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Infrared Catastrophe and Carleman Operator
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1 Introduction

In this paper, we make a broad report on a mathematical mechanism of infrared
catastrophe (IR catastrophe) considered in [9], where by IR catastrophe we mean the
divergence of the average of the total number of soft bosons. The soft bosons are read
as bosons in a ground state. In [2] we gave the definition of IR catastrophe by the
statement that the ground state is not in the domain of the half of the boson number
operator. We visualize the definition by introducing a tool to estimate the average of
the total number of soft bosons. IR catastrophe is usually derived by using the pull-
through formula [5, 13]. This formula was studied with the L2-theoretical way in [4, 6],
and with the operator-theoretical way in [3, 8]. We employ the latter way and derive
the Carleman operator from the formula. Then, we can characterize IR catastrophe
in terms of the domain of the Carleman operator. Recently, the Carleman operator is
used in [10] to describe the necessary and sufficient condition for convergence of average
of the total number of the soft bosons. We show it with our tool, and conversely, we
also use the Carleman operator in order to argue IR catastrophe. In some literatures
[4, 5, 8, 11], for a few models it was proved that IR catastrophe is caused by the infrared
singularity condition [1, 2] and IR catastrophe results in absence of ground state. We

grasp them inclusively in the light of properties of the domain of the Carleman operator.

2 Main Results

Let ‘H be a complex Hilbert space and Fy,(L?(S)) the boson Fock space over L?(S),
where S is arbitrary open subset of RY, F,(L%(S)) := @, ®*L*(S). Here, for n € N,



we denote the n-fold symmetric tensor product of L?(S) by & L?(S) with convention
®2L2(S) := C. Set F, := Fp,(L*(R?)) for simplicity. We consider the Hilbert space
F = H ® Fyp, which is the state space of several models in quantum field theory with
a standard inner product ( , )z. Let h: S — [0. cc) be Borel measurable such
that 0 < h(k) < oo for almost every (a.e.) k € S with respect to the d-dimensional
Lebesgue measure. We use the same symbol for the multiplication operator by h, acting
in L?(S). We denote by dT'(h) the second quantization of k [12, Sect. X.7].

Let A be a self-adjoint operator acting in H bounded from below, and w : R —
[0, o) be continuous such that 0 < w(k) < oo for every k € R?\ {0}. The unperturbed

Hamiltonian of our quantum filed model is defined by
Hy=A®I+I1Qdl'(w)

with domain D(Hp) := D(A®RI)ND(I&dI'(w)) C F, where I denotes identity operator
and D(T') the domain of an operator T. The operator Hy is self-adjoint and bounded
from below. For ¢ € F,(S), we introduce the following notation: v» = @) oo, P,
Y™ e @PL2(S) ;n e {0} UN.

We denote by Fy,o(L?(S)) the finite particle space, i.e., the set of all elements
Y = B> 2, v™ in Fy(L?(S)) satisfying 3ng € N such that ™ = 0, Vn > ny.
We set Fyo := Fuo(L*(R%)). We denote the smeared annihilation operators acting in
Fu(L*(S)) by a(f) for every f € L?*(S), where we assume antilinearity in f [12, Sect.
X.7]). On F,o(L3(S)), we get

(@(£))™ (kyy-- - kn) =V + 1 /Smwwk, kiy ooy ky)dk
€ ®"L*(S), ne€{0}uUN.

Since a(f) is closable on Fy,o(L?(S)), we denote its closure by the same symbol. So,
we always regard a(f) as a closed operator.

We define our total Hamiltonian by
HQFT = H() + H]

be a self-adjoint operator acting in F and describing a quantum field model. If Hqer

has a (normalized) ground state, we denote it by Wqpr.
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When the operator-theoretical pull-through formula on ground states holds in the

same way as in (8] and it has the form of (2.1) below, we define an operator Bpr(k) by

a(f)¥qer = — Rdm(HQFT — Eo(Hgpr) + W(k))—l Ber (k)W oprdk, (2.1)
Vf € C°(R\ {0}),

where Eo(Hqer) is the ground state energy of Hopr, i-e., Eo(Hqer) := inf 0(Hqer) and
o(T) denotes the spectrum of a closed operator T. We are preparing the work on the
operator-theoretical pull-through formula for several models in quantum field theory
[3].
We set
Haer == Haer — Eo(Hpr).

We assume the following conditions for By (k):

(PT1) Bpr(k) is determined for every k € R\ {0} as an operator acting in F and
Bsr(+)¥ is measurable for every ¥ € D(Hy) (i.e., for every ® € F and ¥ € D(H,)

(®, Ber(-)¥), : R* — C is a measurable function).

fe) 1
(PT2) Bes(k) (Horr + w(k)) is bounded for every &k € R¢\ {0}.

For every € > 0, we set R%, := {k e RY|

kl <e} and RY, := {k e RY| k| > €}.
Following this decomposition, for every f € L%(R?) we define f.. € L*(R%,) and

fse € L*(RS,) by fee := Xppi<ef a0d fse i= Xpiisef, Where Yjxjce and Xjx»e are
characteristic functions defined by xx<e(k) := 1 (if |k| < €); := 0 (otherwise), and
Xikl>e(k) == 1 (if |k| > €) ; := 0 (otherwise. As is well known, there exists a unitary

operator U, such that
Uefb = fb(LQ(Rie)) &® fb(LQ(Rgs))
UedT(w)U; = dl(wee) ® I + 1 ® dT(wse),
Udl'(1)U? =dlM(1ee) ® I + 1 @ dT(15,).

We define the number operator N acting in F by N := I & dI’(1), where 1 in dI'(1)

denotes the constant function 1(k) = 1. Moreover, for every ¢ > 0, we define N ()
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acting in Fy, by N(e) := U? (I ® dT'(1s.)) Ue, where I ®dl'(15.) acts in Fp(L*(RL,)) ®
Fy(L*(RZ,)), and an operator N, acting in F by N, := I ® N(g). We sometimes
denote N by Nsg.

Lemma 2.1 [7] If ¥ € D(H,), then

v e (DN, (2.2)
e>0

Symbolically, the average of the number of bosons in the state ¥ € F is give by
lla(k)¥||%dk, of which justification is in [9]. Then, we set
d

Dexg = {xp € ﬂD N2

e>0

>€ \I’”.F < OO}
As we also justify the following in [9],

if U € Doy, then/ ||a(k)\Il||3:dk=sup/ la(k)¥|%dk < oo
R¢ >0 Jik|>e
by Lebesgue’s monotone convergence theorem. Thus, Deayy is the state space such that
the average of the number of bosons in the state in D.ys converges.

We call sup,. || No2 @ Uoer |5 the average of the total number of soft bosons, provided
that Woer € (),50 D(V. N3, By Lemma 2.1, we can always estimate the average of the
total number of soft bosons and give a decision whether it is convergent or divergent so
long as D(Hqer) = D(Hp). We call the divergence of the average of the total number
of soft bosons infrared catastrophe (IR catastrophe).

As is well known, F is unitarily equivalent to @, L2, (R™; M), where L2
(R%;H) is the Hilbert space of square integrable H-valued, symmetric functions on
R* = (R%)" with convention L2 (R H)[,—o:= H. Moreover, L2, (R;H) is unitar-
ily equivalent to H&® (®7L%(R?)). We often identify F as F = @ , HQ (¥ L*(RY)) =
@Dy L2, (R™;H) in this paper. Then, through this identification we can denote
al ¥ € Fby ¥ =Y I =00 gl g...0 v g..., where ¥™ €
H® (QFL*(RY)) = Ljym(Rd";'H). For each n;,ny € N, we introduce the following
notation: @Y 2 VMW =0g..-00¥™Mg...a ¥ g0& .- € H® Fpo.

Similarly, we use the following identification.
F = Fo(L*(R%; M) ® Fu(LA(R.; H)), (2.3)

where L?(S;H) denotes the Hilbert space of square integrable H-valued functions on

an open set S C R?.
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Lemma 2.2 Dy = D(NY2) and
2
sup || N2 W5 = |NY2 w5
e>0
for U € Deyg.

When a ground state Wgpr of Hgpr exists, we can define an F-valued function
Ker : R4\ {0} — F by

En(k) = (Hore + w(k:))°l Ben(K)¥qrr, k€ RY\ {0}, (2.4)

since (I?Im + w(k)) B.+(k) is bounded for every k € R?\ {0} by (PT2). Kpr defined
by (2.4) is measurable by (PT1). For the ground state oy, we define the mazimal
Carleman operator Tpy : F — L?(R?) for the ground state by

D(Tr) = {@ € F| (Kn(-). @) € LARY) }, (2.5)
(Ter®) (k) = (Kex(k), @), Vk € RI\ {0}; V& € D(Tr). (2.6)
Remark 2.1 (1) If Ky € L?(R% F), then the maximal Carleman operator Tpr for

the ground state is Hilbert-Schmidt {14, Theorems 6.12 and 6.13].
(2) If Hqer is the Hamiltonian of the Pauli-Fierz model, Tp, is Hilbert-Schmidt.

Theorem 2.3 Assume D(Hyer) = D(Hy) and there exists a ground state Woypr of
Heer. Then, VUyer € Deng = D(N 172 if and only if Tpr is Hilbert-Schmidt.

Theorem 2.4 Suppose that D(Hyer) = D(Hp). If a ground state Wopr of Hypr exists,
then

D(’.I'p'r) D DCNB = D(NI/Q).
Theorem 2.4 immediately implies the following important statement:

Corollary 2.5 Suppose that D(Hqypr) = D(Ho). If Yqer € D(Tpr), then IR catastro-

phe occurs.

As corollaries of Theorem 2.4, we can prove Derezifiski and Gérard’s lemma [4,
Lemma 2.6] in the weak topology and we obtain a generalization of [2, Theorem 3.4].
We note that we can make another device when we do not have g/w ¢ L*(RY) in

decomposition (2.7) below. See Corollary 2.10.
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Corollary 2.6

i) Assume that D(Hypr) = D(Hy). In addition, assume there erist a measurable
Q
function g : R? — C and an operator Jo (k) acting in F for every k € R*\ {0}
such that
Ber(k) = g(k)I & I + Jere(k) (2.7)
fork € RI\{0} with g/w ¢ L*(RY). If a ground state U qpr exists, then w(-) ™ e (+)
Uorr & LA(RYF).

(ii) Assume By,(k) is independent of all k € RY\ {0}, i.e., Bpr(k) = Bpr. Moreover,
assume Huer and Ber are strongly commutable. If a ground state WU ,ey exists,
the'n BPT\DQFT = 0

Corollary 2.6 can be read as the following. When we do not have g/w ¢ L%*(RY)

decomposition (2.7), we have Corollary 2.10.

Corollary 2.7

(i) Assume D(Hyer) = D(H,) and that decomposition (2.7) with g/w ¢ L?*(RY) in
Corollary 2.6 holds. Then, there is no ground state Wopr satisfying w(+)™ ' Jer(+)
‘IIQFT € L2(Rd,f)

(ii) Assume Bpr(k) is independent of all k € R\ {0}, i.e., Bpr(k) = Bpr. If Hopr
and Bpr are strongly commutable, then there is no ground state Vyer satisfying
BPTIIJQFT 5& 0.

Theorem 2.8 Assume D(Hqer) = D(Hy). In addition, assume the following condi-

tions:
(Assl) A ground state Uqpy exists.
(Ass2) There exist a function Ay € L*(R?) and an operator Bix(k) acting in F for

every k € RY such that

(ASS2‘1) Bp'l(k) = Alﬁ(k)BIR(k) on D(Bp'r(k)) = D(Blg(k)) fOI’ k # 0,
(Ass2-2) Agr/w ¢ L*(K) for all neighborhoods K of k = 0,
(ASS2‘3) BIR(k:)\IJQpT — BIR (O)WQFT as k — 0.
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If ® € D(Tpr) satisfies
L
w(-)
then (®, Bir(0)¥qer)x = 0.

(€2 (Harr +0()) Bare Brrl ) ¥arn) _ € LA(RY),

From this theorem, we obtain the following generalization of the method in [8].
Corollary 2.9 Assume D(Hqger) = D(Ho) and (Ass2). Then, there is no ground state
Uorr in F such that _

1 ~ ~ ,
m (@, (HQFT + w('))—]HQFTBPT(')‘IIQFT)}_ G LZ(Rd)‘ (2.8)
V® € D(N'?),
(lnd BIR (O)\IJQFT # 0.

When we do not have g/w ¢ L*(R?) in decomposition (2.7), we have the following

corollary:

Corollary 2.10 Assume D(Hgr) = D(Hp) and (Ass2). In addition, assume there
ezist a measurable function g : RY — C and an operator Jou:(k) acting in F for every
k € R?\ {0} such that

BPT(k’) = g(k)] ® I + Jer(k) (2'9)

for k € RA\{0}. Then, there is no ground state satisfying w(-) ™ Jer(-) Yorr € L2(R?; F)
and Bir(0)Uqpr # 0.

Corollary 2.9 implies the following.

Corollary 2.11 Assume D(Hyer) = D(Hp) and (Ass2). Then, there is no ground
state Wopr in D(Ter) such that (Wqpr , Bir(0)¥arr) £ # 0.

For the Nelson model, (2.8) holds, provided its ground state exists. Thus, since
Corollary 2.9 works, the Nelson model has no ground state in F [8]. We can consider
the genelarized spin-boson model and the model describing several kinds of polaron as

some examples for the above general theory [9].
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