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On the existence of solutions to the Benjamin-Ono equation
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1. INTRDUCTION

In this talk, we consider the existence and the uniqueness of solutions
to the Benjamin-Ono(BO) equation,

) . | Ou + HOJu + 50, (u?) =0, in RxR,
u(0,z) = ¢(z), in R,
where H is the Hilbert transform which is defined by

1 [t f(y) 1/

Bf =pvs [T ay = 7 cisgnie)) s,
F denotes the Fourier transform with respect to z and sgn(¢) denotes
the signature of {. BO equation describes long internal waves in deep
stratified fluids [3], [11]. As well as the Korteweg-de Vries equation,
BO equation is completely integrable [1]. Hence if the initial function
is real valued, this equation has infinitely many conservative quantities.
The Cauchy problem of this equation is extensively studied by using
this property (2], [5], [6], [9], [12], [13] and references therein. It is

- known that this equation is locally well-posed for real valued initial
function in Sobolev space H*(R) for s > 1 and globally well-posed for
s=1and s > 3/2.

On the other hand, Molinet-Saut-Tzvetkov [10] has shown that for
any s € R the Benjamin-Ono equation cannot be solved by the iteration
method in H°.

'The aim of this note is to show the existence, the uniqueness and the
continuous dependency of the initial data of solutions to the Benjamin-
Ono equation by the iteration method for some Sobolev spaces mixed
between homogenious and inhomogenious Sobolev spaces which is de-
fined in the definition 2. In this direction, N. Kita and J. Segata[8] has
recently shown the wellposedness of solutions for the weighted Sobolev
space by the iteration method, which consists of functions satisfying
that ¢ € H® with s > 1 and (z)*¢ € H* withs; +a < s, 1/2 < 5
and 1/2<a < 1.

In our result, we assume the smallness of the initial function, but the
result of this paper may be a first step to show local well-posedness of
BO equation for the usual Sobolev space for s > 1/2. Our approach is
to use so called Fourier restriction norm which is developped by [4] and
[7]. Our function space with Fourier restriction norm is the following.



Definition 1. Let s;, s9, by and by be real numbers. We define a

function space X;'y? as follows;

(2) X ={feS'R?;

Ilxgazs = Y™ Il (r + € r — €97 )z, < +oo}
Here (-) = (1+]-[%)Y2 and f(r,€) is the Fourier transform of f(t,z)
with respect to space and time variables.

We shall find a solution to the associate integral equation of
t
3) u(t) = Ult)s + / Ut — 5)8,(u(s)?)ds,
0

instead of the intial value problem (1) directly. Here U(t)¢ = e(~tH02)¢
= Fle-#IEDFp. Let ¢ be a function in CP(R) with 0 < o < 1,
Y(t) = 1for |t| < 1 and ¥(t) = 0 for |t| > 2. We consider the following
integral equation,

@ utD) = vOUEs+ U | Ut - )0 u(s))ds.

Definition 2. Let s; and s; be real numbers. Function space H*!:*2(R)
is defined by
O , )

H**(R) = {g(z) € S'(R); l|gllzrorea = [[{€)™[€]**3(€) |22 < +o00}.

We write H*»*2 = H*»*2(R) for abbreviation. Our main theorem is
the following.

Theorem 1. Suppose that 6 > 0, ¢ € H'*4V2(R) and ||¢||gr+s-1/2
is sufficiently small. Then there exists a unique solution u(t,z) to the

integral equation (4) in Xf/;,ll//"; Moreover, we have
©  luta) —uslt, D)l gszys < Cllér = balla-sr,

where u; is a solution to the equation (4) with instial data ¢; for
j=1,2.

Remark 1. Since (€)2|¢|~/2 =~ |¢|*V/2 for |¢| large, functions in
H»~1/2 have the same regularity as functions in H®»-1/2,

Remark 2. The space X{: ’b”l/ 2 is included by the space C(R; H*~1/2),
which is shown in Lemma 6. .

Remark 3. In [10], it is pointed out that the interaction between high
energy and low energy disturbs the Picard’s iteration method for the BO
equation in usual Sobolev space. In our result, we avoid this difficulty
to use the space H*»~1/2, Low energy part of functions in H®~1/2 is
small since the Fourier transform of functions in H®~2 may vanish
at 0.
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Through the paper, I < J denotes that there exists a harmless con-
stant C' > 0 such that I < CJ. I ~ J denotes that there exist harmless
constants Cy, Cy > 0 such that C;J < I < CyJ. For abbreviation, we

write {h(r,£) < 0} as {(7,&)|h(r, €) < 0}.
2. PRELIMINARIES

In this section, we prepare several lemmas for the proof of the main
theorem. The following lemma is used in [7].

Lemma 1. Ifa > 1 and a,b € R, then

o0 1 .
_/_:w (5—a)°‘(£-b)ad€ <C{a—-0b)""

Lemma 2. Ifa,b € R, then for all € > 0 there exists a constant C > 0
such that

) . —1+e
/_m E—a)E~1b) < Cela — by,

The proofs of these lemmas can be done elementarily. So we omit
the proofs. '

Lemma 3. Ifa >1/2, 8> 0 witha+3/2> 1 and b, c € R, then we
have
oo 1
d¢ < (c— b*/4)~12,
| T s et

Proof. Changing variable as £ = £2 + b€ + ¢ in the right hand side, we
have

/_: <€2+b£ic>a<€>ﬁd€=[:/2-..+/;::2...

=l /co dgl
2 Je-ta/a (£)(b/2+ /€ — (c = B[4)Bl¢’ — (c — 1?/4)|1/2

Y s
2 Je-ta/a (€)*(VE = (c = b2]4) — b/2)B|¢ — (c — B2/4)|1/2
1 1
=§I]_ + 5[2

We can assume without loss of generality that |c — b2/4| > 1. If ¢ —
b2/4 > 1, then

I S (o —b/4)™2

x /oo dE’
4 (€)°2(b/2 4+ /& = (c— BAIE — (c— /A2
S (e - t2/4)2, -
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If c — b%/4 < —1, then

(c—b2/4)/2 00
Il = / vee o / e
c—b2%/4 (c—~b2/4)/2
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S (o= B/a)
(c—bz/4)/2 dgl
c—b2/4 (€)12(b/2 + /€ — (c — b2/4))PIE! — (c — B/4)|*/2

[o o] dé’l
i /(c—b=/4)/2 (€)(b/2+ /€ -

< (c—b/4)702

The similar argument as above is valid for I,.

3. LINEAR ESTIMATES

(c = 02/4))P }

0O

In this section, we prepare some estimates of the evolution operator
U(t) = exp(tHO?) for the linear part of the Benjamin-Ono equation.

Lemma 4. For ¢ € S(R), we have
OVl xeya < Cllllamsanen,

Where |||l gras.-» = [|€]7(€)2H(€) || 2
Proof.

(U )l xzye
=||<§)81I§|sz<,r+€2 b

r— &) /¢wawwmaaomz

"
=[1(6)[€1"2(m + €%)%(r — €2)*(r + EIENH(E) |2
Slxezop () 211 (m + €39 (r + €2)$(€)lI 2
+ <oy (€)™ +*(€) 2 — €3 (1 — €)9(€) |2

ST 1221 (€)™ 2 1€]*2 6 ()
5”¢”H’1+2"v’2-

Lemma 5. For f(t,z) € S(R?), we have

@ o) /cw—sﬂsmwmuz_

1/2,1/2

C (Ifxmyzz, , + 1l

+ “f“Y'IHM) )



where

A 0 1/2
(8) |Ifllyer+ron = (/_w(§)2u+215|281 (/_w %dr) d{) .

The proof of Lemma 5 can be done by the same manner as in Kenig-
Ponce-Vega [7].

Lemma 6. For 0 < V¥ < 6§, we have
8~ '
(9) Xyt C C(R; H*-1/2),

Proof. It suffices to show that there exists a positive constant C such
that

(10) sup [[u(t, )l a1z < Clull a2

1/2,1/2

for u € S. We denote the Fourier transform of u with respect to z by
(t, £). Since 4(t,€) = 1/v2r [ 4(r,€)e*"dr, we have

1) Jult, Wree-rz = 1) 1€]2a(, €)||2

(12) < [ / (a(r, £)ldr| de.

Schwarz’s inequality shows that

8

= [ (r— &)W r — ) W+2)q(7, €)|dr

o

0
+/ (T+§2)—(1+e)/2<7'+§2)(1+€)/2|ﬁ,(7', §)|d’r

[ - eyaar) " ([ r-eriamear) "

¥
+( / (€0 " (/_r+eriatreyor) N
= ([“wreoar) v { ([ - tatrmepar) "

+ (/_(; (T + €2)*e|g(r, §)|d7') 1/2} .
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Since (€)%, (1 — €2) < (1 +¢2) for 7 > 0 and (£)?, (7 + £2) < (7 — €2)
for 7 < 0, we have with e = 2(§ — ¢')

Hu(t, ')||H1+6’,—1/2

<o [“emng{ [Tt - epeiat ol
+ [ rrertamear ) de

—00

<o [~ [+ et - e olar
+ [ tr-ey=r+ e+t iar |

-0

< 2CI|u||2 5,~1/3 +

X1)2,172

For t,¢' > 0, the same calculation as above yields
”u(t’ ) - ( )“H1+6’ ~-1/2

2
< [ @i | [ ler - e latr, lar| de
<20 [ [le = e|(r 4+ €7 - 1el 0 la(r, ©)Pdrde.
Lebesgue’s dominated convergent theorem implies that
}&nt flu(t, ) = u(tlv ')“fql“',-lﬂ =0.

Hence we have (10). O

4. BILINEAR ESTIMATES

In order to prove the main theorem, we prepare the following two
propositions.

Proposition 1. Let § > 0. Then there exists a positive constant C
such that

(13) Ilaz(fg)llxs.-uz < ClIfll X gl X2
(14) |6z (fg)||X6 e ,SCllf l|x6 S Hgllenllf/z2

are valid for f,g € 8. If f,g € X{/5 15, then 8:(fg) is in X{7,"3, and
the inequalities (13) and (14) are valid.

Proposition 2. Let § > 0. For f,g € S, we have

10:(Fa)lyrsssn < Iflysnn - Ngllgsars

where || f||y1+s-1/2 is the quantity defined in (8).



We divide R* into several subsets and in each subset D, it suffices
to show for Proposition 1 that

el¢r +§2>
(15) 1(D) = <s'>26< )
// — )¢ — ¢/|(g)~P¢'|dr'de’
e =TT e EV)(r — 7 — (€ — E V) + EB) (7 = €7)
< 00,
_ €12
1) IO = e — e
// (€ — &)%) — €1(6) ¥ [¢]drde
b (T =1+ (€~ E))r — 7/ — (€ — €)2){r + EB)(r — £%)
< 00.
and for Proposition 2 that
r = su 2426 1
(1) 1(D) = suplel(©)** [ s
// (€ — €)~%1¢ — £/)() % |¢|dr'dedr
o (T =T+ (€ — €)2) (T — ' — €~ €)2)(r + EB)(r — €3)
< 0,

or

= €'1(¢")*
(18) J( )“f_}lg (TI+§‘I2><TI 5/2)
/ / (€ = &)%) — €1(6)>*¥|¢|drde
w (T =7+ (€= €V — 7' — (€= €P)r +ElEN

< o0

for some sufficiently small ¢ > 0. To prove the above propositions, we
use the following inequalities:

3
€llg' < & max (17 = €2, |7 = 7' — (€= )2, 17" +¢7)
€1lE — €1 < S max (I~ €2, r — 7' — (€ - €)%, Ir' - &)
elle = €1 5 max (17 — €2, fr — 7 + (6 - €], Ir' - €7
7| < 2max (jr = 7'+ (6~ €)2h Ir — 7/ = (€ = €)2), I + €71, I — £7))

€] < max (|7’ + €7, |7’ — €7))
|6 =€ <max (|t =7+ (=€), |r-7 = (€-¢)?)
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The identity —2£¢' =7 — €2 — (1 — 7/ — (€ — &)%) — (7' + €") implies
the first inequality. Other inequalities are proven by the same way.

The proof of Proposition 1 and Proposition 2 can be done by dividing
R* with respect to |¢], |¢'|, |€ —¢€/], |T—€2, |7 =€, |[r— 7' — €-€),
T+ &%, I’ + €% and |7 — ' — (£ - £)2|.

5. PROOF OF THEOREM 1

In this section, we prove Theorem 1 by combining Lemma 4, Lemma
5 and propositions 1-2 .

Proof of Theorem 1. Let M bea mapping from X f’/gll//“; to itself defined
by

19)  Mu= (U + 0 | Ut — s)0(s)0, uls)?)ds.

Lemma 4, Lemma 5 and Propositions 1-2 assure that M is well defined
6-1/2
on X, /2,1//2.
First we show that M is a contraction mapping on X; with some

small 6 > 0 if ||@]|g2s.-1/2 is sufficiently small, where X; = {u €

Xf/gll//imu” x5-1/2 < 6}. From Lemma 4, Lemma 5 and Propositions
) 1/2,1/2

1-2, we have

M .-

1/2,1/2

< Cilléll grss-12 + Co (“Uﬁw(uz)“xi-;,‘z/f,, + |l¢3w(u2)|lx8‘{—1:/ 2)
< Cl”¢”H1+5»—1/2 + 0203”'“”;6.*1/2

1/2,1/2
< Ci|@ll gra+s-172 + CoC362.
If ||@||gr1+a-12 < 5/(201) and § < 1/(2C,Cs), then ”Mu”xs,—uz <

1/2,1/2

1/26 +1/26 = 4. Let u,v € X;. The same calculation as above shows
that
HMu - M’l)”xs,-uz

1/2,1/2

< G (I92u{tu-+ )0 = sy 00ut(o+ o)~ Doy

-1/2,1/2

< - - — -
< 0.0 (Il + Pl ) = ol

1/2,1/2
< 20 C 5 Uu-—7v - .
—_ 2L3 ” “X5|1/1;"/‘?/2

If we take § < 1/(4C,C3), then |u—v]| ys-172 < 1/2|lu—v]|,6-1/2. Thus
1/2,1/2

1/2,1/2

M is a contraction mapping on X; if § < 1 /(4C2C5) and ||@|| gr+s-172 <
6/(2C1). Hence M has a unique fixed point in Xj.
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Next we show the inequality (6). Let u; and uy be solutions to (4)
in X with initial data ¢; and ¢, respectively. The same calculation as
in the above shows

Hu1 - u2”Xf'/;,11//22 < Cl “¢1 - ¢2HH1+6,—1/2 + 202035“11 - v”Xi‘;/lz/,f/z

1
< Cill¢1 = o2 gr+6-172 + §||u - 'U||Xs,-1/z .

-1/2,1/2

This shows | Mu; — Mug|| yo-12 < 2C1||¢y — Bal| grvs-1sa. O
1/2,1/2
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