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Jack symmetric functions and representations

of the Virasoro algebra
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Reiho Sakamoto
The University of Tokyo

1 Introduction

In this talk, we consider the relationships between the Jack symmetric functions and
representations of the Virasoro algebra based on my collaboration with J. Shiraishi,
D. Arnaudon, L. Frappat and E. Ragoucy [1]. In this section, let us summarize some
of basic properties of the Fock representations of the Virasoro algebra and the Jack
symmetric functions.

We denote the Virasoro algebra by operators L,,’s (n € Z) and central charge ¢
with commutation relations

n(n? -1
[Lm Lm] = (n — m)Ln-i-m + —'("'i?'—l 06n+m,0a (1)

Lo, = O. 2)

Then, we have a representation on the Fock space called the Feigin-Fuchs represen-
tation as follows [2].

In terms of the bosonic operators a, (n € Z) with usual commutation relations
[@ny @m] = NOptmp, the Fock space F4 is defined by

Fa=Cla-1,a-2,a_3,-]|4), (3)
where |A) is a vacuum vector defined as
agld) = Al4),  an]A) =0 (n € Z). (4)
We also define dual of the Fock F? space by

‘7::1 = <A|C[(L1,(L2,(L3,"'], (5)



where we have used the dual of the vacuum vector (Al

If we parametrize the central charge ¢ as

6(5—1)°
c=1- -(—7—"2- (6)
53
then we have a representation given by
1
L, = 5 Z D 2 — Ay (n+ 1)an, (7)
keZ
with the usual normal ordered product : - :, and notation

B

Note that in this notation, we have a relation Lg|Api1441) = hrs|Ars1,541), Where
| —— (T'H - 3)2 — (ﬂ - 1)2
T8 T 4/6

In 1995, Mimachi and Yamada [3] found that inside the Fock space, another
kind of integrable system — the Calogero-Sutherland model - - emerges as singular

1
= §Ar+1,.q+1Ar—l,s—l' (9)

vectors of the Virasoro algebra. The Calogero-Sutherland models describe the mo-
tion of particles with inverse square repulsive potential U = 1/r? [4]. Especially we
consider the quantum N-body model on the circle of length L whose Hamiltonian
is given by )
Lo ()

Hes = —§§W+5(5— 1)§m,
where 0 < ¢; < L are the coordinates of i-th particle, and 3 in the coupling constant
is eventually identified with 3 which appeared in the central charge of the Virasoro
algebra (6). Then it is known that all the excited states of the Schrodinger equation
can be written as a product of ground state and the symmetric polynomials of
T; = exp (%I‘Eq,-) called Jack symmetric polynomials ([5], see also [6]). If degrec
of symmetric polynomial is lesser than the number of variables N, then we can

(10)

represent these polynomials uniquely in terms of the power sums p, = YN, z7
instead of using coordinates ;. After expressing symmetric polynomials by power
sums, we can take the number of variables to be infinite inside the power sums.
Resulting symmetric polynomials with infinitely many variables are often called
“symmetric functions”.

These Jack symmetric functions form orthogonal basis of the space of symmetric
functions A. Inner product on A is defined by using product of power sums py =
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I'If;('\) Pas where A = (A1 Ag, Ay, -+ ) = (+-+, 3", 2"2 1™1) iy a partition and [(A) is
a length of partition. Then we define

(Das Py = (5,\_,,()"“’(’\) H i, (11)

There are different choices for normalization of Jack svinmetric function, however
the normalization called “integral form™ denoted by J, is suitable for our purpose,
The norm of Jack symmetric functions was calculated by Stanley. and it takes fol-

lowing form in our normalization:
. 1
) = S T (a() + () + 1)3) ((als) + ) +1(5)8), (12)
i SEA

where a(s) and I(s) are the arm length and the leg length of s, respectivelv. It is
known that we can identify the Jack symmetric functions as clements of the Fock
space through the following two identifications,

2 1
Pp — \/; —nld)y pu+— (4 GHT/}' (13)

These identifications work because it preserve the inner product.

Mimachi and Yamada showed that singular vector of degree rs'in the Fock space
Frt1,5+1 18 proprtional to the Jack symmetric function with rectangular partition
Jisy. Recently [1] extend this result further and fully used Jack symmtric functions
as a basis of the Fock space. As a result, some combinatorial properties of the
Virasoro algebra cmerge, and [1] conjectured the action of Virasoro gencrators on
this Jack basis (sce [7] for action on Schur symmetric functions). In rest of this talk.
I will give some examples of the formula to complement that paper.

2 Actions of L, (n > 0)

We first consider the action of type (Ar41 041|JaLn := (Jr|Ln (n > 0). To describe
the results, it is convenicnt to use some terminologies. For a given diagram, we
define outer corners (white circles) and inner corners (black circles) as follows:
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We put “hooks” on diagram, and assign a term (m + nf3) to cach hook with
horizontal length rn and vertical length n. If there are multiple hooks on a diagram,
then we take product of all terms. Some examples are given below:

BE 1]

mdl |
] =(2+34), [} =(0+13), L] =d3-(2+33).

_—. -

.

Our first example is the action of L, on JQI"

3. (2 +33)

(Jgolle = \/_( ]é‘ml 2+u (3+373) Arts
11

—_—

| 111

g | — 2
B "2+ 81 +28) Ar-25-2

-ﬁ--l
_ﬁ_f

$
(3+28)-1
+<JE:° | (3+36)(1 + 28) A"“’“*l)

‘ First of all, we notice from above example that the action of L, has the cffect of
adding one more box to each possible places on the partition f¥, and coordinates of
added boxes appear in the term like 4,_, ;v , i.e. if added box is on i-th row and
J-th column then the term A,_;,_; appears. The rest part of the above equation,
rational functions of 3, is explained by the diagrams inserted there. Two diagrams
beside the horizontal line stand for the numerator and the denominator respectively.
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In the numerator, we join upper left corner of hox 1, the added box, and all the
outer corners of original diagram §. In the denominator, on the other hand, we
join the upper left corner of box 1 and all the inner corners of original partition.
According to [1]. above example should be compared with the following cquation:

o ] _ 3-(24373) 4 2.243 ;

P = G+ B " Graa+on) FF

3+28)-1
+ (3 +26) J| .
B+38)(1+20) F

Let us now go on to example for action of Ly;

~ . pR2+38) _ (3+3B)
(JgmlLl: = V28 ﬂ(<‘]ﬁjm|(2+ﬂ)(3+3[3) (3+ﬁ)(4+3ﬂ)‘4’“‘*““5
10 mn)
B L 4

l B(2+38) ‘ 28 .
2+8)3+38) B+pA)1+20) 2

B it pumn
A0 S S
H—Lm .+7_LII
| o

226 B(2 +36)
g |(2 +8)(1+28) (1+8)(2+26)(3+30) Ar_16-4

i 2
4

B

In this case, we notice that if we act Ly, on given Jack symmetric function, then
result is a sum over the Jack symmetric functions with two more boxes added to
the original Young diagram. We also notice that there are two terms proportional

_<JBEFD

=
Ld

+ other 7 terms )

to (J, . If we act Ly on (Jgo|, then primarily we obtain the result as a sum of
- g



these two terms, however we cannot find any combinatorial properties as it is. The
decomposition given above can be interpreted as two possible ways to obtain fFP
from 7. Diagrams inserted between the equation explain the situation. “17 and
“2” assigned on the hoxes means the order of addition. and left and right diagrams
stand for the first and sccond factor of rational function of /3. respectively. When
we add first box to the diagram, then we have a rational function by the same rule
as in the case L;. In the second addition, we obtain a rational function by almost
the same rule as in case L;, however, in the numerator, we do not join upper left
corner of hox “2” with outer corner created by addition of box “1”. The order of
addition also affect the term like A,_, ;_. if second addition is at i-th row and
Jj-th column then we have a term A,_; ,—;. Finally, as for over all constants, we have
a term /266" when we consider the action of L,, and extra minus signs appear
on R.H.S. when row of box 2 is greater than that of 1.
Compare above equation with f(ill()\\'ing formula for multiplication by ps;

, _ B2+38) (3+3B)
P2 Jﬁm - ﬁ((2+ﬂ)(3+3/j) (3+8)(4+33) =
__BR2+38) 25 )
2+0B+38) B+p1+25) F
2.203 B2 +30)

TerAa+) T+HR+28)(3+38) B

+ other 7 terms ) .

3 Actions of L, (n <0)

Actions of L, for n < 0 can be understood in a similar manner as in the case n > 0
discussed in last section. First we consider the action of L_;.

1 1 24306)20-1 ,
(JE:DlL—l = —@g‘ﬁ(u l(——%_%ﬁg)—x‘lws—(sw),wa-(lﬂ)

i

O

B
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5-2(3+20)
I |WAT+55~(1+1),5+5€—(?3+3) :

F

!

@

From above example, we notice that when we act L_; on given Jack symmetric
function, then we have a sum over the Young diagrams which can be created by
removing one box from original one. This situation is explained in the diagrams
inserted between above equations (box with number “1” is a box to be removed).
These diagrams also explain the rational function of 3 (like £2_(+_2§+é22/%§1_1_) - in the
numerator, we join the lower right corner of box “1” with all the inner corners of
original diagram by hook, and in the denominator, we join the lower right corner of
hox “1” with all the other outer corners of original diagram.

The term like A,_, ,—. is a bit more complicated than the case considered in the

last section. If the removed box is at r1-th row and s;-th column, then we have

Ar+3v1—(r1+r1),s+3-1—(31+31)- (14)

Finally, as for the overall constant, we have a term 12/3 . -1%,-,- when we consider the

action of L_,. Comparc above result with following equation;

9 _1((2+38)28-1 B-2(3+28)
55["@“",3( (2 + 208) g + (2 + 208) J )

Next, we consider the action of L_y;

_ L1 (o (24360261 (2426)8
Vel = 75 262( Vel e @+ )

i #

X
O
T

X Agr+3(142)— (2+3)— (2+2), 2543(142)=(14+1)=(1+1)
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(2+33)28-1

32

~{Jg |

(2 +203)

i

2+ P)

R

1

13

—

X

1

X Agr43(142) = (143)=(141), 2643(142)— (3+1)~(3+3)

3-2(3+28)

281

+(JH: |

2+ 20)

S

(1+28)

m

B

x

1

2

X Agr3(142)— (34+1) (3+3), 25+ 3(142) = (14:3) = (1+1)

5-2(3+28) 1-(2+26)

+(JE |

(2 +28)

-

(1+203)

104

=

X

1

=
{

xA2r+3(1+2)——(1+1)-—(l+]),2s+3(1+2)—(2+3)—(2+2) )

As in the case Lo, above equation can be obtained by similar graphical procedure

used in L_,. Especially, in the numerator, we do not join the lower right corner of
box “2” and the inner corner created by removal of box “1”. If we remove the box
(r1,81) at first and next we remove the box (ry, s3), then we have a term

A2r43(142)~(ra-+r1) = (ra+ra), 29+3(142) — (s2+81)—(s2+82) (16)

Extra minus sign appears in R.H.S. when the row of box “1” is greater than that of
box “2”. Compare this result with following equation;

(2+20)8

Joo

) 1 (_(2+3[3)2ﬂ-1

0]72 Jﬁ:ﬂ

(2+2p)

(2+0)
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(2+383)28-1 f3-2
2428 (@2+pH
B-23+28)  24-1
2+28) (1+25)°F
#-2(3+203) 1-(2+29)
2+28) (1+28) B)

To make these rules clearer, we consider the action of L_3 as a more complicated
example;

_1 1 5-23428) 281 (1+28)
(il = V2B 3 3( (Jen] 2+28) (1+28) (1+A)

= PP
F

¢

X ABr43(14243) (241)—(24+3) —(2+2), 35-4-3(142+3) = (14+3)=(1-+1)—(1+1)
(2+38)26-1 -2 81
~(Jeo|
(2+208) 2+8) @Q+p

f’gm@

——

15 1 1

X Agr43(14243) = (2+3)~(2+1)=(242), 354+ (14243)~(1+1)— (14+3) = (1+1)
| 302851 (2420)8 B
(2+206) 2+ 5) 1

i & 7

X X
1e ‘ LI 131
T % 3

XA3r+(l+2+3)—(1+3)—(1+2)—(1+1),3a+(l+2+3)—(3+l)—(3+1)—(3+3)
B-23+28) 1-(2+28) 1
+<JE I . . -
(2+203) (1+20) 1

XA3r+3(1+2+3)—(3+1)—(3+1)—(3+3),3s+3(1+2+3)—(1+3)-(1+2)-(1+1)

74



B3-23+28) 28-1 fB-1
~(Jg | 2+23) (1+28) (1+0)
X¢43r+3(1+2+3)—(l+])—(l+3)—(l+l),3.s'+3(l+2+3)—(2+3)-—(2+l)—(2+2)
L l(2+3‘3)2’3'1 B2 1-(2+5)
BT 2+4) (1+0)

X A3r4+3(14243) = (143)~ (14+1)=(14+1), 38+ 3(14243)— (2+1)~ (2+3) - (242) )

As in the case L_,, some of the hooks do not appear in the numerators - when we
remove the box “2”, we do not join the lower right corner of “2” and inner corner
created by removal of hox “1”, and also we do not join that of box. “3” and inner
corner created by removal of box “2”. If we remove boxes (ry,$)), (r2.52), (73, 83)
in this order, then we have a term

A3r+3( 14243)—=(ra+r1)—(ra+re)—(rs+rs), 3s+3(1+2+3)—(83+51)—(s3+52) —(83+853) " (17)

Extra minus sign appear in R.H.S. when the number #{i € {1,2}|r;y1 < r;} is odd.
As for the action of L_,, we remark that if we remove the boxes (71, s1), (72, 82),
«++, (Tp, 8p) in this order, we have a term

AT etk (ratri)], 30, [543k (snton)]" (18)

4 Singular vectors of the Virasoro algebra

As an application of actions of L, operators on Jack symmetric functions, we con-
sider the singular vectors of the Virasoro algebra on the Fock space. See [8, 2, 7, 3]
for earlier works on this subject. To derive the formula L,|J,) — rightward action
of L, — we use the relation

((IlZn) 19 = (Il (L)) (19)

and orthogonality of Jack symmetric functions. As a result, in L,|J)) (n > 0), term
A,_; 4 appears when first removal is on (¢,7). We also notice that in L,|J)), we
have factorized rational function of 3 whose fuctors have form (n + mg) (n,m > 0)
just as in the case for (J)|L,.

Then, we can reconstruct the Mimachi-Yamada theorem by using Virasoro action
on Jack symmetric functions as follows [1]. First of all, from the commutation
rclations of the Virasoro algebra, we simply have to check the actions of L, and L
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are () to obtain the singular vectors. We take the Fock space Fy, +1.041 and consider
its vectors of the form |Ji,my). Then we have [9]

1 ;
L, I'](n.”')> = 5 ' E"’n'”/fAV'—vrz,s—‘r:,I'](IL”"I.,H.—l))e (20)

1 . (n=1)(1+m3)
L2|J(,,m)> = B‘ . E <mn/i- (1 T /3) Ar—m.,.s-—n.|'](n""‘,7:.—2)>

(m=1)3(n+4)
—mng ) Ar-msn| =2 (n-1y)) | - (21)

From the definition of A,,, we have 454 = 0. Thus we can conclude L) |Jjmy) =
LylJisry) = 0, ic. [Jpny) is a singular vector of F, Ar-+1..41- This singular vector is
usually denoted as |xr).

Next we consider singular vectors in the region ¢ < 1, that is, the region § > 0,
in more detail [9]. To do this, it is convenient to take parametrization of the central
charge as

=P
ﬁ—q>& (22)

where p and ¢ are mutually prime positive integers. To find a vectors which will
vanish under the action of L, terms like (n + m/f3) is not important, and we have
only to consider terms like A,_, .. If there are more than one corners on Young
diagram, then action of L; will result in sum of more than one terms each propor-
tional to different factors A, _.,_. - this is because all such corners have different
coordinates. So, we cannot make action of L; on these kind of Jack symmetric func-
tions vanish merely adjust integers r, s in Fy,,, ..., because set of Jack symmetric
functions forms linearly independent basis of the space of symmetric functions. Thus
all the singular vectors have to be proportional to Jack symmetric functions with
rectangular type partitions. Then from equation

Am—(m+kq),n—(n+kp) = A—kq—kp = 0, k € Zs,, (23)
we have candedates for singular vectors on Fy,,,, .., (n,m € Z,) as

l'](n"")>) I'](n+p)(M+q)>, IJ(n.+2p)("'+2‘1)>’ vy, |J(n+kp)(m+kq)>, v, (24)

Now we can easily verify that all elements of the above sequence also vanish under
the action of Lo.

Finally, we compare the singular vectors on Verma module and Fock space [1].

This again shows the combinatorial aspects of the Virasoro algebra. To fix the
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comparison uniquely, we first normalize singular vectors in the Verma module as
J— > » n -
IXrs) = (('lLAn + el oL+ +1X L—1)|Ar+l,s+1>a (25)

i.e., we set the coefficient in front of L to be unity. Then. if we bosonize |y,.). we
have

IXr,s> = H (i8 ~ j)"](s")>a (26)

(ig)e(sm)
where the product is taken over all the hoxes on partition (s"). If we further take
dual of |x,,) in the Verma module, and consider its bosonization. Then we have

(Xr,si =0 (27)

in gencral.
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