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Elliptic Ruijsenaars operators and elliptic hypergeometric
integrals

AEBAY - ZITCKERERRAR /IR ¥ (Yasushi Komori)
Graduate School of Mathematics, Nagoya University*

ABSTRACT

We study a family of mutually commutative difference operators associated with
root systems and discuss their simultaneous eigenvector in a special case. For root
systems with rank n, we construct 3n commutative difference operators, which
are a generalization of elliptic Ruijsenaars operators. Especially, for the BC,
root system, we construct an explicit simultaneous eigenvector of these operators

described in terms of elliptic hypergeometric integrals.

1 Introduction

In [10] Ruijsenaars introduced the operators acting on the space of meromorphic
functions which are defined by
o(x; — Tk + p; w1, wo)
Y, = J ; 1.1
h= Y (H o= rior) )Hrj(ws), (1.1)

IC{L,..1} \ jEI jeI
\[=n kel

where w;,ws € C\ {0} are arbitrary such that w;/w; ¢ R, and ws,p € C\ {0}
and the action of 7;(w) is defined by (r;(w)f)(z1y.+++Zjy-- -, Tn) = f(T1,--.,T5 —
W,...,Tn). He showed that these operators are mutually commutative. The first

result of this article is a generalization of the elliptic Ruijsenaars operators. We

define
o1 O(T5 — T + pp; W, Wy)
Ic{1,.,0l} \ jeI U(‘T]' - -’L'k,wq,w,,) jel
{|=n kel
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where p,q,r € Z/3Z are distinct, and for p € Z/3Z, w, € C\ {0} are such that
wp/wg & Rif p # q. Put nyy = 2¢(wp/2; wp, w,) with Weierstrass’ zeta function
¢ and G, = Tpewq — Mgpwp, then a, = x2mi. If v, u, satisfy three equations
VpWq + UpNgr = VaWp + UgTpr for distinct p, g,r € Z/3Z, then all Y,®) are shown to

be mutually commutative. For instance, these equations are solved by

_ a1(vawr + psmz) — (azpz + asps)nsz
- )

(1.3)
ai1Wws
Uy = V3wy + UaTe1 — Hafs1 ’ (14)
w3
a +a
gy = 2b2 T Osks (1.5)

a4

where v3, yo, u3 are regarded as free parameters. Although the discussion above
is for the A-type root system, the construction can be applied to arbitrary root

systems.

The second result is a construction of a simultaneous eigenvector of the ellipfic
Ruijsenaars operators of type BC;. So far, some class of eigenvectors was discussed
in [11], where certain transcendental equations should be solved. We first obtain an
explicit meromorphic eigenvector described in terms of the elliptic hypergeometric

integral.
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Shiraishi, Yuji Yamada, Takashi Takebe and Michitomo Nishizawa who kindly
allowed him to speak about his research. Also thanks are due to Masatoshi Noumi,
Yasuhiko Yamada, Yasuhiro Ohta and Tetsu Masuda for fruitful discussions and

helpful comments.

2 Affine Root Systems

We summarize some facts about affine root systems and affine Weyl groups (1,
2,4,5]. In this article, we will omit Ag)-type root system because of simplicity,
though it is straightforward. The notation and symbols are a little different from

those in the previous papers [6,7] in order to generalize the results.
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Let A be the irreducible reduced finite root system of type X; in a complex
vector space V with dimV = [ and the inner product {-,-), I = {1,...,l} a set of
indices, IT = {o; | 2 € I} C V the set of simple roots, ITY = {a | i € I} C V the
set of simple coroots, @ and Q" the root and coroot lattices, P and PV the weight
and coweight lattices, {A; | i € I'} and {A) | i € I} the fundamental weights and
fundamental coweights such that (o, AY) = (A, @) = ;. Then we have

Q=PzaucP=PzArcV, (2.1)
i€l i€l

Q' =@zoc P =PzA/CV. (2.2)
i€l i€l :

The inner product (:,-) is normalized such that (o, a) = 2 for the longer roots a.

Let A, and A_ be the set of positive roots and negative roots respectively.

Let A, C A be the set of the shorter roots and A; C A the set of the longer
roots. Let r be the ratio of the square lengths of the longer roots and the shorter

roots. Fix parameters 7, for a € A, such that in nontwisted cases all 7, = 1,

‘and in twisted cases, v, = 7 if & € A}, 74 = 1 otherwise. Let V =V @ Cs with

{04,0) = (4,6) = 0 and its linear extension. Then the associated affine root system

A c V is written as
A={a+nyb|acAnelZ} (2.3)

Let B+ and A_ be the set of the positive affine roots and the negative affine roots

respectively. We denote by v for v € V the natural projection on V.
For a € Z, let s, be a reflection defined by
sa(v) :=v—{a,v)a¥, wvEY, (2.4)

where ¥ = 2a/(a,c). The Weyl group W is generated by the fundamental
reflections {s; := s,, | ¢ € I} on V and the affine Weyl group W is generated by
{si|i € T}, where T = TU{0} and a = §— 6 with 6 the highest root in nontwisted

cases and the highest short root in twisted cases.
The defining relations are given by s? = id and the Coxeter relations:

(sis;)™ =1id, fori#jel, (2.5)
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where m;; = 2 if o; and o; are disconnected in the Dynkin diagram and mi; =
3,4, 6 if 1,2,3 lines respectively connect o; and ;. For y € V, we define endomor-

phisms 7, of the vector space V' by

Tu(A) = A = (A, p)d. (2.6)

Let M := Z(W - 6¥) C V. For an arbitrary lattice L, we denote by T}, the
corresponding group of translations of L. Then one sees that W is the semidirect
product W = W x Ty Let M := {AeV]|ac A (o)) € v,Z}. The extended
affine Weyl group W is defined by the sémidirect product W =W x T3, Let
Q be the subgroup of W which stabilizes the affine Weyl chamber C. Then one
sees that W is isomorphic to the semidirect product W x Q. Here are the explicit

description of M and its canonical basis {); | i € I'}:

—_ { PV,  nontwisted case, A},  nontwisted case,
A;, twisted case.

P, twisted case,
We also use M_ := BierL<oi.
- The length £(w) of w € W is defined by the length £ of a reduced decomposition:
W= S; ... 8W, k€ Lwe (2.8)
It is equivalent to the number of the negative roots made positive by :
(D) == |Ag|, Aup:=ALNdA_. (2.9)

The set A, is explicitly described as Ay = {oV = a;,,0® = s;, (a,),---,a0 =
ws;, (a;,)}. By definition, A is independent of reduced expressions. One sees that
Q={we w | £(w) = 0}. A weight A € M is said to be minuscule if A, CAL.

- In the following, we use the constants

Pz = Zxai/\,- = % Z T, (2.10)

iel aclAy
hy = (pz,0) + Tay, (2.11)

where z, € C which depends only on the length of roots,

We shall define the root algebras after Cherednik [2,7].
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Definition 2.1. Root algebra R is generated by independent variables {Ry | & €
A} and {m] M€ M } with the following defining relations:

ﬁmewa;aj R'ws,-a_,-a.' ’ -;: Ewajmusja;&sjs;aj * ';7 fOT' weE W (2'12)
mij ;;ctors mi; ;;ctors

TARa = R‘uaT)\a (213)

TATN = TA+N - (2.14)

Theorem 2.2 (Cherednik). 1. There erists a unique set {R, |w € W} C R

satisfying the relations:
Ryw=R,"Ry, R, =R, (i€l), R,=1, (2.15)

where w € Q, v,w € W and L(vw) = £(v) + &w), and *(Ra, ... Ry,) =
Ry, - - . Ryo;

2. We have the R-matriz for w € W and its arbitrary reduced decomposition

W=8; ...8,w as

wa = Ra(x) e Ra(z),

oV =q;, o®=s;(a,), ..., a9 =ws;,(e,)€ A,

(2.16)
Theorem 2.3. The subalgebra S C R generated by {Y* := R, 7a | A € JTJ:}

forms a commutative algebra and is generated by {Y > | i € I}.

3 Representation and Difference Operators

2 03

Let 7‘(11) =7 and va ', Yo' be taken similarly as 'y,(,l). Accordingly let MO =M

and M®, M® be taken similarly. Here 7&> and 7§ may differ if i # j. Let M
be the set of meromorphic functions on V. To define the action of W on M, it is
sufficient to specify the action of s; for : € I and 7, for A € M®. For fEM, we
define

si(f)®) = f(siv)),  m)®) =1 ()®) = flv —wih). (3.1)
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Fix £€0, ¢® € V and let pf, v5” be constants depending only on the length of
roots. Then one can check that (3.1) and

(Raf)(v) = Ha(pl, vQ) f (v) ~ Ha((EW, @), (¢, @¥)) f (sav), (3-2)

satisfy the defining relations of the root algebra [8], where H,(n, «) is the mero-
morphic function defined by

H,(n, k)(v) := ) (#a ,'7& )wz,‘rf')wa) o(a(v) + n; ’Y( )wz, Ygs)ws)
)

a1 Pwe, W ws)  o(a®); 1P ws, Y Dws)

(3.3)
and a root o acts on V' as an affine linear functional a(v) = (@, v) +nw; forv € V

and o = o +nd, o/ € A. Then we have the following theorems [6, 7]

Theorem 3.1. Let V := MW, the W-invariant subspace of M and let £€0) =
—pu0, (W = —p,y. Then YV := Y* € Endc V.

Theorem 3.2. Let () € M® be minuscule. Then we have

e S I moboi)
wew acly
(AM@)=="a

where W), is the stabilizer of X in W.

: (3.4)
v

4 Commutativity in Case of Minuscule Weights

Let Y/\(z) be the operator obtained by changing the role of the indices 1 and 2
in the construction of Yfl), and Y,\(s) be obtained in the same manner. Then one
sees that Y(j) for A € MY are commutative [7]. In the following, we assume that
1m0 + v wp = uFn; + V& wJ where j # k # | # j. We demonstrate that Y(’)

and Y.,( are also commutative if —)\ and —v are minuscule.

Lemma 4.1 (Proposition 7.7 in [7]). Let z, be constants dependent only on

the length of roots. Then we have

— Y za@=hYA | (4.1)

aGAr,\
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Theorem 4.2. Let j,k € Z/3Z and =) € MY, —v € M® be minuscule and

Then Y(J) and Y¥) are commutative.

Proof. If j = k, then the statement follows from Theorem 6.3 in [7]. So it is

sufficient to show the case j # k and the commutativity of each term. Let

(4). A (k) @
Ej,,\ = H v (a, v)a((a 'U> + Mo 70 wlz’)’y wl)’ (42)
€A} o({a, U)”Ya Wk Ya wl)
(A’a>="'7c
where j # | # k. Since for u,w € W,
) ( v waywy 0 ((we, v) + IL(J), 1w, 7 ‘)wl)) (4.3)
uv .
o((wa, v); ¥ we, 718 wr)

= o (wa, v—wpury 0 ({wa, v — weuv) + ;1,9), ’Yc(x Dwe, Yw 1)

o({wa, v — wiur); W wr, ¥wy)

k
= o~ W mut ) wauw) o wam T((0 ”>+“g)’7‘(’ )“”"7 ) (4.4)

o((wa, v); 7P w, 7S D)

we have
T (Fiuwa) = e (Fy ), (4.5)

where by Lemma 4.1

> (W + vPwi)a = A, (4.6)
aEA
(Ava);-"”/ﬂ
Thus
Frp T Fiua18) = eAI By By nr78)
j’W)\TwA F k,“VTisu)' (47)
O

For minuscule weights — ), the periodicity of the coefficients is easily obtained
since the explicit forms of the operators Y* are calculated. However Y for general
) is complicated and the proof of the commutativity requires a further investigation

and is omitted here.
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5 BC(Ci-type Operators and Eigenvector

Generally, it is very difficult to construct explicit eigenvectors of the elliptic
Ruijsenaars operators. However we can construct a simultaneous eigenvector in
the BC} root system. In this root system, there are three mutually commutative

operators.

First we give the explicit forms of these operators. Let wy,ws, uo,...,us € C
such that Swy,ws > 0 and 2pp+ g1+ ++ pg+w; +we = 0. Then the commutative

operators are given by

6
Hz — po + wi;ws) Hz?(z — Jj; Wa)

y® = gvis il (r(wy) = 1), (61)

9(2z; w2)9 (22 + wyjws)
+ (z & =z)

6
I(x — po + wa; wy) Hﬂ(x — W5 wy)

TiT =0
Y® =e I(2z; w1)19(2:]v + wajwy) (r(w) = 1), (52
+(z & -2)
Y® =7(1) 4+ 7(-1) - 2, (5.3)

where 9 denotes the Jacobi odd theta function. For these commutative difference

operators we can construct an explicit simultaneous eigenvector:

Theorem 5.1. Let
7

[ r(paco/cisp,q)
¢(C) = i=1
T(pgeo;p,q) J] T(paco/cicsip,q)
1<i<5<T (5.4)

7
T'(pg/(pgeo)/*2*; p, q) [ [ T((pgeo)?/c;2*'; p, q) ;
Jj=1 V4
8 C P(zzvzﬁz;p’Q) Z’




with

o= e2mi(o—m —wx-wz), ¢ = 62’"(““"'“2), Co = e2m(uo+u3)’

e = e2m(uo+u4)’ cy = e2m(uo+u5), s = eQm(yo+ue)’

Cg = e21u'(—x—-u1)’ cr = e2m‘(z—m),
p= e2m'w1’ qg= e2m’wz,

and C a closed circle taken appropriately, and T'(z;p, q) elliptic Gamma function
defined by

(Pgz ™' D, oo
[(2;p,q) = ———2—=2.
=) (29, @)oo
Then ¢(c) is a simultaneous eigenvector of Y9 with the eigenvalues
K
EWM = ¢~2miko Hﬁ(#o + mwn), E® =0,
=1
5

E®@) = g=2mino H I(po + i wy)-

i=1

sketch of proof. One can show the following contiguous relations directly or by use
of the result in [9):

(ci) [Tipi ;(Paco/cick) 6+(c7) — (¢) [z 5{Paco/ cick) 6% (c)
(pgco/cj, p*qPco/c;s) 7 {pgco/ci, p*q*co/ ci) ' (5.5)
_ (ci/c;) Hk;éi,j {pgco/ck) é
— (pgco, p*q%co) ’
¢ —¢lcj,cl) |
(pgci/c;) (paco/cic;) {paco) (P4 co) I (cx) (), (5.6)

= Toaco/) P aPeo] ) ol e paco] ) L. Toacofew)”

where (-) is the multiplicative form of 9(-;p), ¢* = ¢(q%co,qcu,-..,gc7) and
¢(c;-h) = ¢(co, 1, . ..,4%¢j, ..., cr). Combining these relations, we see that ¢(c) is
an eigenvector of Y1) and thus is an eigenvector of Y® due to the symmetry of p

and ¢, and that by the definition of cs and ¢7, ¢(c) is an eigenvector of Y@, [
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6 Special Cases

In this section, we clarify the relation between ¢(c) and the elliptic hypergeo-

metric series 19Fy introduced by Frenkel and Turaev [3].

Theorem 6.1. If ¢; = p~™Mq™", then

¢(c) = ‘IE(CD’ N P €73 P) X ‘Z’(CO» cap ™, 1 €739), (6.1)

where

7 - ((P9)*co) fcoi ™k T Ko
é(co, ... ;) = kg; () (og ™) E ace/cii T’ (6.2)

and (u; Tk = (u;r) -~ (u(pg)*"; 7).

sketch of proof. We see that both the right hand side of (6.1) and the elliptic
hypergeometric integral (5.4) satisfy the contiguous relation (5.6), with the same

initial condition. g

Now we state the relation between ¢(c) and 19Fy which is defined by

[o o]
(q**bo; ) (bo; )k (bi; )k

Eo(bo; by,..., b7 =§
1089 (bo; by 77) e (bo;r) (ri7)k H(rbo/b;,r

where one of b; should be r~" and (u;r); = (u;r)--- (ur®=;r). The following is

shown by a direct calculation.

Theorem 6.2.

-~

é(co,...,cr;p) = 10Ee(pco; €1, . ., DCky . - ., €1} D),

which is independent of the choice of k.
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