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有効ターム数の確率的解析
(Probabilistic Analyses on the Number of Reliable Rules

and the Needed Data Size)

原口 和也 (Kazuya Haraguchi) * 柳浦 睦憲 (Mutsunori Yagiura) \dagger

Abstract

Suppose that we are given a data set of examples, where each example is an n-dimensional
Boolean vector and labeled either true or false. A pattern $r=(J, b)$ is defined by a subset
$J\underline{\subseteq}\{1$ , . . ’

$n\}$ of the $n$ Boolean variables and a Boolean vector $b\in\{0, 1\}^{J}$ of the variables in J.
If 7 appears frequently in the true examples and infrequently in the false examples, we call $r$ a
good rule. In this paper, we consider how many examples are needed for generating “reliable”
good rules, in the sense that they capture the essential properties of the data domain. Suppose
the random data domain where all examples in $\{0, 1\}\mathrm{n}$ are uniformly distributed and labeled
at random. A small random data set may contain good rules superficially, although there is no
property in the data domain. Our claim is that the data set should contain sufficiently many
ex amples to avoid such deceptive good rules existing even in a random data set. We make
probabilistic analyses to estimate such am ounts of examples, and show experimental studies
to justify our claim.

Keywords: $frequent/infrequent$ item sets, association rules, knowledge discovery,
probabilistic analysis.

1 Introduction
Assume that we are given a data set $X$ of examples Each example in $X$ is an n-dimensional
Boolean vector, and is labeled either 1 (true) or 0 (false). We denote by $X_{1}$ (resp., $X_{0}$ ) the set of
true (resp., false) examples in X. (Hence, $X=X_{1}\cup X_{0}.$ ) Let us denote $\mathrm{B}=\{0,1\}$ . A patter n
$r=$ $(J, b)$ is defined by a subset $J\subseteq\{1$ , . . ’

$n\}$ of the $n$ Boolean variables and a Boolean vector
$b\in \mathrm{B}^{J}$ of the variables in $J$ . For a pattern $r=(J_{r}b)$ and aBoolean vector $x\in$ Bn, we say that
$r$ appears in $x$ if $x|J=b$ holds. Let $X(r)$ denote the set of examples in $X$ in which $r$ appears;
i.e., $X(r)=\{x\in X|x|_{J}=b\}$ . Note that $\mathrm{B}^{n}(r)$ is defined similarly. We define the frequency
$f$ $(r, X)=|X(r)|/|X|$ , which is the ratio of examples in $X$ in which $r$ appears. For a constant
$a(0\leq a\leq 1)$ , if $f(r, X)\geq a$ (resp., $f$ ( $r$ , $X$ ) $\leq a$) holds, then we call $r$ an a-frequent (resp., an
a-infrequent) pattern in $X$ .

The generation of frequent,$/\mathrm{i}\mathrm{n}\mathrm{f}\mathrm{r}\mathrm{e}\mathrm{q}\mathrm{u}\mathrm{e}\mathrm{n}\mathrm{t}$ patterns is an important issue in such fields as data
mining and bioinformatics (e.g., knowledge discovery from genome databases) [1, 4, 11]. (The

term ’.
$‘ \mathrm{f}\mathrm{r}\mathrm{e}\mathrm{q}\mathrm{u}\mathrm{e}\mathrm{n}\mathrm{t}/\mathrm{i}_{\mathrm{I}1}\mathrm{f}\mathrm{r}\mathrm{e}\mathrm{q}\mathrm{u}\mathrm{e}\mathrm{n}\mathrm{t}$ set” is widely used in the literature, but in order to avoid the confusion

with a simple set of elements, we use the term “pattern’可 $\mathrm{n}$ this paper) It is well-known that
one can generate $\mathrm{f}\mathrm{r}\mathrm{e}\mathrm{q}\mathrm{u}\mathrm{e}\mathrm{n}\mathrm{t}/\mathrm{i}\mathrm{n}\mathrm{f}\mathrm{r}\mathrm{e}\mathrm{q}\mathrm{u}\mathrm{e}\mathrm{n}\mathrm{t}$ patterns in incremental polynomial time [1], and many fast
algorithms for this task have been proposed so far (e.g.) [10] $)$ .

For constants $a_{1}$ , $a_{0}$ $(0\leq a_{1}, a_{0}\leq 1)$ , if $f(r, X_{1})\geq a_{1}$ and $f(r, \lambda_{0}^{t})\leq a_{0}$ hold, then we call $r$

an $(a_{1}, a_{0})$ -good rule in $X$ . Such an $r$ is considered to describe a feature in true examples (under

reasonable $a_{1}$ and $a_{0}$ ; e.g., $a_{1}\gg a_{0}$ ) ev en $|X_{1}|$ and $|X_{0}|$ are small, even a random data set $X$
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may contain many good rules that have nothing to do with the inherent structure of $X$ and are
deceptive. In this paper, we consider how many examples should be collected or sampled as the
data set for generating “reliable” good rules, avoiding such deceptive ones.

We estimate such amounts through a probabilistic analysis on random data sets. Suppose a data
domain where an example is drawn from $\mathrm{B}^{n}$ with the uniform probability (i.e., 1/2”), and is labeled
either 1 or 0 at random. Essentially, there is no pattern that describes inherent information of the
data set. However, if the given random data set $X$ contains insufficient examples, some patterns
may happen to become good rules due to a bias peculiar to $X$ ; on the other hand, if $X$ contains
sufficiently many examples, good rules will exist very rarely. We analyze upper bounds on the
expected number of $(a_{1}, a_{0})$ -good rules in a random data set consisting of $m_{1}$ true examples and
$m_{0}$ false examples, and show that it becomes close to 0 if $m_{1}$ and $m_{0}$ are larger than thresholds.
We claim that such thresholds give rough estimates on the number of true and false examples
needed to extract reliable good rules from a real data set. We then give some experimental results
to justify our claim based on the random data analysis.

The problem is closely related to the problem of finding association ules. An association rule
is defined by two patterns $(r, r’)=((J, b),$ $(J’, b’))$ with $J\cap J’=\emptyset$ ; it represents that an example
$x$ with $x|_{J}=b$ tends to attain $x|_{J’}=b’$ . Patterns in this paper may be regarded as special cases
of association rules such that the labels of examples are attached to the original data set as the
$(n+1)$ st Boolean variable and $r’$ is limited to $r’=(\{n+1\}\}$(1)$)$ .

An association rule $(r, \mathrm{r}’)$ is usually evaluated by support (which is the frequency of $r$ in $X$ ) and
confidence (which is the frequency of $r’$ in $\mathrm{d}(\mathrm{r})$ ), while we evaluate a pattern $r$ by its frequency
in $X_{1}$ and infrequency in $X_{0}$ . Thus, the generation of frequent patterns corresponds to finding
association rules of a basic form. This task on a huge data set is too time-consuming, and Li et
al. [7] and Toivonen [8] discussed the proper size of a subset of a huge data set $X$ from which
frequent patterns are generated. Suppose a subset $X’\subseteq X$ of examples and a pattern $r$ . They
consider how many examples are needed as $X’$ for $f$ ( $r$ , Xf) to be close enough to $f(r, X)$ with high
probability, if $X’$ is randomly selected from $X$ .

While they consider the random sampling from the given data set to deal with the situation
where the size of the given data set is huge (i.e. , their objective is to approximate the given data
set with a sample of manageable size), we consider the situation where the size of the given data
set is small and our objective is to judge whether the extracted good rules are reliable or not. This
is the main difference of our approach from the existing ones.

2 Probabilistic Analyses
2,1 Preliminaries
We first describe the assumption on the generation of examples.
Assumption 1 The generation of examples is mutually independent. An example (x,uj) is gen-
erated by the following process:
Step 1: The label $\omega$ is set to 1 with probability p $(0\leq\rho\leq 1)$ , and to 0 otherwise (i.e., with

probability l-p).

Step 2: Let $P_{1}$ , $P_{0}$ : $\mathrm{B}^{n}arrow[0, 1]$ denote probabil$ity$ distributions. The vector $x$ is drawn according
to the distribution $P_{\omega}$ .

Since $P_{1}$ and $P_{0}$ are probability distributions,

$\sum_{x\in \mathrm{B}^{n}}P_{1}(x)=\sum_{x\in \mathrm{B}^{n}}P_{0}(x)=1$
. (1)

Consider a pattern $r$ . Under the condition that a generated example is labeled 1 (resp., 0) in
Step 1 of Assumption 1, the probability ci (r) (resp., $c_{0}(r)$ ) that $r$ appears in this new example is:

ci (r)
$= \sum_{x\in \mathrm{B}^{n}(r)}\mathrm{P}\mathrm{r}\mathrm{i}\mathrm{x})$

$(\mathrm{r}\mathrm{e}\mathrm{s}\mathrm{p}.$ , ci(r) $= \sum_{x\in \mathrm{B}^{\mathrm{n}}(r)}P_{0}(x))$ (2)
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More generally, under the condition that $m_{1}$ examples are labeled 1 and $m_{0}$ examples are labeled
0, the probability that $r$ is $a_{1}$ frequent in the $m_{1}$ true examples is:

$U(m_{1}, a_{1}, c_{1}(r))$ $=$ $\sum_{s=\lceil a_{1}m_{1}\rceil}^{m_{1}}$

$(\begin{array}{l}m_{1}s\end{array})$ $c_{1}(r)^{s}(1-c_{1}(r))^{n_{1}-s}$ ,

and the probability that $r$ is $a_{0}$ infrequent in the $m_{0}$ false examples is:

$L(m_{0}, a_{0_{\}}c_{0}(r))$ $=$ $\sum_{s=0}^{s=\lfloor a_{0}m_{0}\rfloor}$ $(\begin{array}{l}m_{0}s\end{array})$ $c_{0}(r)^{s}(1-c_{0}(r))^{m_{0}-s}$ .

Note that $U$ (resp. , $UL$) is also the expectation that $r$ is an $a_{1}$ -frequent pattern in the true examples
(resp., an ($a_{1}$ , $\mathrm{a}\mathrm{o}$)-good rule in the true and false examples).

For a pattern $r=(J, b)$ , let us call the cardinality $|J|$ the size of $r$ . We denote by $R_{k}$ the set of
all possible patterns of size $k(1\leq k\leq n)$ . Note that $|R_{k}|=2^{k}$ $(\begin{array}{l}nk\end{array})$ holds and that $|\mathrm{B}^{n}(r)|=2^{n-k}$

holds for any $r\in R_{k}$ . Let $\mathrm{B}\mathrm{n},$ $m_{1},$ $a_{1}$ ) (resp., $E$ ’($n$ , $m_{1}$ , $m_{0}$ , $a_{1}$ , Qo)) be the expected number of
$a_{1}$ -frequent patterns (resp., ( $a_{1}$ , $a_{0}$ )-good rules), and $E_{k}.(n, m_{1}, a_{1})$ (resp,, $E_{k}^{\mathrm{r}}(n,$ $m_{1}$ , $m_{0}$ , $a_{1}$ , $a_{0})$ )
be the expectations $U$ (resp., $UL$) of those of size $k$ . Prom the linearity of expectations, they are
computed as follows:

$E(n, m_{1}, a_{1})$ $=$ $\sum_{k=1}^{n}2k(l|$ $m_{1}$ , $a_{1}\rangle$

$=$ $\sum_{k=1}^{n}‘\sum_{\in R_{k}}U(m_{1\}}a_{1}, c_{1}(r))$ , (3)

$\mathrm{B}\mathrm{n},$ $m_{1},$ $m_{0},$ $a_{1},$ $a_{0})$ $=$ $\sum_{k_{-}-1}^{n}E_{k}^{*}(n, m_{1}, m_{0}, a_{1}, a_{0})$

$=$ $\sum_{k=1}^{n}\sum_{r\in R_{h}}U(m_{1}, a_{17}c_{1}(r))L$ ($m_{0},$ $a_{0}$ , Co (r)). (4)

Suppose that the size $k$ of a pattern $r$ is large. Prom $|\mathrm{B}^{n}(r)|=2^{n-k}$ , $r$ appears in a small
portion of vectors in $\mathrm{B}^{n}$ , and thus may not be frequent in the given true examples. Then, it is
anticipated that $E_{k}$ and $E_{k}^{*}$ with large $k$ are close to 0. On the other hand, a pattern $r$ of a small
size $k$ appears in many vectors in $\mathrm{B}^{n}$ , and thus may not be infrequent in the given false examples.
It is therefore anticipated that $E_{k}^{*}$ with small $k$ is close to 0. Hence, if $E_{h}^{*}$ is close to 0 for all
A $=1$ , . . ’

$n$ , then $E^{*}$ will also be close to 0. In the next subsection, we show that it surely holds
in the random data under some conditions.

For the analysis, we need the following assumption on $P_{1}$ and $P_{0}$

Assumption 2 For any x $\in \mathrm{B}^{n}$ , Py (x) $\leq p$ and Py(x) $\geq q$ hold for some constants p and q.

From (1), it is implied that $p\geq 1/2^{n}$ and $q\leq 1/2\mathrm{n}$ . Note that the above assumption enables
us to cover various distributions including the uniform distribution (which is realized by setting
$p=q=1/2^{n})$ .

2.2 Upper Bounds on $E_{k}$ and $E_{k}^{*}$

We first introduce some well-known bounds in the probability theory.

Theorem 1 (Chernoff [3]) Given a positive integer $m$ and $0\leq\mu\leq 1$ , let $Y_{i}$ be a random variable
taking the value as follows:

$Y_{i}$ $=$ $\{$

$1-\mu$ with probability $\mu$ ,
$-\mu$ with probability $1-\mu$ ,
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and let $Y= \sum_{i=1}^{m}Y_{i}$ . Then, for any $\beta>1$ ,

$\mathrm{P}\mathrm{r}(Y\geq(\beta-1)\mu m)$ $<(\exp(\beta-1)\beta^{-\beta})^{\mu\prime n}$ (5)

holds.

Theorem 2 (Hoeffding [6]) For a positive integer m and $0\leq a\leq 1$ , if $0\leq/4$ $\leq a$ , then

$\mathrm{L}(\mathrm{m}, a, \mu)\leq$ $\exp(-2m(a-\mu)^{2})$ . (6)

If $a\leq\mu\leq 1$ , then

$L(m, a, \mu)\leq\exp(-2m(\mu-a)^{2})$ . (7)

Variations of Theorem 1 are found in $|2$], for example.
Now we show two types of upper bounds on $E_{k}$ (and thus $E_{k}^{*}$ ) for “large” $k$ .

Theorem 3 For given parameters $n$ , $a_{1}$ and $p$ , and for any $\epsilon$ $\in(0,1]$ , if $k\geq k_{1}$ ant $m_{1}\geq M_{1}$ ,
then $E_{k}$ $(n_{1}m_{1}, a_{1})$ $\leq\epsilon$ holds, where

$k_{1}=n- \log_{2}\frac{a_{1}}{e^{2}p}$ , $M_{1}= \frac{n\ln(\underline{?}n)-\ln\epsilon}{a_{1}}$ ,

and $e$ denotes the base of the natural logarithm.

Proof. Let $r$ be a pattern of size $k\geq k_{1}$ . Prom Assumption 2 and $|\mathrm{B}^{n}(r)|=2^{n-k}$ , $c_{1}(r)\leq$

$\min\{1,2^{n-k}p\}$ holds; now since $2^{n-k}\leq 2^{n-k_{1}}=a_{1}/(e^{2}p)$ , Ci (r) $\leq 2^{\mathrm{n}-k}p\leq a_{1}/e^{2}<1$ holds. Let
$Z_{i}$ be a random variable taking the value as follows:

$Z_{j}$ $=$ $\{$

1with probability $2^{\mathrm{n}-k}.p$ ,
0 with probability 1 $-\underline{9}^{n-k}p$ ,

(8)

and let $Z= \sum_{i=1}^{m_{1}}Z_{i}$ . Let $Y_{i}=Z_{i}-2^{n-k}p$ and $Y= \sum_{i=1}^{7n_{1}}Y_{i}=Z-2^{n-k}pm_{1}$ . Then, we have

$E_{k}(n, m_{1}, a_{1})$ $=$
$\sum_{\gamma\in R_{k}}U(m_{1}, a_{1}, c_{1}(r))$

$\leq$ $\mathrm{L}(\mathrm{m}, a_{1\}}2^{n-k}p)\mathrm{x}$ $|R_{k}|$

$=$ $\mathrm{P}\mathrm{r}(Z\geq a_{1}m_{1})\mathrm{x}$
$2^{k}$

$(\begin{array}{l}nk\end{array})$

$=$ $\mathrm{P}\mathrm{r}(Y\geq 2^{r\iota-k}pm_{1}(\frac{a_{1}}{2^{n-k}p}-1))\mathrm{x}$
$2^{k}$

$(\begin{array}{l}nk\end{array})$ .

From $k\geq k_{1}$ , $a_{1}/(2^{n-k}p)\geq e^{2}>1$ . By applying Theorem 1 with $m=m_{1}$ , $\mu=2^{n-k}p$ and
$\beta=a_{1}/(2^{n-k}p)$ , we have

Then, $m_{1},$ $a_{1}$ ) $<$ $( \frac{2^{n-k}pe}{a_{1}})^{a1m_{1}}\mathrm{x}$ $2^{k}$
$(\begin{array}{l}nk\end{array})$

$\leq$ $e^{-a_{1}m_{1}}\mathrm{x}$ $(2n)^{n}$ . (9)

The right hand side of (9) is not more than $\epsilon$ if and only if

$m_{1}$ $\geq$ $\frac{n\ln(2n)-\ln_{\Xi}}{a_{1}}=M_{1}$ . (10)

$\square$
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Theorem 4 For given parameters $n$ , $a_{1}$ and $p$ , and for any $\epsilon$ $\in(0,1]$ and any $t\in(0, a_{1})$ , if
$k\geq k_{1}$ (?) and $m_{1}\geq l\mathfrak{i}^{l},I_{1}(t)$ , then $E_{k}(n, m_{1}, a_{1})$ $\leq\epsilon$ holds, where

$k_{1}(t)=n- \log_{2}\frac{a_{1}-t}{p}$ , $M_{1}(t)= \frac{n\ln(2n)-\ln\epsilon}{2t^{2}}$ .

Proof. Let $r$ be a pattern of size $k\geq k_{1}(t)$ . From Assumption 2 and $|\mathrm{B}^{n}(r)|=2^{n-k}$ , ci $(r)\leq$

$\min\{1,2^{n-k}p\}$ holds; now since $k\geq \mathrm{h}$ $(\mathrm{t})$ $2^{n-k-}p\leq a_{1}-t<a_{1}\leq 1$ . Thus, ci $(r)\leq 2^{n-k}p$ and

$U$ ($m_{1},$ $a_{1}$ , ci ($\mathrm{r}$ ) $\leq$ (11) $a_{1},\underline{?}^{n-k}p$).

By applying (6) of Theorem 2 with $m=m_{1}$ , $a=a_{1}$ and $\mu=2^{n-k}p$ ,

$U(m_{1}, a_{1},2^{n-k}p)$ $\leq$ $\exp(-2m_{1}(a_{1}-2^{n-k}p)^{2})$ ,

and thus

$E_{k}(n, m_{1}, a_{1})$ $\leq$ $\exp(-2m_{1}(a_{1}-2^{n-k}p)^{2})\mathrm{x}$ $2^{k}$
$(\begin{array}{l}nk\end{array})$

$\leq$ $\exp(-2m_{1}t^{2})\mathrm{x}$ $(2\mathrm{n})\mathrm{n}$ . (11)

The right hand side of (11) is not more than $\epsilon$ if and only if

$m_{1}$
$\geq$ $\frac{n\ln(2n)-\ln\epsilon}{2t^{2}}=M_{1}(t)$ . (12)

$\square$

For given $n$ , $a_{1}$ and $p$ , $k_{1}$ in Theorem 3 is a constant while $k_{1}(t)$ in Theorem 4 depends on the
parameter $t$ . The following corollary about the range of $t$ helps in obtaining an upper bound
$E_{k}\leq\epsilon$ with $\mathrm{h}(\mathrm{t})\leq k\leq k_{1}$ by Theorem 4.

Corollary 1 For a nonnegative number l, if $0<t\leq a_{1}(1-2^{\ell}/e^{2})$ , then $k_{1}-k_{1}(t)\geq p$ .
Proof. It directly comes from the definition of $k_{1}$ and $k_{1}(t)$ . $\square$

Now we show an upper bound on $E_{k}^{*}$ for “small” $k$ .

Theorem 5 For given parameters $n$ , $m_{1}$ , $a_{1}$ , $a_{0}$ and $q$ , and for any $\epsilon$ $\in(0, 1]$ and any $s\in(0, 1)$ ,

if$fk$ $\leq \mathrm{k}\mathrm{o}(\mathrm{s})$ and $m_{0}\geq \mathrm{k}\mathrm{o}(\mathrm{s})$ , then $E_{k}^{*}(n, m_{1}, m_{0}, a_{1},a_{0})\leq\epsilon$ holds, where

$k_{0}(s)=n- \log_{2}\frac{a_{0}+s}{q}$ , $M_{0}(s)= \frac{k_{0}(s)\ln(2n)-\ln\epsilon}{2s^{2}}$ .

Proof. The proof is similar to that of Theorem 4. Let $r$ be a pattern of size $k\leq k_{0}(s)$ . From
Assum than 2, $|\mathrm{B}^{n}(r)|=2^{n-k}$ and $k\leq \mathrm{k}\mathrm{o}(\mathrm{s})$ $\mathrm{c}\mathrm{o}(\mathrm{r})\geq 2^{n-k}q\geq a_{0}+s$ $>a_{0}$ holds. By applying (7)

of Theorem 2 with $m=m_{0}$ , $a=a_{0}$ and $\mu=2^{n-k}q$ ,

$L(m_{0}, a_{0}, c_{0}(r))$ $\leq$ $L(m_{0}, a_{0},2^{n-k}q)$

$\leq$ $\exp(-2m_{0}(2^{\mathrm{n}-k}q-a_{0})^{2})$

holds and hence we have

$E_{k}^{*}(n, m_{1}, m_{0}, a_{1}, a_{0})$ $\leq$ $\exp(-2m_{0}(2^{n-k}q-a_{0})^{2})\mathrm{x}2^{k}$ $(\begin{array}{l}nk\end{array})$

$\leq$ $\exp(-2m_{0}s^{2})\mathrm{x}(2n)^{k_{0}(s)}$ . (13)

The right hand side of (13) is not more than $\epsilon$ if and only if

$m0$ $\geq$
$\frac{k_{0}(s)\ln(2n)-\ln\epsilon}{2s^{2}}=M_{0}(s)$ . (14)

$\square$



228

Corollary 2 For given parameters n, $a_{1}$ , $a_{0}$ , p and $q_{y}$ and for any t $\in$ (0, al 1 $-1/e^{2}$ )] and any
s $\in(0,$ 1), if s $\leq q(a_{1}-t)/p-a_{0}$ holds, then $k_{0}(s)\geq k_{1}(t)$ holds.

Proof. It directly comes from the definitions of k% (t) and $\mathrm{k}\mathrm{o}(\mathrm{s})$ . $\square$

Finally, $E^{*}$ is sufficiently small under the conditions given in the following theorem.

Theorem 6 For given parameters $n$ , $a_{1}$ , $a_{0}$ , $p$ and $q$ , and for any $t\in(0, a_{1}(1-1/e^{2})]$ , $s\in(01)\}$

and $\epsilon$ $\in(0,$ $1|$ , if $m_{1} \geq\max$ { $M_{1}$ , Mi $(\mathrm{t}$ } $\}$ and $m_{0}\geq\Lambda I_{0}(s)$ , then

$E^{*}(n, m_{1}, m_{0}, a_{1}, a_{0})$ $\leq$ $. \sum_{k=1}^{[k_{\mathrm{O}}(s)\rfloor}$ $\epsilon- 1$ $\sum_{k=|k_{0}(\mathrm{s})\rfloor+1}^{\lceil k_{1}(t)\rceil-1}2^{k}$ $(\begin{array}{l}nk^{\wedge}\end{array})$

$+ \sum_{k=\lceil k_{1}(t)\rceil}^{n}\epsilon$

holds. Moreover, if $s\leq q(a_{1}-t)/p-a_{0}$ , then $E^{*}(n,$ $m_{1}$ , $m_{0}$ , $a_{1}$ , aOi $\leq n\epsilon$ holds.

For appropriate values of $p$ , $q$ , $a_{1}$ and $a_{0}$ (e.g., $p\simeq q$ and $a_{1}>>a_{0}$ ), there exist $s$ and $t$ that
satisfy the above conditions, and we can choose $\epsilon$ sufficiently small (e.g., $\epsilon=2^{-n}$ ), which shows
that $E^{*}(n,m_{1}, m_{0}, a_{1}, a_{0})$ converges to 0.

3 Experimental Studies
In this section, we observe the expectation $E^{*}$ for random data sets and the numbers of good rules
in real data sets.

3.1 Real Data Sets
We take two real data sets fiiom UCI Repository [9]; i.e., BCW and HEART. The examples in these
data sets are numerical vectors, and we transform them into binary examples by the method used
in [5]. For a data set, let us denote by $X_{1}^{*}$ and $X_{0}^{*}$ the sets of available true and false examples,
respectively We denote $X^{*}=X_{1}^{*}\cup X_{0}^{*}$ , $|X_{1}^{\mathrm{v}}|=m_{1}^{*}$ and $|X_{\dot{0}}|=m_{0}^{*}$ . BCW contains 239 true
examples and 444 false examples with 13 Boolean variables (i.e., $rn_{1}^{\mathrm{F}}=239,$ $m_{0}^{*}=444,$ $n=13$),
while HEART contains 120 true examples and 150 false examples with 10 Boolean variables (i.e.,
$m_{\mathrm{J}}^{*}=120$ , $m_{0}^{*}=150$ , $n=10)$ .

3.2 $E^{*}$ for Random Data
Let us observe the expectation $E^{*}$ of good rules for random data sets. In the uniformly distributed
random data domain, Pi (x) $=\mathrm{P}\mathrm{i}(\mathrm{x})$ $=1/2^{n}$ holds for all $x\in \mathrm{B}^{n}$ By using this, we can compute
$E^{*}$ $(n, m_{1}, m_{0}, a_{1}, a_{0})$ exactly from (2) to (4).

In order to compare $E^{*}$ for random data sets to the numbers of good rules in real data sets later,
we use $n=13$ and 10, corresponding to BCW and HEART, respectively. We test all combinations
of $a_{1}\in\{0.10,0.20$ ). and $a_{0}\in\{0.00,0.01, 0.02\}$ . For given $n$ , $a_{1}$ and $a_{0}$ , we examine the change
of $E^{*}$ $(n, m_{1}, m_{0}.a_{1}, a_{0})$ as $m_{1}$ and $m_{0}$ increase, where we use $(m_{1}, m_{0})$ with $m_{1}/m_{0}=m_{1}^{*}/m_{0}^{*}$ for
each real data set.

We show $E^{*}$ $(n, m_{1}, m_{0}, a_{1}, a_{0})$ for two combinations of parameters $n$ and $m_{1}/m_{0}$ corresponding
to BCW and HEART in Figs. 1 and 2, respectively. Each contains two graphs, where the left (resp.,
right) graph is for $a_{1}=$ O.JO (resp., $a_{1}=0.20$ ). In each graph, the horizontal (resp., vertical) axis
represents $m_{1}+m_{0}$ (resp., $E’$ ) and the three curves correspond to different values of $a_{0}$ . Note that
the vertical axis is the logarithmic scale.

$E^{*}$ appears to be an approximately monotone decreasing function of $m_{1}+m_{0}$ . As observed
from the figures, $E^{*}$ is sufficiently small (i.e., less than 1) as $m_{1}+m_{0}$ is larger than at most several
hundred, Among the examined values of $m_{1}$ (resp., $m_{0}$ ), let us denote by $M$; (resp., $M_{0}^{*}$ ) the
smallest value that attains $E^{*}\leq 1$ . Table 1 shows $(M_{1}^{*}, M_{0}^{*})$ for each parameter combination
examined in these figures
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Figure 1: $E^{*}(n, m_{1}, m_{0}, a_{1}, a_{0})$ with $n=13$ and $m_{1}/m_{0}=$ 239/444 (corresponding to data set
BCW)
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Figure 2 $\cdot$ $E^{*}(n, m_{1}, m_{0}, a_{1}, a_{0})$ with $n=10$ and $m_{1}/m_{0}=$ 120/150 (corresponding to data set
HEART)

Let us mention the values of $\max\{M_{1}, \mathrm{J}/I_{1}(t)\}$ and $M_{0}(s)$ of Theorem 6 as upper bounds of
$M_{1}^{*}$ and $\mathrm{J}/I_{0}^{*}$ , respectively. For given $n$ , $a_{1}$ and $a_{0}$ , we compute $M_{1}$ , $\Lambda I_{1}(t)$ and $M_{0}(s)$ by setting
$p=q=1/2^{n}$ and $\epsilon$ $=1/n$ . We take $t$ and $s$ such that they minimize $\max\{M_{1}, M_{1}(t), M\mathit{0}(s)\}$

among those $t=\ell \mathrm{x}10^{-3}\in(0, a_{1}(1-1/e^{2})]$ and $s=\ell’\mathrm{x}$ $10^{-3}\in(0, a_{1}-a_{0}-t]$ for natural numbers
$f$ and $l’$ ; in this experiment, we obtain such $(\mathrm{i}, s)$ by the sim ple enumeration. The obtained upper
bounds are not very tight; e.g., if $(n_{\rangle}a_{1}, a_{0})=(13,0.10 0.00)$ , then $M_{1}=$ 449.20, $M_{1}(t)=$ 6036.04
and $M_{0}(s)=$ 6029.60, while $M_{1}^{*}=95$ and $M_{0}^{*}=167$ from Table 1 It indicates that Theorem 1
and 2 do not always give tight bounds.

3.3 Number of Good Rules in Real Data

For given real data sets and ($a_{1}$ , $a_{0}\rangle$ , we would like to observe how the number of good rules
changes as $m_{1}$ and $m_{0}$ increase and compare its tendency with the values of $M_{1}^{*}$ and $M_{0}^{*}$ of the
last subsection. In order to simulate the situation where we have smaller number of examples than
the original data set, we randomly sample $X_{1}\subseteq X_{1}^{*}$ and $X_{0}\subseteq X_{0}^{*}$ with $|X_{1}|=m1$ , $|X_{0}|=m0$

and $m_{1}/m_{0}=m_{1}^{*}/m_{0}^{*}$ , and generate $(a_{1}, a_{0})$-good rules in $X=X_{1}\cup X_{0}$ . We repeat this process
$\tau$ times and take the average $N$ of the numbers of $(a_{1}, a_{0})$-good rules. In this experiment, we use
$\tau=100$ .

We show $N$ for BCW and HEART in Figs. 3 and 4, respectively. Note that the vertical axes in
these figures are not the logarithmic scale in contrast to Figs. 1 and 2. In each graph of the figure
for HEART, the three curves overlap
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Table 1: $(M_{1}^{*}, M_{0}^{*})$ for various parameter combinations corresponding to real data sets
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Figure 3: The number $N$ of good rules for data set BCW

For data set BCW, we see that the number $N$ of generated good rules does not change much
when $m_{1}+m_{0}\geq\Lambda’I_{1}^{*}+M_{0}^{1^{\zeta}}$ , while it drastically decreases when $m_{1}+m_{0}<M_{1}^{*}+M_{0}^{*}$ , for all
combinations of $(a_{1}, a_{0})$ . We observe that if $m_{1}$ and $m_{0}$ are small (e.g., 10 to 30), then more than
10 superficial good rules are extracted, while $X^{*}$ contains at most 2000 real good rules.

For data set HEART, $N$ becomes 0 with $(m_{1}, m_{0})$ which are smaller than $(M_{\mathit{1}_{1}}’, M_{0}^{*})$ . Some
data sets do not contain good rules although they have some regularities or structures; for example,
suppose such a data set $X=\mathrm{B}^{\tau\iota}$ and each example $x\in X$ is labeled $\omega$ by the par$ity$ function;

$\omega$ $=$ $\{$

1 if $\sum_{j=1}^{n}x_{j}$ is odd,
0otherwise. (15)

Clearly, $X$ does not have $(a_{1}, a_{0})$ -good rules under reasonable $(a_{1}, a_{0})$ although it has the rule of
(15). In the case of such data sets, it is important to detect that there is no good rule of our
definition. Figs: 5 and 6 show that, for these data sets, it is sufficient for us to have $M_{1}^{*}$ true
examples and $M_{0}^{*}$ false examples in order to see that there is no good rule.

The above results justify our claim on the size of the data set needed to generate reliable good
rules. However, $\max\{\mathrm{J}/I_{1}, M_{1}(t)\}$ and $M_{0}(s)$ are not very good as upper bounds of $M_{1}^{*}$ and $M_{0}^{*}$ ,
respectively. It is our future work to derive tighter upper bounds.

4 Conclusion
In this paper, we consider how many examples are needed in data sets for extracting reliable good
rules. Our claim is that the data set should contain examples more than the value such that a
random data set has good rules very rarely. We derive a required amount of true examples as
$\max\{M_{1}, M_{1}(t)\}$ and of false examples as $M_{0}(s)$ . We then show some computational studies to
justify our claim
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Figure 4: The number $N$ of good rules for data set HEART
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