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Green functions and heat kernels of second order
ordinary differential operators with discontinuous
complex coefficients

Yorimasa OSHIME, Doshisha University

Abstract
We consider the operator Bu = (r(z)) ™! Au where

(Au)(z) = -di ( (a:)——- +b1(2) ) + bg(m)% + (@), (—00 < T < 00

with discontinuous bounded complex-valued coefficients. Under some ad-
ditional condition, we estimate the kernel function (Green functions) of
(B — A)™! and the kernel for e %2,

1 Basic Assumptions and Notations

Consider an ordinary differential operator A € L2(R):

(Au)(z) = —(a(z)u' + bi(z)u) + ba(z)u’ + c(x) (1)
= _% (a(m)g—z + bl(x)u) + bg(m)j—z te@u  (—o0< T <)
with

Dom(A) = {u € H'(R); a(z)du/dz + b(z)u € H'(R)}
Here
| a(e),b1(e),b2(e), c(e) € L=(R)
are complex-valued and may be discontinuous and we assume there exist two
positive constants 6, € (0,7/2) and ag > 0 such that

|arg(a(z))] < ba, R(a(z)) 2 a0

We also consider another operator B with the same domain:

(Bu)(z) = (“f{;()’ Dom(B) = Dom(4)

where r(z) € L (R) is a scale function for which there exist also two positive
constants 6, € (0,7/2) and r¢ > 0 such that

|arg(r(z))| = 0, R(r(z)) Z o
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We will further assume later that0 < 6, + 6, < 7/2.

Our problem is the solvability of Bu — Au = f € L?(R) and the representa-
tion of the solution by a Green function. Equivalently, we have only to consider
the solvability of

Au - dr(z)u = r(z) f(z) € L*(R).

We also consider the kernel of the analytic semigroup e~
We sometimes omit (R) of L(R), L*(R), H*(R),-- for simplicity. And we
generally denote constants by k, ko, k1, .

tB

2 Functions with compact support in Dom(A)

Just as the domain H? of the opreator —d?/dz? is itself a Hilbert space, the
domain Dom(A) of A can be regarded as the Banach space (actually a Hilbert
space).

Definition For u € Dom(A), we define

Fellbemeay = {(lull )2 + (la(@)’ + by(@)ull)?}

Theorem 1 The domain Dom(A) of A is itself a Banach space with norm
| e “Dom(A)-

Proof. We have only to consider the completeness. Let {u,} be a Cauchy
sequence with || ® |pom(a). Then u, and a(z)u,, + bi(z)un are both Cauchy
sequences in H!. Hence there exist u,v € H! such that

un = u, a(z)u;, +bi(z)u, - vin H.

The first one means  a(z)u!, + b1 (x)un, — a(z)u’ + by (z)u in L. Therefore we
have a(z)u’ + by(z)u =v € H* and v € Dom(4). Q.E.D.

We will prove Co(R) N Dom(A) is dense in Dom(A) with norm || e ||pom(a)-
We first define cut-off functions in the next three lemmas.

Lemma 2 Fiz p(z) € C§° such that

(z) = >0 (0<z<l)
PP =1=0 (z<0,221)
Then

* p(z —n)
= Lk S 4 , =0,+1,+2,---
c /— (@) dr#0, n Oil‘

Moreover there exists a constant k > 1 such that

k™l <leal <k (n=0,%+1,42,---)



Proof. The assumption on a(z) implies

1
(ko) ! <R—— <ky (00 <z <00)

a(z)

with some constant kg > 1. Taking account of p(z) > 0, we have

(ko)‘l/‘ (z —n)dz < §R/ dm < ko /oo plz — n)dm;

that is,
(ko)™ / p(@)dz < Ren < ko / p(z)dz.

or
(ko) k1 < Ren < koka (3)

if we put k1 = [°._ p(z)dz. On the other hand, p(z) > 0 and the convexity
of the set {z € C;|arg Z| < 6, < 7/2} implies

arg / £’-(:E—)dar:

@) | <0y <7/2

< sup |arg —

( )

that is,
largen| < 0, < /2 (4)

From these, we have the claim of the present lemma. Q.E.D.

Now the next two lemmas are clear.

Lemma 3 Let p(z) and ¢, (n = 0,£1,--- be the same as in the previous
lemma. Then s )
_ p(y —n
on(z) =c,;* / = dy,
S BT s
1 [T ply—n)
z)=c, ——d
wnie) =it [y
satisfy
_J0 (=< n)
¢n(@) = {1 (z>n+1),
)1 (z<n)

In addition, the functions

a(2)¢, = (en) T (e — 1), a@)yy, = —(ea) o —n) (n=0,%£1,-)
belong to CP(R) and form a bounded set in B1(R).
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Lemma 4 Let ¢p,(z) and ¢n(z) be the same as in the previous lemma. The
functions

Pmn(T) = Om(T)Pn (z)

with the integer parameter n > m + 1 satisfies

1 (m+1<z<n)
0 (z<m, z>n+1)

Pmn(T) = {
In addition, two families of support compact functions

{bmn(2), }, {a(2))Brnn}
are bounded subsets in W (R) and B*(R), respectively.

Using Lemma 4, we can prove the next theorem.

Theorem 5 The set Co(R) N Dom(A) is dense in Dom(A) with norm || e
llDom 4)-

Proof. Fix u € Dom(A) arbitrariliy. Set
Umn = Omn(Z)u(z) € Co(R) N LE(R)

. where ¢nn(2) is the function in the previous lemma. Recalling Omn(x) € WH®
and {a(z)¢.,,.}(z) € B!, we know

Upp = Pmn (T)U + G (T)1t’
a(2)ty,, + by (@)umn = a(2)P,(T)u + bmn(z){a(z)u’ + by (z)u}
{a(@)ump + 01(2)umn} = (6(2)G)n () u + a(z) Pl (2)0/ ()

+émn(){a(z)v’ + b1(z)u}
+Bmn (z){a(z)u’ + b1 (x)u}’
are all in L?2(R) , i.e., Umn € Dom(A). The previous lemma states {@mn} and

{a(z))¢mn} are bounded subsets in W1>°(R) and B!(R), respectively. Note
also

suppg;,,, C [m,m + 1 U [n,n + 1]

Therefore ¢mn(z) = 1 (m — ~00,n — o0) implies

Umn - u(T)
mn = U(z)

a(T)Upyp, + b1 (Z)Umn  —  {a(z)u’ + by (z)u}
{a(z)u,,, + by (@)umn} = {a(z)u’ + by(z)u}

U



all in L2(R)). This means u,, € Co(R) U Dom(A) converges to u in the sense
of the norm || ® ||pom(4)- Q.E.D.

In the later sections, we consider the perturbation A* of the operator A
which is formally defined

(4%)(z) = e 2D A(e"*Pu(z))

_[* dy
@(m)=/0 2

The next theorem partially guarantees the appropriateness of the definition of
A+

where

Theorem 6 Let u € C be an arbitrarily fized constant and

= [
Be) = /o ay)’
Suppose u € Dom(A4) N Cy(R). Then
v(z) = e"#®@y(z) € Dom(A).

Proof . Since ®(z) is absolutely continuous and locally bounded,

v(z) = er®@y(z) e L2
' = P _ue= pd (), 2
v'(z) —a(m)e u(z) + e u'(z) e L

as u € Dom(4) N Cy(R) C Co(R) N H(R). Moreover, |
a(z)v’ + by (2)v = pet*@u(z) + e#*Pu(z)(a(z)w’ + bi(z)u) € H'(R)
sinceu € Dom(A) N Co(R) implies
a(z)u’ + by (z)u € HY(R) N Co(R)

by definition.

3 Sesquilinear form associated with A

Theorem 7 The sesquilinear form ofu,v] defined as
ofu,] = / (@)’ + b1 (@)u)T + by()u's + c(a)ut} dx,

Dbm(a) = H'(R)

is a closed sectorial form in L2(R). Moreover, A is the sectorial operator rep-
resenting the sectorial form a, i.e.,

afu,v] = (Au,v)

for any v € Dom(A) and any v € H.
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Proof. First, we prove the sectoriality. We begin with the first part of ofu,u] :

/ " a(@) Pdz = vl |

—00

Here ~(u) is in the closed convex hull of
{a(z);z € R} C {|arg(2)| < 6a} N {Rz > a0} N {|2| < |a(e)|L>}-
On the other hand,

/oo {b1(z)udl’ + ba(z)u'd + c(z)ua} dz| < elju’||® + (k/€)]|ul|?

-—00

with two constant £k > 0 and 0 < € < 1 where 0 < € < 1 can be arbltranly-

chosen. So, with appropriately chosen constant K > 0,
alu,u] + K(u,u)

takes values in the sector {|argz| < 6, < w/2} . In other words, afu,v] is a
sectorial form. It is also shown that :

lefus, u] + K (u,w)| > ko([lull? + [l|*)

for some constant kg > 0. Therefore Cauchy sequences in the sense of afu, v]
are the one in H' and it is a closed form.

Theorem 8 The dual A* of the operator A is

——

(A*v)(z) = — (a(a:)v’ + bg(:c)v), + b1 (z)v' + c(z)v

with
Z Dom(A*) ={v € Hl(R);Emdv/dm +mu € HI(R)}

We omit tje proof.

In order to obtain later the exponential decay the Green functions, we will
need the next perturbation of the operator A.

Definition. A* is defined to be a peturbation of A :
(APu)(z) = (Au)(z) + —2pu’ + pey(z)u + pea(z)u
with perturbation parameter yu € C. where

—b1(z) + ba(z)

T o) =g <5

a(z)

ci(z) =
The corresponding sesqilinear form is denoted by

otu,v] = afu,v] — 2u(, v) + pley(z)u, v) + p2(c2(z)u, v).
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Remark. A* is formally obtained as

(A u)(z) = e““‘p("”)A(e“q’(x)u)

Next is one of the Sobolev inequalities.

Lemma 9 For arbitrary u € W12(R),
1/2 2
ullze < V2lJull32 [l 2.

Proof. For any z € R,

{u(z)}? = /x 2u(t)u'(t)dt

—0

wor ([ o) ([ )
Q.E.D.

Lemma 10 Arbitrary z,w € C\ {0} satisfy
|z — wl| 2 (sin(]6]/2))(|2] + |w]).

Hence

Here
0 = arg(z) — arg(w) = arg(z/w) € [-m,n)

Proof. Applying the cosine theorem to the triangle with vertices 0, z, w, we
have

lz—w? = |21+ |wf®> - 2|2|jw]|cos b
1—cosé 1+ cos#
= 5 (2l + lw])® + > (2| — Jw))

> sin®(3)(12] + ful)”.

- Q.E.D.
Theorem 11 The sesquilinear form
ay[u,v] = afu,v] — A(r(z)u,v)

is a closed form with Dom(as) = Dom(a) = W12, Let also 0, + 6, <w < 7/2
for some w € (0,7/2). Then

loalu, ull > kollw'[|Z2 + k1lMlllullf2,  u € Dom(ay) = W2

for A which satisfies

|arg(M)] > w, |A| > k2.
Here ko, k1 and ky are positive constants which depend only on w, 8,, 8., ag,7q,||b1(®)| L, [|bz(®)| Lo,
llc(®)]|zee-
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Proof. First notice that

S b

arg (/ a(x)lu’[zda:>
arg (A/r(m)lu']zdw)

Therefore the previous lemma is applicable and

,/a(m)lu’l2d;c—/\/r(z)lu’lzd:c 2 sinw——eTa—-g1 (,/a(x)lu’lzdz

2 ko(llw'Z2 + Al]lullZ2)

and
g W - 01'

)

+ |A| l/ r(z)|u|2dz

for some constant ky > 0 dependent only on 8,,0,,w,ag, 9. On the other hand,

[ eni + b+ o) e £k (folasllon + (el
< (ko/2)I I3 + kalluls

for some other constants k, dependent only on kg and lb1(®)]|Loo s [|b2(@)]| Loo, ||c(®) || oo
Combining these two inequalities, we have

loafu, ull = lofu, u] — A(r(e)u, w)| 2 (ko/2)|[w/|[32 + (kolA| — ka)llul 22
We have only to redefine the positive constantskg, k1, k2.
Corollary The sesquilinear form
o [u,v] = oMy, v] — A(r(z)u,v)

is a closed form with Dom(axp) = Dom(a) = H!. Let also 6, + 6, < w < /2
for some w € (0,7/2). Then

|oX[us ull > kollw'|g2 + (k1|A| — kalu|®)|ull2s, u € Dom(en) = H?
for A and p which satisfy
|arg(A)] > w, |A] 2 ks, |u] < k|2,

Here ko, k1, k2, ks and k4 are positive constants which depend only on w, 64, 6,, ao, 70,|[b1(®) || Lo,
llb2(®)| oo, flc(@)| Lo

Proposition 12 Let 0, + 8, < w < /2. Suppose that |argA| > w and that|\|
is sufficiently large. Then, for any f(e) € L2,

(A= Ar(e))u(z) = Au(z) - Mr(z)u = f(),
has a unigue solution v € Dom(Ay) = Dom(A) and it satisfies

lellze < BN lle2s o'z < Ral ATV F ) 2, el oo < Ry AI2/4)1 £l 22
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Proof. By the preceding theorem 11,
kollw'[32 + By MllulZe € laalu, ull = 1(f,w) < 1] lull
Therefore there exists a unique solutionu € Dom(A) . We also have

kM lulZa] < 11,

hence
lull < (k) ~HATHIALL
Back to the original inequality, we obtain
Rollw/I22 < 1 Flflull < (k)T INTHIANR,

hencé
]|z < (koka) 72N £l

Finally, we have
 fullee < Valulllillzs < V2GBTS s
Q.E.D.

Corollary Let 8, + 0, < wg < w < m/2. Suppose that |arg | > w and |Alis
sufficiently large. Suppose also that |u| < kolA|'/? with some constant ko > O.
Then, for any f(e) € L?,

(A¥ — Ar(®))u(z) = Atu(z) — dr(z)u = f(z),
has a unique solution u € Dom(AY) = Dom(A) and it satisfies

lullze < kA2 A lze, a2 < kA2l e, lullzee < ka4 £ll2e

Proposition 13 Let 0, + 0, < w < 7/2 for some w € (0,7/2) Suppose that
|arg \| > w and |A|is sufficiently large. Then, for any f(e) € L2,

(A= dr(e))u(z) = Au(z) — Ar(z)u = (f(2))',
has a unique solution u € Dom(ay) = Dom(e) = H' and it satisfies
lullzz < ks A2 lle I llze < kallFlle, lullze < RalA 740 £ o
Proof. Note that .
kollw! 122 + kaAll[ulls < loafu, ull = [(F,w)] = (£, w)] < Il
in the present case. Similarly to the preceding theorem, we have first

kolleI[Z2 < (111l
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hence,
[l 2 < ko™ || £1]-

Back to the original inequality, we obtain
kM lluliZe < I < (ko) THATHIAIN,

hence
ullze £ ko7 £

Finally, we have
lullze || € V2lull Lzl |z £ V2hy k4N Y4 £l 2

'l 22 £ ko™ |1l 2

Corollary Let6,+6, <wp < w < w/2. Suppose that |arg | > 7 —w and |A|is
sufficiently large. Suppose also that || < ko|\|Y/? with some constant ko > 0.
Then, for any f(e) € L?,

(A* — Ar(e))u(z) = A*(z) — Ar(z)u = (f(2))',
has a unigque solution v € Dom(ay) = Dom(a) = H! satisfying

lullze < BaMTY2) £l e, ' 22 < Rallfllze, flullze < RaATY4) £l 22

Proposition 14 Let the assumption be the same as in the previous two Proposi-
tions. Then there exists a kernel function Ry (z, &) which represents the solution
u=(A-Ar)"1f:

ww=[”mw@vwa

with the estimate
|Rx(z, )| < kolA|"Y/2

for some constant ko > 0.
Proof. Since u € H! C B is a continuous function and
()] < llullge < llulla < kX724 £l 2

for an arbitrarily fixed z. Thus L? — C : f(e) — wu(z) is turned out to
be a bounded functional. Hence the Riesz theorem asserts that there exists
Ry (z,e) € L? dependent on z € R such that

m@=[fmu@ﬂ&ﬁ



and ||Rx(z, 8|12 < ka| |73/

Now we consider the solution v € H! ¢ B of (A—ANv =g, ge L% By
the previous theorem, L2 — C : f(o) — v(x) with an arbitrarily fixed x is also
a bounded functional and

(@) < vllso < vl < k2N 74| £l 2

with another constant k; > 0. So there exists again another kernel S)(z, £) such
that

oe)= [ Z Sz, €)g(€)de

and [|Sx(z, ®)||z2 < k2|A|~1/* We look into the relation of Ry (z, £) and Sx(z, £).
For an arbitrary g € C§°, the solution v € H* of (a — Ar)v = g’ can be written
in two ways.

o) = [ ~ Ra(z,6)g'(€)dk,

vo)= [ Si@oe@

Since g € C§° is arbitrary , Sx(z,£) € L? is a distribution derivative of Ry (z, &)
with respect to £&. Thus Ry(z,e) € H! C B°. By Lemma?,

IRx(z, )l < [|Rx(z, &) |72 1I1Sx(z, )| 2 < ka]A|"V/2

Corollary Let the assumption be the same as in the corollaries of the two
previous two propositions. Then there exists a kernel function R (z,€) which
represents the solution u = (A* — Ar)7}f:

ue)= [ R@OsOE

with the estimate
|RE (2, €)| < kolA|Y/2

for some constant kg > 0.

Theorem 15 Let the assumption be the same as in the two theorems. The
kernel function Ry(z,§) which represents the solution u = (A — Ar)~1f:

u(z) = /_ " Ra(m ©)f(€)de

has the estimate
|RA(®, €)| < ky|A|71/2e k2l ol

for some constant ky, ky > 0.
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Proof. Let u be as in the corollaries of the Theorems. Let u € Dom(A4) N Co
be arbitrarily fixed. Then

e 2@ y(z) € Dom(A)

as in Theorem 6. Now putting

where

f=(A-Ar),
we have _
(A= AR)e*@ (e #@y(z)) = f()
P (A —ar) (e Pu(z)) = (=)
(AF =) (emP@)y(z)) = emHPE) f(g).
Hence

2Oue) = [ R OeOf(©)dg
ue) = et | " R, £)eH© f(6)de

u(z) = / " HE) 2@ RE (2, £) F(£)de.

-0

On the other hand, u = (A — Ar)~! f can be written as

uw) = [ " R, ) f(€)dE.

Hence

/ " @) RE (5, €) F(¢)dt = / " Ra(z.)£(€)de

—00

for all f = (A — Ar)u with u € Dom(A4) N Cp. Such f form a dense subset in
L2. Therefore
Ra(z,6) = e“(‘P(”)—‘p(E))Rf\‘(x, £).

Recalling that u with |u| < ko|A|*/? is arbitrary and using the Corollary of the
previous Proposition 14,

|Rx(z, £)] < ky|\|~H2e~ k2N 212 (2) -2 (O)]

Noticing
R(1/a(y)) = ko



with a certain constant kg > 0,

8(0) — 8(6) > R8(z) - 3O = 7 [ 2| > kolo -l
Combining these, we finally obtain
R (2, €)| < ka|A["/2e R M2 le—el,
Q.E.D.

Corollary There exists a kernel function Ru(z,€) of (B—A)~! where Bu(z) =
(r(z)) "t Au(z):

B-N"f@ = [ " Rz, )f(€)de

Moreover 3 e
(B (, )] < k|26 e

with constants ki, k.
Proof. Since Bu — \u = f € L? is equivalent to
Au - Mr(z)u =r(z)f € L?

we have
w@) = (BN = (A= M)D) = [ RaleOr©f©d

Therefore, we have only to put Rx(z,€) = Ra(z,£)r(§). QE.D.

Theorem 16 Let the assumption be the same as the preceding theorem and its
corollary. Then

_‘?Bi(,,,. g)\ < ke RelA =]
T

for some constants ki, ks, k1, ko > 0.

We omit the proof.
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Theorem 17 The analytic semigroup e 2 generated by
Bu(z) = (r(z))~" (Au)(=)
has a kernel function G(z,y;t) with estimate
IG(z,&;)] < koekrte 21t 1e—¢* (7 €) € R?, |argt| < m/2 — w
with constants kg, k1, ks > 0.

Proof. The kernel function Ry (z,&) of (B — A)~! is expressed by the kernel
Ry (z, &) with estimate

|Ra(z,€)| < ky|\|~Y/2e k2l A ?l=—¢]

for
{Ailarg Al > W', [A] > k3}

with constants w’ € (0, + 6,w), , k1, ko, k3 > 0.
By a standard argument, B + kg with some k¢ > 0 has a kernel which has a

similar estimate in
{X;|argA| > '}

We have only to discuss this B + ko and e~t(B+ko)  rewriting B + ko as B
from now on. We recall the formula:

-1
—tB —At _ —'ld/\.
B [ e (B —A)

~with the integral path
I‘:{/\zpei“";oo>p20}U{)\zpei“”;OSp<oo}
The corresponding kernel function is

Gz 1) = /F e (Ra(c, £)dA

We modify the integral path to I‘i UTy Uls:

1 = ={\=pe*;00>p>klt| %z - ¢}
r2 = {A=klt| %z - €% w0 <0< 21 -6}
L3 = ={A=pe ™ klt| |z — £]* < p < 00}

Here the constant & > 0 is chosen so small that

IMlt] = klt| ™ |z — € < 27 kY 2kt Mo — €° = 27 ke APz — ¢
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holds on the path I';. We estimate the integral on each path.

-1

_/ e_)‘tR)\(l',f)d)‘l < e~kpltl| p|~1/2¢ el Hla—¢l g
'y

271

ko /ﬁ - 2

)
—ky kY2t |z —g)? —k1p|t]| 1—1/2
koe 1 I l I E' elomt . e 1P| ||p| / dp

JeI2

IN

o

< koe—hkl/z]t[”llz—ﬂz‘/ e~kieltl| p|=1/24)
0

< koe—k1k1/2|tl—1|x—f|20(]t|—1/2)

Similarly,
i‘/ "/‘“Rx(x,s)dA\ < kolt|"Y2e~FaltlTHe—el®
271 Jp,
with some constants kg, k&; > 0. Finally, holds on the path I'y. We estimate the

integral on each path.

:_1/ e—AtRA(x’f)d/\’ < ko/ 2 kalA 2ol 5 =1/2g=kal A2l g
2w Iy j

27 —w'
< ko/ e—k3|t|“1|m_5|2(|tr.1|m _ §|2)1/2IT|—1/2d9

w!

ko]~ 1/2ekaltl " m—e1

IN
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