\langle U_{1}, au_{0} + u_{1}, u \rangle \mid a \in \mathbf{F}_{q}^{\times}, u \in \langle u_{0}, u'_{0} \rangle \setminus \{\langle u_{0} \rangle, \langle u'_{0} \rangle \} \},\
D_{5} := \{\langle U_{1}, au_{0} + u_{1}, u \rangle \mid a \in \mathbf{F}_{q}^{\times}, u \in H \setminus \langle U_{1}, u_{0}, u'_{0} \rangle \},\
D_{6} := \{\langle U'_{1}, au + u_{1}, bu + u'_{0}, cu + u_{0} \rangle \mid a, b, c \in \mathbf{F}_{q}, U_{1} = \langle U'_{1}, u \rangle, \dim U'_{1} = e - 2\},\
D_{7} := \{\langle U'_{1}, au + u_{1}, bu + u'_{0}, v \rangle \mid a, b \in \mathbf{F}_{q}, U_{1} = \langle U'_{1}, u \rangle, \dim U'_{1} = e - 2,\
v \in H \setminus \langle U_{1}, u_{0}, u'_{0} \rangle \}.
```

The G_U -orbitals on $D \times E$ are $DE_1 := \{(W_1, W_1 \cap U \cap H) \mid W_1 \in D\}$ and its complement DE_2 . $ED_1 := (DE_1)^t$ and $ED_2 := (DE_2)^t$ form the G_U -orbitals on $E \times D$. The G_U -orbitals on $E \times E$ are $E_0 := \{(W_1, W_1) \mid W_1 \in E\}$ and its complement E_1 . Consider matrices whose entries are p(K, K'). First we can obtain the following table:

where $\alpha=q^2\left(\left[\frac{e}{1}\right]+\left[\frac{e-1}{1}\right]\right)-q-1$. Considering the above array as a 6×6 matrix, the eigenvalues are $q(q+1)\left[\frac{e}{1}\right]-1,\ q^2\left[\frac{e-1}{1}\right]-1,\ -1$ and the roots of $x^2-\left(q^2\left[\frac{e}{1}\right]-q-2\right)x-q^3\left[\frac{e}{1}\right]+q+1=0$. The eigenvalue -1 has multiplicity 2

We note that the equation $x^2 - \left(q^2 \begin{bmatrix} e \\ 1 \end{bmatrix} - q - 2\right) x - q^3 \begin{bmatrix} e \\ 1 \end{bmatrix} + q + 1 = 0$ has no roots in $\mathbf{Q}[q]$. Next we obtain the following table:

Considering the above array as a 5×5 matrix, the eigenvalues are $q(q+1) {e \brack 1} - 1$, $q {e \brack 1} - 1$, $q^2 {e-1 \brack 1} - 1$, q = 1 and q = 1. Finally we have the following tables: (i):

where $\alpha = q^2 {e-1 \brack 1} + q^2 - 2q - 1$ and $\beta = q^2 (q+1) {e-1 \brack 1} - q - 1$. Put this table D_{11} . (ii):

Put this table D_{12} .

Put this table D_{21} .

(iv):

Put this table D_{22} .

Let $Z=\left(\begin{array}{cc}D_{11}&D_{12}\\D_{21}&D_{22}\end{array}\right)$ be a 12×12 matrix. Then the eigenvalues and their multiplicities are as follows

Eigenvalue	Multiplicities
$q(q+1){\scriptsize \left[e \atop 1 ight]}-1$	1
$q\begin{bmatrix} e \\ 1 \end{bmatrix} - 1$	1
$q^2 \begin{bmatrix} e-1 \\ 1 \end{bmatrix} - 1$	2
-q-1	3
-1	3
θ_1,θ_2	1 (for each root)

where θ_1 and θ_2 are the roots of $x^2 - \left(q^2 \begin{bmatrix} e \\ 1 \end{bmatrix} - q - 2\right) x - q^3 \begin{bmatrix} e \\ 1 \end{bmatrix} + q + 1 = 0$.

Proposition 5 For the local graph of $\tilde{J}_q(2e+1,e)$ with respect to $W \in \mathcal{B}_2$, the eigenvalues are $q(q+1){e \brack 1}-1$, $q{e \brack 1}-1$, $q^2{e-1\brack 1}-1$, -q-1, -1 and the roots of x^2-1 $\left(q^2 \left[\begin{smallmatrix} e \\ 1 \end{smallmatrix}\right] - q - 2\right) x - q^3 \left[\begin{smallmatrix} e \\ 1 \end{smallmatrix}\right] + q + 1 = 0.$

The number of 3-cycles in $\Gamma(U)$ is equal to the sum of numbers obtained from (1) to (9), which is $qx(q^5x^3+q^3x^3+3q^4x^2-6q^3x^2+q^2x^2+5q^3x-6q^2x^qx+2)$. The multiplicities m_1, m_2, m_3, m_4 and m_5 satisfy that for any $i \geq 0$,

$$(q(q+1)x-1)^i + (qx-1)^i m_1 + (qx-q-1)^i m_2 + (-q-1)^i m_3 + (-1)^i m_4 + a_i m_5 = \operatorname{Tr} A^i \ \, (1)$$
 where a_i is defined by as follows: $a_0 = 2$, $a_1 = q^2 x - q - 2$, $a_i = (q^2 x - q - 2) a_{i-1} + (q^3 x - q - 1) a_{i-2}$ for $i \geq 2$, which means that $\theta_1^i + \theta_2^i = a_i$ for any i . From them, we can see that $m_1 = q {e-1 \brack 1}, m_2 = q^e, m_3 = q^2 {e \brack 1} {e-1 \brack 1}, m_4 = (q^{e+1}-1) {e \brack 1} - q {e-1 \brack 1},$ and $m_5 = q {e-1 \brack 1}.$

3 Thin and non-thin irreducible modules

Let Γ be a distance-regular graph with classic parameter (d, q, α, β) . For a local graph $\Gamma(x)$, if $\lambda \neq b_0 - b_1 - 1$ is an eigenvalue of the local graph, there exists an eigenvector v of $E_1^*A_1E_1^*$ whose eigenvalue is λ . Then Tv forms an irreducible T-module of endpoint 1. Moreover any irreducible T-module of endpoint 1 is Tv for some eigenvector v of $E_1^*A_1E_1^*$. P. Terwilliger proved the following [4]:

Theorem 6 In the above assumption, the irreducible module Tv is thin if and only if

$$\lambda \in \left\{ \alpha {d-1 \brack 1} - 1, \beta - \alpha - 1, -q - 1, -1 \right\}$$

As we noted, the Grassmann graph $J_q(2e+1,e)$ and the twisted Grassmann graph $\tilde{J}_q(2e+1,e)$ have classic parameter $(e,q,q,{e+1\brack 1})$. In these cases,

$$\alpha{\begin{bmatrix}d-1\\1\end{bmatrix}}-1=q{\begin{bmatrix}e-1\\1\end{bmatrix}}-1,\beta-\alpha-1=q{\begin{bmatrix}e\\1\end{bmatrix}}-1.$$

Hence the above set in the Theorem is just the eigenvalues of the local graph of Grassmann graph except $b_0 - b_1 - 1 = q(q+1) {e \brack 1} - 1$.

For the twisted Grassmann graph $\tilde{J}_q(2e+1,e)$, let $U \in \mathcal{B}_1$. Then, from results in the previous section, we can see that the Terwilliger algebra T(U) has 4 irreducible modules of endpoint 1. Moreover the above theorem, all such modules are thin. On the other hand, let $U \in \mathcal{B}_2$. Then there are 6 irreducible T(U)-modules of endpoint 1. From results in the previous section, we can see that three of them are thin and the other are non-thin. Therefore, the twisted Grassmann graph is a counterexample of the conjecture of Terwilliger.

References

- [1] E. R. van Dam and J. H. Koolen, "A new family of distance-regular graphs with unbounded diameter," Invent. Math. 162 (2005), no.1, 189–193.
- [2] S. Hobart and T. Ito, "The structure of nonthin irreducible *T*-modules of endpoint 1: ladder bases and classical parameters," J. Algebraic Combin, 7 (1998), no.1, 53–75.
- [3] T. Fujisaki, J. Koolen, M. Tagami, "Some properties of the twisted Grassmann graphs", submitted to Innovations in Incidence Geometry.
- [4] P. Terwilliger, "The Subconstituent Algebra of an Association Scheme, I," J. Algebraic Combin. 1 (1992), no.4, 363–388