Green functions and heat kernels of second order ordinary differential operators with discontinuous complex coefficients

Yorimasa OSHIME, Doshisha University

Abstract

We consider the operator $Bu \equiv (r(x))^{-1}Au$ where

$$(Au)(x) \equiv -rac{d}{dx}\left(a(x)rac{du}{dx} + b_1(x)u
ight) + b_2(x)rac{du}{dx} + c(x)u, (-\infty < x < \infty)$$

with discontinuous bounded complex-valued coefficients. Under some additional condition, we estimate the kernel function (Green functions) of $(B-\lambda)^{-1}$ and the kernel for e^{-tB} .

1 Basic Assumptions and Notations

Consider an ordinary differential operator $A \in L^2(\mathbf{R})$:

$$(Au)(x) \equiv -(a(x)u' + b_1(x)u)' + b_2(x)u' + c(x)$$

$$\equiv -\frac{d}{dx} \left(a(x)\frac{du}{dx} + b_1(x)u \right) + b_2(x)\frac{du}{dx} + c(x)u \qquad (-\infty < x < 62)$$

with

$$\mathrm{Dom}(A)=\{u\in H^1(\mathbf{R}); a(x)du/dx+b(x)u\in H^1(\mathbf{R})\}$$

Here

$$a(ullet), b_1(ullet), b_2(ullet), c(ullet) \in L^\infty(\mathbf{R})$$

are complex-valued and may be discontinuous and we assume there exist two positive constants $\theta_a \in (0, \pi/2)$ and $a_0 > 0$ such that

$$|\arg(a(x))| \le \theta_a, \quad \Re(a(x)) \ge a_0$$

We also consider another operator B with the same domain:

$$(Bu)(x) \equiv \frac{(Au)(x)}{r(x)}, \text{Dom}(B) = \text{Dom}(A)$$

where $r(x) \in L^{\infty}(\mathbf{R})$ is a scale function for which there exist also two positive constants $\theta_r \in (0, \pi/2)$ and $r_0 > 0$ such that

$$|\arg(r(x))| \le \theta_r, \quad \Re(r(x)) \ge r_0$$

We will further assume later that $0 < \theta_a + \theta_r < \pi/2$.

Our problem is the solvability of $Bu - \lambda u = f \in L^2(\mathbf{R})$ and the representation of the solution by a Green function. Equivalently, we have only to consider the solvability of

$$Au - \lambda r(x)u = r(x)f(x) \in L^2(\mathbf{R}).$$

We also consider the kernel of the analytic semigroup e^{-tB} .

We sometimes omit (**R**) of $L^{(\mathbf{R})}$, $L^{\infty}(\mathbf{R})$, $H^{1}(\mathbf{R})$, \cdots for simplicity. And we generally denote constants by k, k_0, k_1, \cdots .

2 Functions with compact support in Dom(A)

Just as the domain H^2 of the operator $-d^2/dx^2$ is itself a Hilbert space, the domain Dom(A) of A can be regarded as the Banach space (actually a Hilbert space).

Definition For $u \in Dom(A)$, we define

$$||u||_{\mathrm{Dom}(A)} \equiv \left\{ (||u||_{H^1})^2 + (||a(x)u' + b_1(x)u||_{H^1})^2 \right\}^{1/2}$$

Theorem 1 The domain Dom(A) of A is itself a Banach space with norm $\| \bullet \|_{Dom(A)}$.

Proof. We have only to consider the completeness. Let $\{u_n\}$ be a Cauchy sequence with $\| \bullet \|_{\mathrm{Dom}(A)}$. Then u_n and $a(x)u'_n + b_1(x)u_n$ are both Cauchy sequences in H^1 . Hence there exist $u, v \in H^1$ such that

$$u_n \to u$$
, $a(x)u'_n + b_1(x)u_n \to v$ in H^1 .

The first one means $a(x)u'_n + b_1(x)u_n \to a(x)u' + b_1(x)u$ in L^2 . Therefore we have $a(x)u' + b_1(x)u = v \in H^1$ and $u \in \text{Dom}(A)$. Q.E.D.

We will prove $C_0(\mathbf{R}) \cap \mathrm{Dom}(A)$ is dense in $\mathrm{Dom}(A)$ with norm $\| \bullet \|_{\mathrm{Dom}(A)}$. We first define cut-off functions in the next three lemmas.

Lemma 2 Fix $\rho(x) \in C_0^{\infty}$ such that

$$\rho(x) = \begin{cases} > 0 & (0 < x < 1) \\ = 0 & (x \le 0, x \ge 1). \end{cases}$$

Then

$$c_n = \int_{-\infty}^{\infty} \frac{
ho(x-n)}{a(x)} dx \neq 0, \quad n = 0, \pm 1, \pm 2, \cdots$$

Moreover there exists a constant k > 1 such that

$$k^{-1} \le |c_n| \le k \quad (n = 0, \pm 1, \pm 2, \cdots)$$

Proof. The assumption on a(x) implies

$$(k_0)^{-1} \le \Re \frac{1}{a(x)} \le k_0 \quad (-\infty < x < \infty)$$

with some constant $k_0 > 1$. Taking account of $\rho(x) \ge 0$, we have

$$(k_0)^{-1}\int_{-\infty}^{\infty}\rho(x-n)dx\leq\Re\int_{-\infty}^{\infty}\frac{\rho(x-n)}{a(x)}dx\leq k_0\int_{-\infty}^{\infty}\rho(x-n)dx,$$

that is,

$$(k_0)^{-1}\int_{-\infty}^{\infty}\rho(x)dx\leq \Re c_n\leq k_0\int_{-\infty}^{\infty}\rho(x)dx.$$

or

$$(k_0)^{-1}k_1 \le \Re c_n \le k_0 k_1 \tag{3}$$

if we put $k_1 = \int_{-\infty}^{\infty} \rho(x) dx$. On the other hand, $\rho(x) \geq 0$ and the convexity of the set $\{z \in \mathbb{C}; |\arg Z| \leq \theta_a < \pi/2\}$ implies

$$\left| \arg \int_{-\infty}^{\infty} rac{
ho(x-n)}{a(x)} dx
ight| \leq \sup_{x} |\arg rac{1}{a(x)}| \leq heta_a < \pi/2$$

that is,

$$|\arg c_n| \le \theta_a < \pi/2 \tag{4}$$

From these, we have the claim of the present lemma. Q.E.D.

Now the next two lemmas are clear.

Lemma 3 Let $\rho(x)$ and c_n $(n = 0, \pm 1, \cdots)$ be the same as in the previous lemma. Then

$$\phi_n(x) \equiv c_n^{-1} \int_{-\infty}^x \frac{\rho(y-n)}{a(y)} dy,$$

$$\psi_n(x) \equiv c_n^{-1} \int_x^\infty rac{
ho(y-n)}{a(y)} dy$$

satisfy

$$\phi_n(x) = \begin{cases} 0 & (x \le n) \\ 1 & (x \ge n+1), \end{cases}$$

$$\psi_n(x) = \begin{cases} 1 & (x \le n) \\ 0 & (x \ge n+1). \end{cases}$$

In addition, the functions

$$a(x)\phi'_n = (c_n)^{-1}\rho(x-n), a(x)\psi'_n = -(c_n)^{-1}\rho(x-n) \quad (n=0,\pm 1,\cdots)$$

belong to $C_0^{\infty}(\mathbf{R})$ and form a bounded set in $B^1(\mathbf{R})$.

Lemma 4 Let $\phi_m(x)$ and $\psi_n(x)$ be the same as in the previous lemma. The functions

$$\phi_{mn}(x) \equiv \phi_m(x)\psi_n(x)$$

with the integer parameter $n \ge m+1$ satisfies

$$\phi_{mn}(x) = egin{cases} 1 & (m+1 \leq x \leq n) \\ 0 & (x \leq m, \quad x \geq n+1) \end{cases}$$

In addition, two families of support compact functions

$$\{\phi_{mn}(x),\},\{a(x))\phi'_{mn}\}$$

are bounded subsets in $W^{1,\infty}(\mathbf{R})$ and $B^1(\mathbf{R})$, respectively.

Using Lemma 4, we can prove the next theorem.

Theorem 5 The set $C_0(\mathbf{R}) \cap \mathrm{Dom}(A)$ is dense in $\mathrm{Dom}(A)$ with norm $\| \bullet \|_{\mathrm{Dom}(A)}$.

Proof. Fix $u \in Dom(A)$ arbitrarily. Set

$$u_{mn} \equiv \phi_{mn}(x)u(x) \in C_0(\mathbf{R}) \cap L^2(\mathbf{R})$$

where $\phi_{mn}(x)$ is the function in the previous lemma. Recalling $\phi_{mn}(x) \in W^{1,\infty}$ and $\{a(x)\phi'_{mn}\}(x) \in B^1$, we know

$$u'_{mn} = \phi'_{mn}(x)u + \phi_{mn}(x)u'$$

$$a(x)u'_{mn} + b_1(x)u_{mn} = a(x)\phi'_{mn}(x)u + \phi_{mn}(x)\{a(x)u' + b_1(x)u\}$$

$$\{a(x)u'_{mn} + b_1(x)u_{mn}\}' = (a(x)\phi'_{mn}(x))'u + a(x)\phi'_{mn}(x)u'(x)$$

$$+\phi'_{mn}(x)\{a(x)u' + b_1(x)u\}'$$

$$+\phi_{mn}(x)\{a(x)u' + b_1(x)u\}'$$

are all in $L^2(\mathbf{R})$, i.e., $u_{mn} \in \mathrm{Dom}(A)$. The previous lemma states $\{\phi_{mn}\}$ and $\{a(x)\}\phi'_{mn}$ are bounded subsets in $W^{1,\infty}(\mathbf{R})$ and $B^1(\mathbf{R})$, respectively. Note also

$$\operatorname{supp} \phi'_{mn} \subset [m,m+1] \cup [n,n+1]$$

Therefore $\phi_{mn}(x) \to 1 \ (m \to -\infty, n \to \infty)$ implies

$$egin{array}{cccc} u_{mn} & o & u(x) \ u'_{mn} & o & u'(x) \ a(x)u'_{mn} + b_1(x)u_{mn} & o & \{a(x)u' + b_1(x)u\} \ \{a(x)u'_{mn} + \dot{b}_1(x)u_{mn}\}' & o & \{a(x)u' + b_1(x)u\}' \end{array}$$

all in $L^2(\mathbf{R})$. This means $u_{mn} \in C_0(\mathbf{R}) \cup \mathrm{Dom}(A)$ converges to u in the sense of the norm $\| \bullet \|_{\mathrm{Dom}(A)}$. Q.E.D.

In the later sections, we consider the perturbation A^{μ} of the operator A which is formally defined

$$(A^\mu)(x) \equiv e^{-\mu \Phi(x)} A(e^{\mu \Phi(x)} u(x))$$

where

$$\Phi(x) \equiv \int_0^x \frac{dy}{a(y)}.$$

The next theorem partially guarantees the appropriateness of the definition of A^{μ} .

Theorem 6 Let $\mu \in \mathbf{C}$ be an arbitrarily fixed constant and

$$\Phi(x) \equiv \int_0^x \frac{dy}{a(y)}.$$

Suppose $u \in \text{Dom}(A) \cap C_0(\mathbf{R})$. Then

$$v(x) \equiv e^{-\mu\Phi(x)}u(x) \in \text{Dom}(A).$$

Proof. Since $\Phi(x)$ is absolutely continuous and locally bounded,

$$egin{array}{lcl} v(x) & = & e^{\mu \Phi(x)} u(x) \in L^2 \\ v'(x) & = & rac{\mu}{a(x)} e^{\mu \Phi(x)} u(x) + e^{\mu \Phi(x)} u'(x) \in L^2 \end{array}$$

as $u \in \text{Dom}(A) \cap C_0(\mathbf{R}) \subset C_0(\mathbf{R}) \cap H^1(\mathbf{R})$. Moreover,

$$a(x)v' + b_1(x)v = \mu e^{\mu \Phi(x)}u(x) + e^{\mu \Phi(x)}u(x)(a(x)u' + b_1(x)u) \in H^1(\mathbf{R})$$

 $since u \in Dom(A) \cap C_0(\mathbf{R})$ implies

$$a(x)u'+b_1(x)u\in H^1(\mathbf{R})\cap C_0(\mathbf{R})$$

by definition.

3 Sesquilinear form associated with A

Theorem 7 The sesquilinear form $\alpha[u,v]$ defined as

$$lpha[u,v] = \int_{-\infty}^\infty \left\{ (a(x)u' + b_1(x)u)ar v' + b_2(x)u'ar v + c(x)uar v
ight\} dx,$$

$$\mathrm{Dom}(\alpha)=H^1(\mathbf{R})$$

is a closed sectorial form in $L^2(\mathbf{R})$. Moreover, A is the sectorial operator representing the sectorial form α , i.e.,

$$\alpha[u,v]=(Au,v)$$

for any $u \in Dom(A)$ and any $v \in H^1$.

Proof. First, we prove the sectoriality. We begin with the first part of $\alpha[u,u]$:

$$\int_{-\infty}^{\infty}a(x)|u'|^2dx=\gamma(u)\|u'\|_{L^2}^2$$

Here $\gamma(u)$ is in the closed convex hull of

$$\{a(x); x \in \mathbf{R}\} \subset \{|\arg(z)| \leq \theta_a\} \cap \{\Re z \geq a_0\} \cap \{|z| \leq |a(\bullet)|_{L^{\infty}}\}.$$

On the other hand,

$$\left| \int_{-\infty}^{\infty} \left\{ b_1(x) u \bar{u}' + b_2(x) u' \bar{u} + c(x) u \bar{u} \right\} dx \right| \le \epsilon \|u'\|^2 + (k/\epsilon) \|u\|^2$$

with two constant k > 0 and $0 < \epsilon < 1$ where $0 < \epsilon < 1$ can be arbitrarily chosen. So, with appropriately chosen constant K > 0,

$$\alpha[u,u]+K(u,u)$$

takes values in the sector $\{|\arg z| \le \theta_a < \pi/2\}$. In other words, $\alpha[u,v]$ is a sectorial form. It is also shown that

$$|\alpha[u,u]+K(u,u)| \geq k_0(||u||^2+||u'||^2)$$

for some constant $k_0 > 0$. Therefore Cauchy sequences in the sense of $\alpha[u, v]$ are the one in H^1 and it is a closed form.

Theorem 8 The dual A^* of the operator A is

$$(A^*v)(x) \equiv -\left(\overline{a(x)}v' + \overline{b_2(x)}v
ight)' + \overline{b_1(x)}v' + \overline{c(x)}v$$

with

$$Dom(A^*) = \{ v \in H^1(\mathbf{R}); \overline{a(x)} dv / dx + \overline{b_2(x)} u \in H^1(\mathbf{R}) \}$$

We omit tje proof.

In order to obtain later the exponential decay the Green functions, we will need the next perturbation of the operator A.

Definition. A^{μ} is defined to be a peturbation of A:

$$(A^{\mu}u)(x) \equiv (Au)(x) + -2\mu u' + \mu c_1(x)u + \mu^2 c_2(x)u$$

with perturbation parameter $\mu \in \mathbf{C}$. where

$$c_1(x) = rac{-b_1(x) + b_2(x)}{a(x)}, c_2(x) = -rac{1}{a(x)} \in L^{\infty}.$$

The corresponding sesqilinear form is denoted by

$$\alpha^{\mu}[u,v] \equiv \alpha[u,v] - 2\mu(u',v) + \mu(c_1(x)u,v) + \mu^2(c_2(x)u,v).$$

Remark. A^{μ} is formally obtained as

$$(A^{\mu}u)(x) = e^{-\mu\Phi(x)}A(e^{\mu\Phi(x)}u)$$

Next is one of the Sobolev inequalities.

Lemma 9 For arbitrary $u \in W^{1,2}(\mathbf{R})$,

$$||u||_{L^{\infty}} \le \sqrt{2}||u||_{L^{2}}^{1/2}||u'||_{L^{2}}^{1/2}.$$

Proof. For any $x \in \mathbf{R}$,

$$\{u(x)\}^2 = \int_{-\infty}^x 2u(t)u'(t)dt$$

Hence

$$|u(x)|^2 \le 2 \left(\int_{-\infty}^{\infty} |u(t)|^2 \right)^{1/2} \left(\int_{-\infty}^{\infty} |u'(t)|^2 \right)^{1/2}$$

Q.E.D.

Lemma 10 Arbitrary $z, w \in \mathbb{C} \setminus \{0\}$ satisfy

$$|z-w| \geq (\sin(|\theta|/2))(|z|+|w|).$$

Here

$$\theta = \arg(z) - \arg(w) = \arg(z/w) \in [-\pi, \pi)$$

Proof. Applying the cosine theorem to the triangle with vertices 0, z, w, we have

$$|z - w|^2 = |z|^2 + |w|^2 - 2|z||w|\cos\theta$$

$$= \frac{1 - \cos\theta}{2}(|z| + |w|)^2 + \frac{1 + \cos\theta}{2}(|z| - |w|)^2$$

$$\geq \sin^2(\frac{\theta}{2})(|z| + |w|)^2.$$

Q.E.D.

Theorem 11 The sesquilinear form

$$lpha_{\lambda}[u,v] \equiv lpha[u,v] - \lambda(r(x)u,v)$$

is a closed form with $Dom(\alpha_{\lambda}) = Dom(\alpha) = W^{1,2}$. Let also $\theta_a + \theta_r < \omega < \pi/2$ for some $\omega \in (0, \pi/2)$. Then

$$|\alpha_{\lambda}[u,u]| \ge k_0 ||u'||_{L^2}^2 + k_1 |\lambda| ||u||_{L^2}^2, \quad u \in \text{Dom}(\alpha_{\lambda}) = W^{1,2}$$

for λ which satisfies

$$|\arg(\lambda)| \ge \omega, |\lambda| \ge k_2.$$

Here k_0, k_1 and k_2 are positive constants which depend only on $\omega, \theta_a, \theta_r, a_0, r_0, ||b_1(\bullet)||_{L^{\infty}}, ||b_2(\bullet)||_{L^{\infty}}, ||c(\bullet)||_{L^{\infty}}$.

Proof. First notice that

$$\left| \arg \left(\int a(x) |u'|^2 dx \right) \right| \leqq \theta_a$$

and

$$\left| \operatorname{arg} \left(\lambda \int r(x) |u'|^2 dx \right) \right| \geqq \omega - heta_r$$

Therefore the previous lemma is applicable and

$$\left|\int a(x)|u'|^2dx - \lambda \int r(x)|u'|^2dx
ight| \quad \geqq \quad \sinrac{\omega- heta_a- heta_r}{2}\left(\left|\int a(x)|u'|^2dx
ight| + |\lambda|\left|\int r(x)|u'|^2dx
ight|
ight) \ \geqq \quad k_0(\|u'\|_{L^2}^2 + |\lambda|\|u\|_{L^2}^2)$$

for some constant $k_0 > 0$ dependent only on $\theta_a, \theta_r, \omega, a_0, r_0$. On the other hand,

$$\int \left(b_1(x)u\overline{u'} + b_2(x)u'\overline{u} + c(x)|u|^2\right)dx \leq k\left(\|u\|_{L^2}\|u'\|_{L^2} + (\|u\|_{L^2})^2\right)$$

$$\leq (k_0/2)\|u'\|_{L^2}^2 + k_2\|u\|_{L^2}^2$$

for some other constants k_2 dependent only on k_0 and $||b_1(\bullet)||_{L^{\infty}}$, $||b_2(\bullet)||_{L^{\infty}}$, $||c(\bullet)||_{L^{\infty}}$. Combining these two inequalities, we have

$$|\alpha_{\lambda}[u,u]| = |\alpha[u,u] - \lambda(r(\bullet)u,u)| \ge (k_0/2) \|u'\|_{L^2}^2 + (k_0|\lambda| - k_2) \|u\|_{L^2}^2$$

We have only to redefine the positive constants k_0, k_1, k_2 .

Corollary The sesquilinear form

$$lpha_\lambda^\mu[u,v] \equiv lpha^\mu[u,v] - \lambda(r(x)u,v)$$

is a closed form with $Dom(\alpha_{\lambda}\mu) = Dom(\alpha) = H^1$. Let also $\theta_a + \theta_r < \omega < \pi/2$ for some $\omega \in (0, \pi/2)$. Then

$$|lpha_{\lambda}^{\mu}[u,u]| \geq k_0 \|u'\|_{L^2}^2 + (k_1 |\lambda| - k_2 |\mu|^2) \|u\|_{L^2}^2, \quad u \in \mathrm{Dom}(lpha_{\lambda}) = H^1$$

for λ and μ which satisfy

$$|\arg(\lambda)| \ge \omega, |\lambda| \ge k_3, |\mu| \le k_4 |\lambda|^{1/2}.$$

Here k_0, k_1, k_2, k_3 and k_4 are positive constants which depend only on $\omega, \theta_a, \theta_r, a_0, r_0, ||b_1(\bullet)||_{L^{\infty}}, ||b_2(\bullet)||_{L^{\infty}}, ||c(\bullet)||_{L^{\infty}}.$

Proposition 12 Let $\theta_a + \theta_r < \omega < \pi/2$. Suppose that $|\arg \lambda| \ge \omega$ and that $|\lambda|$ is sufficiently large. Then, for any $f(\bullet) \in L^2$,

$$(A - \lambda r(\bullet))u(x) \equiv Au(x) - \lambda r(x)u = f(x),$$

has a unique solution $u \in \mathrm{Dom}(A_\lambda) = \mathrm{Dom}(A)$ and it satisfies

$$||u||_{L^{2}} \leq k_{1}|\lambda|^{-1}||f||_{L^{2}}, ||u'||_{L^{2}} \leq k_{1}|\lambda|^{-1/2}||f||_{L^{2}}, ||u||_{L^{\infty}} \leq k_{1}|\lambda|^{-3/4}||f||_{L^{2}}$$

Proof. By the preceding theorem 11,

$$|k_0||u'||_{L^2}^2 + k_1|\lambda|||u||_{L^2}^2 \le |\alpha_\lambda[u,u]| = |(f,u)| \le ||f|||u||.$$

Therefore there exists a unique solution $u \in \mathrm{Dom}(A)$. We also have

$$|k_1|\lambda|||u||_{L^2}^2| \leq ||f||||u||,$$

hence

$$||u|| \le (k_1)^{-1} |\lambda|^{-1} ||f||.$$

Back to the original inequality, we obtain

$$|k_0||u'||_{L^2}^2 \le ||f||||u|| \le (k_1)^{-1}|\lambda|^{-1}||f||^2,$$

hence

$$||u'||_{L^2} \le (k_0 k_1)^{-1/2} |\lambda|^{-1/2} ||f||.$$

Finally, we have

$$||u||_{L^{\infty}} \leq \sqrt{2}||u||_{L^{2}}||u'||_{L^{2}} \leq \sqrt{2}k_{0}^{-1/4}k_{1}^{-3/4}|\lambda|^{-3/4}||f||_{L^{2}}$$

Q.E.D.

Corollary Let $\theta_a + \theta_r < \omega_0 < \omega < \pi/2$. Suppose that $|\arg \lambda| \ge \omega$ and $|\lambda|$ is sufficiently large. Suppose also that $|\mu| \le k_0 |\lambda|^{1/2}$ with some constant $k_0 > 0$. Then, for any $f(\bullet) \in L^2$,

$$(A^{\mu}-\lambda r(ullet))u(x)\equiv A^{\mu}u(x)-\lambda r(x)u=f(x),$$

has a unique solution $u \in \mathrm{Dom}(A^\mu_\lambda) = \mathrm{Dom}(A)$ and it satisfies

$$||u||_{L^{2}} \leq k_{1}|\lambda|^{-1}||f||_{L^{2}}, ||u'||_{L^{2}} \leq k_{1}|\lambda|^{-1/2}||f||_{L^{2}}, ||u||_{L^{\infty}} \leq k_{1}|\lambda|^{-3/4}||f||_{L^{2}}$$

Proposition 13 Let $\theta_a + \theta_r < \omega < \pi/2$ for some $\omega \in (0, \pi/2)$ Suppose that $|\arg \lambda| > \omega$ and $|\lambda|$ is sufficiently large. Then, for any $f(\bullet) \in L^2$,

$$(A-\lambda r(ullet))u(x)\equiv Au(x)-\lambda r(x)u=(f(x))',$$

has a unique solution $u \in \mathrm{Dom}(\alpha_{\lambda}) = \mathrm{Dom}(\alpha) = H^1$ and it satisfies

$$||u||_{L^{2}} \leq k_{1}|\lambda|^{-1/2}||f||_{L^{2}}, ||u'||_{L^{2}} \leq k_{2}||f||_{L^{2}}, ||u||_{L^{\infty}} \leq k_{4}|\lambda|^{-1/4}||f||_{L^{2}}$$

Proof. Note that

$$k_0\|u'\|_{L^2}^2+k_1|\lambda|\|u\|_{L^2}^2\leq |\alpha_\lambda[u,u]|=|(f',u)|=|(f,u')|\leq \|f\|\|u'\|$$

in the present case. Similarly to the preceding theorem, we have first

$$k_0 \|u'\|_{L^2}^2 \leq \|f\| \|u'\|$$

hence,

$$||u'||_{L^2} \leq k_0^{-1}||f||.$$

Back to the original inequality, we obtain

$$|k_1|\lambda|||u||_{L^2}^2 \le ||f|||u'|| \le (k_0)^{-1}|\lambda|^{-1}||f||^2,$$

hence

$$||u||_{L^2} \le k_0^{-1} |\lambda|^{-1/2} ||f||.$$

Finally, we have

$$||u||_{L^{\infty}}|| \leq \sqrt{2}||u||_{L^{2}}||u'||_{L^{2}} \leq \sqrt{2}k_{0}^{-1/4}k_{1}^{-3/4}|\lambda|^{-1/4}||f||_{L^{2}}$$
$$||u'||_{L^{2}} \leq k_{0}^{-1}||f||_{L^{2}}.$$

Corollary Let $\theta_a + \theta_r < \omega_0 < \omega < \pi/2$. Suppose that $|\arg \lambda| > \pi - \omega$ and $|\lambda|$ is sufficiently large. Suppose also that $|\mu| \le k_0 |\lambda|^{1/2}$ with some constant $k_0 > 0$. Then, for any $f(\bullet) \in L^2$,

$$(A^{\mu} - \lambda r(\bullet))u(x) \equiv A^{\mu}(x) - \lambda r(x)u = (f(x))',$$

has a unique solution $u \in \operatorname{Dom}(\alpha_{\lambda}) = \operatorname{Dom}(\alpha) = H^1$ satisfying

$$||u||_{L^2} \le k_1 |\lambda|^{-1/2} ||f||_{L^2}, ||u'||_{L^2} \le k_2 ||f||_{L^2}, ||u||_{L^\infty} \le k_1 |\lambda|^{-1/4} ||f||_{L^2}$$

Proposition 14 Let the assumption be the same as in the previous two Propositions. Then there exists a kernel function $R_{\lambda}(x,\xi)$ which represents the solution $u = (A - \lambda r)^{-1} f$:

$$u(x) = \int_{-\infty}^{\infty} R_{\lambda}(x,\xi) f(\xi) d\xi$$

with the estimate

$$|R_{\lambda}(x,\xi)| \leq k_0 |\lambda|^{-1/2}$$

for some constant $k_0 > 0$.

Proof. Since $u \in H^1 \subset B^0$ is a continuous function and

$$|u(x)| \le ||u||_{B^0} \le ||u||_{H^1} \le k_1 |\lambda|^{-3/4} ||f||_{L^2}$$

for an arbitrarily fixed x. Thus $L^2 \to \mathbf{C}: f(\bullet) \to u(x)$ is turned out to be a bounded functional. Hence the Riesz theorem asserts that there exists $R_{\lambda}(x, \bullet) \in L^2$ dependent on $x \in \mathbf{R}$ such that

$$u(x) = \int_{-\infty}^{\infty} R_{\lambda}(x,\xi) f(\xi) d\xi$$

and $||R_{\lambda}(x, \bullet)||_{L^2} \le k_1 |\lambda|^{-3/4}$

Now we consider the solution $v \in H^1 \subset B^0$ of $(A - \lambda)v = g'$, $g \in L^2$. By the previous theorem, $L^2 \to \mathbb{C} : f(\bullet) \to v(x)$ with an arbitrarily fixed x is also a bounded functional and

$$|v(x)| \le ||v||_{B^0} \le ||v||_{H^1} \le k_2 |\lambda|^{-1/4} ||f||_{L^2}$$

with another constant $k_2 > 0$. So there exists again another kernel $S_{\lambda}(x, \xi)$ such that

$$v(x) = \int_{-\infty}^{\infty} S_{\lambda}(x,\xi) g(\xi) d\xi$$

and $||S_{\lambda}(x,\bullet)||_{L^{2}} \leq k_{2}|\lambda|^{-1/4}$ We look into the relation of $R_{\lambda}(x,\xi)$ and $S_{\lambda}(x,\xi)$. For an arbitrary $g \in C_{0}^{\infty}$, the solution $v \in H^{1}$ of $(a - \lambda r)v = g'$ can be written in two ways.

$$v(x) = \int_{-\infty}^{\infty} R_{\lambda}(x,\xi)g'(\xi)d\xi,$$

$$v(x) = \int_{-\infty}^{\infty} S_{\lambda}(x,\xi)g(\xi)d\xi.$$

Since $g \in C_0^{\infty}$ is arbitrary, $S_{\lambda}(x,\xi) \in L^2$ is a distribution derivative of $R_{\lambda}(x,\xi)$ with respect to ξ . Thus $R_{\lambda}(x,\bullet) \in H^1 \subset B^0$. By Lemma?,

$$||R_{\lambda}(x,\bullet)||_{L^{\infty}} \le ||R_{\lambda}(x,\bullet)||_{L^{\infty}}^{1/2} ||S_{\lambda}(x,\bullet)||_{L^{\infty}}^{1/2} \le k_2 |\lambda|^{-1/2}$$

Corollary Let the assumption be the same as in the corollaries of the two previous two propositions. Then there exists a kernel function $R^{\mu}_{\lambda}(x,\xi)$ which represents the solution $u = (A^{\mu} - \lambda r)^{-1} f$:

$$u(x) = \int_{-\infty}^{\infty} R^{\mu}_{\lambda}(x,\xi) f(\xi) d\xi$$

with the estimate

$$|R_{\lambda}^{\mu}(x,\xi)| \le k_0 |\lambda|^{-1/2}$$

for some constant $k_0 > 0$.

Theorem 15 Let the assumption be the same as in the two theorems. The kernel function $R_{\lambda}(x,\xi)$ which represents the solution $u=(A-\lambda r)^{-1}f$:

$$u(x) = \int_{-\infty}^{\infty} R_{\lambda}(x,\xi) f(\xi) d\xi$$

has the estimate

$$|R_{\lambda}(x,\xi)| \le k_1 |\lambda|^{-1/2} e^{-k_2|\lambda|^{1/2}|x-\xi|}$$

for some constant $k_1, k_2 > 0$.

Proof. Let μ be as in the corollaries of the Theorems. Let $u \in \text{Dom}(A) \cap C_0$ be arbitrarily fixed. Then

$$e^{-\mu\Phi(x)}u(x)\in \mathrm{Dom}(A)$$

where

$$\Phi(x) = \int_0^x rac{dy}{a(y)}$$

as in Theorem 6. Now putting

$$f = (A - \lambda r)u,$$

we have

$$(A - \lambda R)e^{\mu\Phi(x)}(e^{-\mu\Phi(x)}u(x)) = f(x)$$

$$e^{\mu\Phi(x)}(A^{\mu} - \lambda r)(e^{-\mu\Phi(x)}u(x)) = f(x)$$

$$(A^{\mu} - \lambda r)(e^{-\mu\Phi(x)}u(x)) = e^{-\mu\Phi(x)}f(x).$$

Hence

$$\begin{array}{lcl} e^{-\mu\Phi(x)}u(x) & = & \displaystyle\int_{-\infty}^{\infty}R^{\mu}_{\lambda}(x,\xi)e^{-\mu\Phi(\xi)}f(\xi)d\xi \\ \\ u(x) & = & \displaystyle e^{\mu\Phi(x)}\displaystyle\int_{-\infty}^{\infty}R^{\mu}_{\lambda}(x,\xi)e^{-\mu\Phi(\xi)}f(\xi)d\xi \\ \\ u(x) & = & \displaystyle\int_{-\infty}^{\infty}e^{\mu(\Phi(x)-\Phi(\xi))}R^{\mu}_{\lambda}(x,\xi)f(\xi)d\xi. \end{array}$$

On the other hand, $u = (A - \lambda r)^{-1} f$ can be written as

$$u(x) = \int_{-\infty}^{\infty} R_{\lambda}(x,\xi) f(\xi) d\xi.$$

Hence

$$\int_{-\infty}^{\infty} e^{\mu(\Phi(x)-\Phi(\xi))} R_{\lambda}^{\mu}(x,\xi) f(\xi) d\xi = \int_{-\infty}^{\infty} R_{\lambda}(x,\xi) f(\xi) d\xi$$

for all $f = (A - \lambda r)u$ with $u \in \text{Dom}(A) \cap C_0$. Such f form a dense subset in L^2 . Therefore

$$R_{\lambda}(x,\xi) \equiv e^{\mu(\Phi(x)-\Phi(\xi))} R_{\lambda}^{\mu}(x,\xi).$$

Recalling that μ with $|\mu| \leq k_0 |\lambda|^{1/2}$ is arbitrary and using the Corollary of the previous Proposition 14,

$$|R_{\lambda}(x,\xi)| \leq k_1 |\lambda|^{-1/2} e^{-k_2|\lambda|^{1/2}|\Phi(x)-\Phi(\xi)|}.$$

Noticing

$$\Re(1/a(y)) \geq k_0$$

with a certain constant $k_0 > 0$,

$$|\Phi(x)-\Phi(\xi)|\geq |\Re\Phi(x)-\Phi(\xi)|=|\Re\int_x^\xi rac{dy}{a(y)}|\geq k_0|x-\xi|.$$

Combining these, we finally obtain

$$|R_{\lambda}(x,\xi)| \le k_1 |\lambda|^{-1/2} e^{-k_2|\lambda|^{1/2}|x-\xi|}.$$

Q.E.D.

Corollary There exists a kernel function $\tilde{R}_{\lambda}(x,\xi)$ of $(B-\lambda)^{-1}$ where $Bu(x) = (r(x))^{-1}Au(x)$:

$$(B-\lambda)^{-1}f(x)=\int_{-\infty}^{\infty} ilde{R}_{\lambda}(x,\xi)f(\xi)d\xi$$

Moreover

$$|\tilde{R}_{\lambda}(x,\xi)| \le k_1 |\lambda|^{-1/2} e^{-k_2 |\lambda|^{1/2} |x-\xi|}$$

with constants k_1, k_2 .

Proof. Since $Bu - \lambda u = f \in L^2$ is equivalent to

$$Au - \lambda r(x)u = r(x)f \in L^2$$
,

we have

$$u(x)=(B-\lambda)^{-1}f(x)=(A-\lambda r)^{-1}(rf)=\int_{-\infty}^{\infty}R_{\lambda}(x,\xi)r(\xi)f(\xi)d\xi.$$

Therefore, we have only to put $\tilde{R}_{\lambda}(x,\xi) = R_{\lambda}(x,\xi)r(\xi)$. Q.E.D.

Theorem 16 Let the assumption be the same as the preceding theorem and its corollary. Then

$$\left| \frac{\partial R_{\lambda}}{\partial x}(x,\xi) \right| \leq k_1 e^{-k_2 |\lambda|^{1/2} |x-\xi|}$$

$$\left| \frac{\partial \tilde{R}_{\lambda}}{\partial x}(x,\xi) \right| \leq \tilde{k}_1 e^{-\tilde{k}_2 |\lambda|^{1/2} |x-\xi|}.$$

for some constants $k_1, k_2, \tilde{k}_1, \tilde{k}_2 > 0$.

We omit the proof.

Theorem 17 The analytic semigroup e^{-tB} generated by

$$Bu(x) = (r(x))^{-1}(Au)(x)$$

has a kernel function G(x, y; t) with estimate

$$|G(x,\xi;t)| \le k_0 e^{k_1 t} e^{-k_2 |t|^{-1} |x-\xi|^2}, (x,\xi) \in \mathbf{R}^2, |\arg t| \le \pi/2 - \omega$$

with constants $k_0, k_1, k_2 > 0$.

Proof. The kernel function $\tilde{R}_{\lambda}(x,\xi)$ of $(B-\lambda)^{-1}$ is expressed by the kernel $\tilde{R}_{\lambda}(x,\xi)$ with estimate

$$|\tilde{R}_{\lambda}(x,\xi)| \leq k_1 |\lambda|^{-1/2} e^{-k_2 |\lambda|^{1/2} |x-\xi|}$$

for

$$\{\lambda; |\arg \lambda| \ge \omega', |\lambda| \ge k_3\}$$

with constants $\omega' \in (\theta_a + \theta_r \omega), k_1, k_2, k_3 > 0.$

By a standard argument, $B + k_0$ with some $k_0 > 0$ has a kernel which has a similar estimate in

$$\{\lambda; |\arg \lambda| \ge \omega'\}$$

We have only to discuss this $B + k_0$ and $e^{-t(B+k_0)}$, rewriting $B + k_0$ as B from now on. We recall the formula:

$$e^{-tB} = \frac{-1}{2\pi} \int_{\Gamma} e^{-\lambda t} (B - \lambda)^{-1} d\lambda.$$

with the integral path

$$\Gamma = \{\lambda = \rho e^{i\omega'}; \infty > \rho \ge 0\} \cup \{\lambda = \rho e^{i\omega'}; 0 \le \rho < \infty\}$$

The corresponding kernel function is

$$G(x,\xi;t) = rac{-1}{2\pi i} \int_{\Gamma} e^{-\lambda t} (ilde{R}_{\lambda}(x,\xi) d\lambda.$$

We modify the integral path to $\Gamma_1 \cup \Gamma_2 \cup \Gamma_3$:

$$\Gamma_{1} = \{\lambda = \rho e^{i\omega'}; \infty > \rho \ge k|t|^{-2}|x - \xi|^{2}\}$$

$$\Gamma_{2} = \{\lambda = k|t|^{-2}|x - \xi|^{2}e^{i\theta}; \omega' \le \theta \le 2\pi - \theta\}$$

 $\Gamma_3 = \{\lambda = \rho e^{-i\omega'}; k|t|^{-2}|x-\xi|^2 \le \rho < \infty\}$

Here the constant k > 0 is chosen so small that

$$|\lambda||t| = k|t|^{-1}|x - \xi|^2 \le 2^{-1}|k|^{1/2}k_2|t|^{-1}|x - \xi|^2 = 2^{-1}k_2|\lambda|^{1/2}|x - \xi|$$

holds on the path Γ_2 . We estimate the integral on each path.

$$\left| \frac{-1}{2\pi i} \int_{\Gamma_{1}} e^{-\lambda t} \tilde{R}_{\lambda}(x,\xi) d\lambda \right| \leq k_{0} \int_{\frac{k|x-\xi|^{2}}{|t|^{2}}}^{\infty} e^{-k_{1}\rho|t|} |\rho|^{-1/2} e^{-k_{1}|\rho|^{1/2}|x-\xi|} d\rho
\leq k_{0} e^{-k_{1}k^{1/2}|t|^{-1}|x-\xi|^{2}} \int_{\frac{k|x-\xi|^{2}}{|t|^{2}}}^{\infty} e^{-k_{1}\rho|t|} |\rho|^{-1/2} d\rho
\leq k_{0} e^{-k_{1}k^{1/2}|t|^{-1}|x-\xi|^{2}} \int_{0}^{\infty} e^{-k_{1}\rho|t|} |\rho|^{-1/2} d\rho
\leq k_{0} e^{-k_{1}k^{1/2}|t|^{-1}|x-\xi|^{2}} O(|t|^{-1/2})$$

Similarly,

$$\left|\frac{-1}{2\pi i}\int_{\Gamma_3}e^{-\lambda t}\tilde{R}_{\lambda}(x,\xi)d\lambda\right|\leq k_0|t|^{-1/2}e^{-k_1|t|^{-1}|x-\xi|^2}$$

with some constants $k_0, k_1 > 0$. Finally, holds on the path Γ_2 . We estimate the integral on each path.

$$\begin{split} \left| \frac{-1}{2\pi i} \int_{\Gamma_{2}} e^{-\lambda t} \tilde{R}_{\lambda}(x,\xi) d\lambda \right| & \leq k_{0} \int_{\Gamma_{2}} e^{2^{-1}k_{2}|\lambda|^{1/2}|x-\xi|} |\rho|^{-1/2} e^{-k_{2}|\lambda|^{1/2}|x-\xi|} d|\lambda| \\ & \leq k_{0} \int_{\omega'}^{2\pi - \omega'} e^{-k_{3}|t|^{-1}|x-\xi|^{2}} (|t|^{-1}|x-\xi|^{2})^{1/2} |T|^{-1/2} d\theta \\ & \leq k_{0} |t|^{-1/2} e^{-k_{4}|t|^{-1}|x-\xi|^{2}} \end{split}$$