goooboooobgon
1478 0 2006 O 52-65

Renormalized Dissipative Solutions and Applic.ations

BERAKRE - EERATRRT #A & (Satoru Takagi)
Institute for Advanced Studies in Education,

Waseda University

1 Introduction

We consider the following Cauchy problem:

N
©P) ‘ut+divF(u)—i§=:1A,-j(u)mj = f in Q:=(0,T) xRV,

u(0,") = uy in RN,
where T > 0 and N > 1. Here f € L}Q) and uy € L}(R") are given
functions, the flux F : R = RY is a locally Lipschitz-éontinuous function and
the diffusion function A(u) is a nonnegative symmetric N x N matrix.

In the case where the diffusion term degenerates, the equation becomes a
conservation law u; + divF(u) = f. As a typical example of appearance of
a conservation law, we now consider the traffic flow on an expressway. Let
u(t, z) be the density on an expressway at time ¢ and point . We assume, for
simplicity, that u is continuous in ¢ and z, and the speed s of the cars depends
only upon their density, which means that s = s(u) and s’ < 0. For any two
points a,b on the expressway, the number of cars between a and b depends

upon the inflow at z = a and outflow at z = b, namely,
b
2 [ut2)as = stutta)utt) - s(utt,) u(s )

= —/ab(s(u(t,z))u(t,z))zd:i



holds for any a,b. Since u is continuous and'a,b are arbitrary, we have the
conservation law u; + F(u), = 0 with the flux F(u) := s(u) u.

We are interested in finding all solutions of a partial differential equation
and furthermore investigating the existence, uniqueness, asymptotic behavior
and other properties of solutions for general data. Most partial differential
equations, however, are not expected to have smooth solutions. For example,

we consider the Cauchy problem of the inviscid Burgers’ equation

1
U + uuy = 0, u(O, .’B) = '1—_":'5-5- (11)

It is known that a smooth solution for (1.1) blows up in finite time, namely,

the discontinuity of the smooth solution appears in finite time even if the

initial datum is sufficiently smooth. This corresponds a shock wave in gas

dynamics. In this problem, we see that the smooth solution for (1.1) blows up
at t = 8/4/27 by the implicit function theorem.

In order to deal with phenomena precisely, we need to extend the notion of
solutions to nonsmooth solutions including discontinuous solutions interpreted
in the sensé of distributions, which is the so-called weak solution. Nevertheless,
it is known that there exist many weak solutions in general for the Cauchy
problem of nonlinear degenerate parabolic equations including conservation
laws. Thereupon, Kruzkov [10] introduced a new notion of an entropy solu-
tion which is a weak solution satisfying an entropy inequality, and proved the
uniqueness of an entropy solution for a conservation law. This ‘entropy’ comes,
roughly speaking, from the thermodynamic principle that physical entropy can
not decrease as time goes forward. The entropy inequality is a suitable crite-
rion to extract accurately the exact one weak solution according as physical
demands, and ensure the uniqueness of weak solutions.

Chen and Perthame [4] extended the notion of entropy solutions to general

degenerate parabolic equations with anisotropic nonlinearity, and obtained

uniqueness of an entropy solution by utilizing a kinetic formulation and regu-

larization by convolution. At the same time, Portilheiro [12] defined a dissipa-

tive solution of scalar conservation laws with globally Lipschitz-continuous flux
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F, which was established first by Evans, and showed the equivalence of such
solutions and entropy solutions by accretive operator theory. Furthermore,
the notion of dissipative solutions was extended by Perthame and Souganidis
[11] to the second order degenerate parabolic balance laws and the equivalence
result was obtained. The definition of dissipative solutions is more simple and
flexible, and also suitable to study asymptotic problems handling relaxation
systems than entropy solutions. Direct proofs of existence and uﬁiqueness of
dissipative solutions, however, have not been obtained yet.

We here introduce an idea of dissipative solutions. We say wu is a dissipative
solution of the equation Au = f with possibly multivalued accretive operator
A : D(A) — 2% defined as a subset of some Banach space X if

[u—¢,f - Adl+ 20

holds for every ‘nice’ function ¢, where [-, |4 denotes the Kato bracket defined

as

ot = gl

Ao
We note that if X = L'(Q) particularly, then the Kato bracket is given by

[f,9l+ = /:/#0 So(f)gda:dt+//f=o |g|da:dt

for any f,g € L'(Q), where Sy(s) takes 1if s > 0 or 0 otherwise for s € R.
On the other hand, it is known that if ug € L'(R¥) and f € L}(Q), then
the mild solution u of (CP) constructed by nonlinear semigroup theory is a
unique entropy solution, which is unbounded in general. In the case where F is
only locally Lipschitz-continuous, the flux function F(u) may fail to be locally
integrable since no growth condition is assumed on the flux F, and hence (CP)
does not possess a solution even in the sense of distributions. To overcome this,
the notion of renormalized entropy solutions has been introduced by Bénilan
et al. (3] for scalar conservation laws and by Bendahmane and Karlsen [2]
for second order degenerate parabolic equations. Furthermore, the existence

and uniqﬁeness of a renormalized entropy solution of these equations have been
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established and the semigroup solutions of (CP) in L' spaces are characterized.
The arguments in [11} and [12], however, do not work well in the case where
F is only locally Lipschitz-continuous and the solution u is unbounded. The
notion of renormalized solutions has been introduced by DiPerna and Lions
[5] for dealing with the existence of a solution of the Boltzmann equation
and utilized for degenerate elliptic and degenerate parabolic problems in the
L'-setting in the last decade.

A new concept of renormalized dissipative solutions for a conservation law
with L' data has been established in [9] and the equivalence of such solutions
and renormalized entropy solutions in the sense of [3] was proved. Existence
of renormalized dissipative solutions for a contractive relaxation system de-
scribing discrete velocity models and chemical reaction models has been also
shown in general L!-settings in [9] and solutions of the system were character-
ized. In this paper, we extend this notion to quasilinear anisotropic degenerate
parabolic equations including conservation laws and apply this notion to some

relaxation systems.

2 Equivalence

We begin with some notations and definitions. Let s € R and j € [-1,1]. We
set st := max{s,0} and s~ := — min{s,0}. Note that s~ >0 and s = s*—s".
Define a sign function S; by S;(s) = 1if s > 0, Sj(s) = —1if s < 0 or S;(0) = j,
and set S} (s) := max {S;(s),0} and Sj (s) := min {S;(s), 0}.

For s € R, the diffusion function A(s) = (a;;(s)) is a nonnegative symmet-
ric N X N matrix of the form

M
aij(s) = Z Oim(8) Oim(8), Oim € Lige(R)

m=1
fori,j=1,--,Nand m=1,-.--,M, where M < N can be thought to be

the maximal rank of the matrix. Let T, : R — [—¢,£] denote the truncation
function with height £ > 0, that is, Ty(s) := min { max{s, —£},£} for any
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s€R. Forl<m<M,1<i<N ands€R, we set
@)= (o) Bals) = (Bun(e) (),
and for any ¢ € C(R)
B (0) = [ V) mr)dr, B(6) = (Bn(e) Bl

Following [2] we define an entropy-entropy flux triple and a renormalized

entropy solution of (CP).

Definition 2.1. For any convez C? entropy function n: R — R, the corre-
sponding entropy fluzes '

q= (QI,"' ,QN’) : R—)RN and R= (T,'j) ZR—)RNXN
are defined by qi(s) = n'(s) F{(s) and rii(8) = 7'(s) aij(s) fori,j =1, N
and s € R. Then, we define (n,q, R) as an entropy-entropy fluz triple.

Definition 2.2. We say u € L*(0,T; L'(RY)) is a renormalized entrdpy s0-

lution of (CP) if a measurable function u : @ — RN satisfies the following
conditions:

(El) Foranym=1,--- , M,
Bal(Te(w) € I¥Q) and divB,(T(w) € IX(Q) for all £30.
(E2) For anym=1,--,M and ¢ € C(R),
div B%,(To(u)) = $(Te(u)) div B, (Te(u))
a.e. in Q and in L2(Q) for all £> 0.

(E3) For any £ > 0 and any entropy-entropy fluz triple (n,q, R) with || < K
for some given K > 0, there exists for any £ > 0 @ nonnegative bounded

Radon measure pf on Q with uf(Q) — 0 as £ = oo such that .

N
n(Te(w))s + div Q(Te(w) — Y 73(Te(w))aya; — ' (Te(w)) f

1,j=1

M
< —"(Tw) Y (divBa(Tu)’ +uf  in D'(Q).

m=1
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(E4) u(t,) > up in LY(RY) as t 10 essentially.

Next, we introduce a new notion of renormalized dissipative solutions which

is a generalization of dissipative solutions in the sense of [11].

Definition 2.3. We say u € L*(0,T; L'(R¥)) is a renormalized dissipative
solution of (CP) if a measurable function u : Q — RY satisfies the following
conditions:

(D1) Foranym=1,---,M,
Bm(Te(w) € LAQ)™ and divBn(Te(w) € L*(Q) forall £>0.
(D2) Foranym=1,---,M and ¢ € C(R),
div B, (Te(w) = $(To(w)) div B, (Te(u))
a.e. in Q and in L*(Q) for all £> 0.

(D3) For any £> 0, £ € C3(RY) and 6 € CZ(R) with sptf C (—£,¢), there
erists a nonnegative bounded Radon measure vy on Q with v,(Q) — 0 as
£ — oo such that

% /RN /R"(’“) (Te(w) ~ k- ¢)" dkdz
= /RN/RG’(’“) S§ (Te(w) — k- ¢)

N
x ( f-divE(k+8+ Y Ak + g)m,.) dkdz

: i,Jj=1
- [, 0T =) 3 (v BalTe) = rn(Tufw) )
+ /R ) /R 00k S§ (e~ k= dkdv  in DOT),

where Aj;(-) == aij(-), om(:) = (o1m (), *+ ,Onm(-)) and C2(R)* denotes
the space of all nonnegative functions in C3(R) as usual.

(D4) u(t,") »uo in L'(RN) as £t} 0 essentially.



Then we obtain the following main result.

Theorem 2.4. Suppose that u € L*®(0,T; L'(RY)). Then, u is a renormal-

ized entropy solution of (CP) if and only if u is a renormalized dissipative
solution of (CP).

Sketch of the pvroof. Let u € L*(0,T; L'(R")) be a renormalized dissipative
solution of (CP). Then, we consider a function & € C2(R™)* and for each
€, A > 0 a nondecreasing smooth function &, \ defined by &, 5(s) = 0if |s| < A,
€a(8) = 1/e if |s| > X+ ¢ and strictly increasing otherwise. Let V()
denote the volume of the unit ball in R¥. Using the test function &z - ),

multiplying by ax(y) := V(N)"'A"Na(y), integrating with respect to y and

applying the Lebesgue differentiation theorem yield for any ¢ € C}(0,T)",
/ f / (Ty(w) — k)* 8(k) ¢ adkdzdt + / O(Ty(u)) F(Tu(w)- Volz) ¢ dodt
f / / 53 (Tu(w) - b) £ (k) 6 c dkdadt

//./ S+ Tl (Aj(k') A’J(Tl( ))) Qg;z; o(k) ¢ dkdzdt

i,j=1

- [[ e f (& Pn(Tu(w))) " $ s o

m—l

-2 f o(Ty(w)) Z (div Bm(Te(w)) (om(Te(w)) V) d dat

///S'*Z k) 6(k) ¢ adkdy, > 0.

Following the definition of an entropy-entropy flux triple, we see that
o) = [ o0 T) - i+ b

7(Tow) = /R of'(K) S5 (Te(u) — K) dk
G(Tw)ss = 7(Te(w)) Fi(Tu(w))a, |
Tij(Tl(“))mz,- = "7(1}(“))% Aij(Te(u)) +W'(T£(u)) Ai‘j(Tt(“))zewj-
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Putting 8 = " and © = 7/, we obtain that

< // n(Tz(u))q&'ada:dt—i—// 7 (Ty(u)) f dadzdt

// q(Te(u))- Va¢dxdt+// E"u(ﬁ(u))am,x,q&dzdt

fras

(v (T badect+ [ /Q 7€) perdu,
which is exactly (E3).

We next assume that u € L*(0,T; L}(RY)) is a renormalized entropy
solution of (CP). For given £ € CZ(RY) and € CZ(R)* with spt8 C (-4, ¢),
we observe that n(Ty(u)) = [p (Te(w) —k—£(y)) " 6(k) dk is a smooth entropy.
Let ¢ and p be standard mollifiers on (0,7) and R¥, respectively. Define p,

1

by pe(z —y) := p((x —y)/e)e™, and let 1, be a nonnegative smooth function
taking 1 if || < n or 0 if |z| > 2n, and |V4,| < C/n for some C > 0. Putting
¢ = pe(r — y) () ¥n(t, z), integrating with respect to y over RY and using
the properties of the Dirac mass and the Lebesgue convergence theorem, we
obtain that

0< //f(:r,(u —k-£)*t04 dkdxdt+/f/5+£ k - €)0 ¢ dkdu,

///S+(Tt — k — &) divF (k + £) 0 ¢ dkdzdt

/// 85 (Te(w) —k =) ZAza(k'*‘f)z.z, 6 ¢ dkdzdt

i,j=1

M
- [ o) =) 3 (e (T = om(Tu(u)- V) gt

m=1

+//0/Rs;(’r¢(u)—k—e)feqsdkdzdt.

This is exactly (D3). Thus we complete the proof of the equivalence result. [



3 Applications

We now apply the notion of renormalized dissipative solutions to two relaxation
systems.

Example 1: Let a degenerate parabolic equation

N
ug + divF(u) — Z Aij (u)z.-:aj = f

1,j=1
be given. We assume that the initial datum ug(z) takes values in some in-

terval and F(0) = 0. Let w; > 0 and suppose that V,,; satisfy the conditions
Z‘l-l n,i 1nf|u|s'n F,I(Ur) > -1 and

(1+Z%) vy sup F{(u) < wi (1+Z  inf Fiu )>

u|<n
j=1 i= e

forn =1,2,--- and i = 1,2,-. ,N. Following [7, Lemma 4.1], we see that

there exist a strictly increasing function 7, : [-n,n] = R defined by

N \7! N
w = rp(u) 1= (1+ng) (U+ZV,,_,,-1F¢(U))

i=1 i=1
and strictly decreasing functions hy; : [rn(=n),rs(n)] = R with h,;(0) = 0
such that w — Y1 | hni(w) = u and w; Vo w + Vi hni(w) = Fi(u) for u €
["nv n] ;

Now we consider a relaxation system for w® and z* = (25,--. ,25%) with
relaxation parameter £ > 0:
( N
wi+ Y wiVniwl, = —Z (hng(w®) — 2f) in Q,

i=1 i=1

‘ 1 . ,
(RS].) ﬁ (zf)t - Vn,t' (zf)z, = ;(hﬂ',i'(we) - zf m Qy L= 1a v ’N,

w(0,") = wp in RY,

\ z(0,-) = i in R¥, §=1,---,N,
with @ < wy < b and ha3(b) < 2o < hni(a). Here a < 0 and b > 0 are

constants satisfying —n < a + 31, hni(0) S b+ N hni(a) < m.
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Set u® = w® — 3N 2f and wp = wo — Yo, 20 € LY(RY). Then, from
[7], we see that T, = lim, o u® exists in L}(Q) and %, is an entropy solution
of (CP) with A = O and f = 0 satisfying —n < %, < n. Let uo € L'(R")
and choose sequences of functions {won} ., and {2z}, ., with the previous
conditions for i = 1,-.- , N. Moreover, we ;ssume that uo,; = Wop — Efil Ziom

converges to up in L}(R") as n — oo. Then we obtain that

Theorem 3.1. The limit function T = limp,—,00 Ty in L(Q) is a unique renor-
malized dissipative solution of (CP) with A= 0 and f = 0.

Example 2: We next consider the following system for w® and 2¢ with re-
laxation parameter £ > 0:

4

N
1
w} + div G(w®) — Z Bij(w)ze; = —?weza in Q,

ij=1
(RS2) 9 2 = f-:?w‘z‘ in Q,
we(0,-) = wp in RV,
\ 2¢(0,7) = 2z in RV,

with 0 < 2zp £ ¢ and 0 < wy < gn(a) almost everywhere in RY, where
gn : [0,n] = R* is a strictly increasing function and a is a nonnegative constant
such that —n < —a < gp(a) < nforn =1,2,---. In addition, we assume on

the data as follows:

(Hl) B.'j = Bji c CZ(R) and B = (b,'j) Z 0 with b,'j(*) = B:J(') and b,;j(O) =0
fori,j=1,---,N.

(H2) G :R — RY is a locally Lipschitz-continuous flux with G(0) = 0.
(H3) wo, 20 € (L*RN) N L°°(RN))+ with [p~|2|? wodz < oo.

(H4) For i,j,m=1,---,N, Zﬁzl Tim(8) Tim(8) = bij(8), Yim(8) = Tim(s) and
7m(w€) € L2(Q)N with 'Ym(s) = ('71m(s)1 tre a7Nm(s)) for s € R
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This system describes the evolution of a chemical or a biological species which
is called a tracer in a porous medium. This tracer is supposed to be stuck
on the surface of the solid frame. Belhadj et al. [1] studied this system and
obtained the existence of entropy solutions with continuously differentiable flux
G. In case of locally Lipschitz-continuous G, as in the analogous argument

we obtain the following results:

Proposition 3.2. Suppose that (H1)-(H4). Then, the problem (RS2) has a
unique entropy solution (w®,2%) € C((0,T); L*(RN))? satisfying the following
properties:

(P1) 0 < wi(t,z) < nwo”Lw(Rn) and 0 < 25(t,z) < ||z0HL°°(RN) almost every
(t,z) € Q.

(P2) If (w,2%) and (W, Z°¢) are two solutions corresponding to the initial data

(wo, 20) and (Wy, Zy), respectively, then we have

[w(®) =T @) pa oy + [12°@) = 25 @) || 11y

< ”’wo - -iv_o”Ll(R.N) + “Zo - 'z‘o”L,(RN) for all ¢t > 0.

(P3) Let (w,2%) and (W¢,Z°) be two solutions corresponding to the initial
data (wo, 20) and (Wo, Zo), respectively. If wo < Wo and zp < Zo, then we
have w(t) < We(t) and 2°(t) < Z°(t) almost everywhere in RN,

(P4) div~,,(w®) € L*(Q) form=1,--- | N.
Proposition 3.3. Suppose that (H1)-(H4). Let n > 1, u® = w® — 2° and

up = wo— 20 € L'(RY). Then, T, = limeyo u® ezists in L(Q) and Uy, € [—n,n]

is a unique entropy solution of the following generalized Stefan problem:

N
U + div G(U+) - Z B,-j(u*")z..wj =0 in Q,

ij=1

(GSP)
u(0,') = yp in RV,

From these propositions, we finally obtain that

62



63

Theorem 3.4. Suppose that (H1)-(H4). Then, T = lim, 00 Ty in L1(Q) is
a unique renormalized dissipative solution of the generalized Stefan problem
(GSP).

Sketch of the proof. Fix £ > 1 and assume that uy > —£. Define ¢y by

. 0 if u(t) € [—£, €] for all t> 0,
° inf {t > 0; u(t) =£¢}  otherwise.

We set Q; := (0,%o] x RV and @, := (to, T') x R¥, and take any test functions

¢ € CZ(R™) and 0 € C(R)* with spt@ C (—¢,£). Since constant functions

w = { and z = 0 satisfy the relaxation system (RS2) with appropriate test

_functions, we see that

0 < [Ll /R 0(k) (£ — k — &)*¢' dkdzdt
+/-/QI/R0(k)S§(£—k-§)

X (—div G((k+&") + i": Bi;((k + §)+)m,~) ¢ dkdzdt

ig=1
- / 6(L—¢) Z 0)-V¢)" ¢ dkdzdt.
Q m=1
On the other hand, if ¢ € [ty, T}, then by the comparison property for (RS2)
we see that u(t) € [-£,£]. From Proposition 3.3 and the equivalence result
[11, Theorem 1.1], we obtain that

//Q /ng(ﬂn ~ k — &) h(8y, k) dkdzdt > 0,

where

i,j=1

h(tn, k) = (Un—k—§)9¢/+( divG((k +£)* +ZB1] z.z,)



Passing to the limit, we finally obtain that

0< ///9(k) (Tu(@) - k — )" ¢' dkdzdt

/f/e(k ) §3(Tu(m) ~ k—£)

( divG((k + &)*) + Z Bi;((k + £)+)m,) ¢ dkdzdt

$,j=1
- [[ s - S (@ 1nTe0) ~ 7T V)" ot
m=1
for any ¢ € C}(0,T)*, which implies that % is a renormalized dissipative
solution of (GSP). Moreover, by the uniqueness theorem in [3], we conclude

that ¥ is a unique solution. O

References

[1] M. Belhadj, J.-F. Gerbeau and B. Perthame, A multiscale colloid trans-

port model with anisotropic degenerate diffusion, Asymptot. Anal. 34
(2003), 41-54.

[2] M. Bendahmane and K. H. Karlsen, Renormalized entropy solutions for
quasilinear anisotropic degenerate parabolic equations, SIAM J. Math.
Anal. 36 (2004), 405-422.

(3] Ph. Bénilan, J. Carrillo and P. Wittbold, Renormalized entropy solutions

of scalar conservation laws, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 29
(2000), 313-327.

[4] G.-Q. Chen and B. Perthame, Well-posedness for non-isotropic degenerate
parabolic-hyperbolic equations, Ann. Inst. H. Poincare Anal. Non Lineaire
20 (2003), 645-668.

[5] R. J. DiPerna and P.-L. Lions, On the Cauchy problem for Boltzmann
equations: Global existence and weak stability, Ann. of Math. 130 (1989),
321-366.

64



[6] L. C. Evans, The perturbed test function method for viscosity solutions of
nonlinear PDE, Proc. Roy. Soc. Edinburgh Sect. A 111 (1989), 359-375.

[7) M. A. Katsoulakis and A. E. Tzavaras, Contractive relaxation systems and
the scalar multidimensional conservation law, Comm. Partial Differential
Equations 22 (1997), 195-233.

[8] K. Kobayasi, The equivalence of weak solutions and entropy solutions
of nonlinear degenerate second-order equations, J. Differential Equations
189 (2003), 383-395.

[9] K. Kobayasi and S. Takagi, An equivalent definition of renormalized en-
tropy solutions for scalar conservation laws, Differential Integral Equa-
tions 18 (2005), 19-33. '

[10] S. N. Kruzkov, First order quasilinear equations with several independent
variables, Math. USSR-Sb. 10 (1970), 217-243.

[11] B. Perthame and P. E. Souganidis, Dissipative and entropy solutions to
non-isotropic degenerate parabolic balance laws, Arch. Rational Mech.
Anal. 170 (2003), 359-370.

[12] M. Portilheiro, Weak solutions for equations defined by accretive opera-
tors I, Proc. Roy. Soc. Edinburgh Sect. A 133 (2003), 1193-1207.

[13] M. Portilheiro, Weak solutions for equations defined by accretive opera-
tors 1I, J. Differential Equations 195 (2003), 66-81.

[14] S. Takagi, Renormalized dissipative solutions for quasilinear anisotropic
degenerate parabolic equations, Commun. Appl. Anal. 9 (2005), 481-503.

65



