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THE NEUMANN PROBLEM FOR THE co-LAPLACIAN

JUAN J, MANFREDI

ABSTRACT." We survey the results of the paper [GMPR] related to to the theory
of viscosity solutions of the co-Laplacian with Neuman boundary conditions.
We study the limit as p — oo of solutions of —Apup = 0 in a domain 2 with
| Dup|P~20up /8y = g on 8. We obtain a natural minimization problem that
is verified by a limit point of {up} and a limit problem that is satisfied in the
viscosity sense, It turns out that the limit variational problem is related to the
Monge—Ka.ntorovmh mass transfer problem when the measures are supported
on 3(2

1. INTRODUCTION,

In this survey we study the natural Neumann boundary conditions that appear
when one considers the co-Laplacian in a smooth bounded domain as limit of the
Neumann problem for the p-Laplacian as p — oo.

Let Apu = div (|Du|P~2Du) be the p-Laplacian. The co-Laplacian is the limit
operator Ago = limy_,o0 A, given by

.
ou 8%u Ou
A= 5

et 3:1:] Oz; 8z,;0z; 81‘,

in the viscosity sense. A fundamental result of Jensen [J] establishes that the
Dirichlet problem for A is well posed in the viscosity sense.

When considering the Neumann problem, boundary conditions that involve the
outer normal derivative, fu/0v have been addressed from the point of view of
viscosity solutions for fully nonlinear equations in [B] and [ILi]. In these references
it is proved that there exist viscosity solutions and comparison principles between
them when appropriate hypothesis are satisfied. In particular strict monotonicity
relative to the solution u is needed, a property that homogeneous equations do not
satisfy.

We study the Neumann problem for the oco-Laplacian obtained as the limit as
p — oo of the problems

L.1) { ~Apu =0 in Q,

|Dulp~28% = g on Q.

Here 2 is a bounded domain in RY with smooth boundary and % is the outer
normal derivative. The boundary data g is a continuous function that necessarily
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verifies the compatibility condition

Lm0
on

otherwise there is no solution to (1.1). Imposing the normalization

(1-2) /Qu=.0

there exists a unique solution to problem (1.1) that we denote by u,. By standard
techniques this solution can also be obtained by a variational principle . In fact,
we can write

/‘upg=max{/ wg:-wEWl"’(Q), /w=0,/llepgl}. .
o0 a0 Q Q

Our first result states that there exist limit points of u, as p — oo and that they
are maximizers of a variational problem that is a natural limit of these variational
problems.

Observe that for ¢ > N the set {up}p>, is bounded in C*~P/9(0)). Let vy be a
uniform limit of a subsequence {up, }, pi — 0.

Theorem 1.1. A limit function v s a solution to the maximization problem

(1.3) /an Voog = ma.x{‘/aQ wg:w € Whe(Q), ./Qw =0, [|[Dw|leo < 1}.

An eguivalent dual statement is the minimization problem
4)  Dvelo =i { | Dulws w e WH(@), [w=0, [ wg > 1
Q an

The maximization problem (1.3) is also obtained by applying the Kantorovich
optimality principle to a mass transfer problem for the measures u+ = gt HN~1_ 60
and p~ = g~ HN 1L 9Q that are concentrated on Q. The mass transfer compat-
ibility condition p*(8Q) = u~(89Q) holds since g has zero average on Q. The
maximizers of (1.3) are called maximal Kantorovich potentials [Am].

Evans and Gangbo [EG] have considered mass transfer optimization problems
between absolutely continuous measures that appear as limits of p-Laplacian prob-
lems. A very general approach is discussed in [BBP], where a problem related to
but different from ours is discussed (see Remark 4.3 in [BBP].)

Our next results discusses the equation that v, satisfies in the viscosity sense.

Theorem 1.2. A limit vy is a solution of

Au=10 ' in §,
(1.5) { B(z,u, Du) = 0, on 9Q,
in the viscosity sense. Here
min {|Du| -1, §-‘5 -~ ifg(x) >0,
1—|Dul, 52} if g(z) <0
Blz,u, Du) = { 22X By : :
Blew DU =1 g(ipu)ge ¥ 9(z) =0,
L iz € {g(z) =0},

and H(a) is given by

_J1 ifa>1,
H("')*{o ifo<a<l.
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Notice that the boundary condition only depends on the sign of g. The question
we wish to address is whether we have uniqueness of viscosity solutions of (1.5).
Unfortunately this is not the case as it will be shown by an example discussed in
Section §3. Nevertheless we can say something about uniqueness of ve, under some
favorable geometric assumptions on g and by adapting techniques from [EG]. See
[GMPR] for details.

2. THE NEUMANN PROBLEM

In this section we prove that there exists a limit, v, of the solutions at level p,
up. It satisfies a variational principle (1.3) and it is a solution to (1.5).

Recall from the introduction that we call u, the solution of (1.1) with the normal-
ization (1.2). As we'have mentioned, this solution can be obtained by a variational
principle. Indeed, consider the minimum in S of the following functional

Iow) = [ 1Du? - fa _ug
S={uew&%m:.Lu=o}

It follows from standard techniques that the functional Jp, attains a unique min-
imun in S. We shall need an alternative variational formulation that is equivalent
to the previous one

Mp=max{/ wg:wer’p(Q):/sz,/llepgl}.
aQ Q Q

Denoting a maximizer by i, we have

Apilp =0

where S is given by

. with the boundary condition

|Dﬂplp~2%%a = —1\%'
Hence, it.holds
: Up = M;/(p“l)ﬁp.
A key point is to observe that the quantity M, is uniformly bounded in
p € [2,00). To see this fact we use the trace inequality to obtain

M, =/ Upg S'Ilglloo/ mpl < 01”9”00/ |D'a'pl < Gl”!?“oo-
o0 a0 Q

Suppose that we have a sequence {up} of solutions to (1.1). We derive some
estimates on the family u,. Since we are interested in large values of p we may
assume that p > N and hence u, € C2(Q). Multiplying the equation by u, and
integrating we obtain,

[ fowrs (L) (L)
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where p’ is the exponent conjugate to p, that is 1/p’ +1/p = 1. Recall the following
trace inequality, see for example [E],

/a _1#Pdr < Cp ( /Q o7 + |D¢1de) ,

where C' is a constant that does not depend on p. Going back to (2.1), we get,

fiowrs ([ 107) " g ([ ool + Dz "

On the other hand, for large p we have

145(@) =150 < Gl =9l ¥ ( [ |DupPac) v

Since we are assuming that [, u, = 0, we may choose a point y such that u,(y) =0,
and hence

4006 < 00,0 ( [ 1D 7

The arguments in [E], pages 266-267, show that the constant C(p,Q) can be
chosen uniformly in p. Hence, we obtain

R4 1/p
ol < ([ 1a) " o¥epiacg 4 1ye (f Dugpraz)
Q N Q

Taking into account that p’ = p/(p — 1), for large values of p we get

([ 1Dwr) " < ([ lgl"')w

where ap — 1 as p — oo. Next, fix m, and take p > m. We have,

(/Q lDuplm) 1/m < Q3 (/Q |Dupgp> 1/p <ol (/69 lglp,) 1/p’

where IQ]#"% — Q|7 as p — co. Hence, there exists a weak limit in wim(Q)
that we will denote by vo,. This weak limit has to verify

( /. lDuoot"*)l/m < loj.

As the above inequality holds for every m, we get that v, € W1(Q) and moreover,
taking the limit m — oo,

[Duso| < 1, a.e. T € €.

3
3
-

Lemma 2.1. The subsequence up, converges to e, uniformly in Q.

Proof. From our previous estimates we know that

1/p
(/ |Du,|”dm) <cC,
Q

uniformly in p. Therefore we conclude that u, is bounded (independently of p) and
has a uniform modulus of continuity. Hence up converges uniformly to v,. a
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Proof of Theorem 1.1. Multiplying by u,, passing to the limit, and using Lemma

2.1, we obtain,
lim /{Duplpz Iim/ u,,gz/ Voo -
=0 Jo P=o0 Jan FZ19)

If we multiply (1.1) by a test function w, we have, for large enough p,

(p~1)/p 1/p
/ wg < (/ |Dup|p) (/ Ile”)
o0 (»-1)/p 1/p
< (/ 'uoogda-f-&) (/ ]lep) .
o0

As the previous mequahty holds for every § > 0, passing to the limit as p — co we

conclude,
/ wg < ( / voog) 1 Dwloo.
N aq

Hence, the function vy, verifies,

[ vmg=max{ [ wg: wewr=@, [u=0 IDule <1},
2.9} on Q

or equivalently,

“vaoo”oo = min {[]lelgo s w € Whe(Q), /ﬂw =0, /‘m wg < 1} .
a

Following [B] let us recall the definition of viscosity solution taking into account
general boundary conditions for elliptic problems. Assume

F:OxRY xsVXN LR
a continuous function. The associated equation
| F(z, Vu, D*u) =0
is called (degenerate) elliptic if
| F(z,€,X) < F(z,£,Y) ifX>Y.
Definition 2.1. Consider the boundary value problem

2.2) F(z,Du,D%u) =0 in Q,
' B(z,u,Du) =0 on Of1.

(1) A lower semi-continuous function u is a viscosity supersolution if for every
¢ € C2(Q) such that u — ¢ has a strict minimum at the point zo € Q with
u(zo) = ¢(zo) we have: If zg € OQ the inequality

max{ B(zo, $(z0), D¢(z0)), F(z0, D$(z0), D*¢(z0))} 20
holds, and if g € Q then we require _
F(z0, D¢(x0), D*¢(20)) 2 0.
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(2) An upper semi-continuous function u is a subsolution if for every ¢ € C*(Q)
such that u—¢ has a strict mazimum at the point zo € Q with u(zo) = ¢(zo)
we have: If xg € OQ) the inequality

min{B(zo, $(zo), D$(20)), F(zo, Dd(zo), D*$(z0))} <0
holds, and if xo € §} then we Tequire
F(zo, Dé(z0), D*$(20)) < 0.
(3) Finally, u is a viscosity solution if it is a super and a subsolution.

We will use the following notation
Fp(n, X) = —Trace(Ap(n)X),

where : ®
Ap(m) = Id+ (p— )"| ‘2”, ifn#£0,  Ap(0) = In,
and the notation |
(23) Bp(x,uy TI) = lnlp_z < 7]»”(1?) > ——g(.'z:)

It is not difficult to see that continuous (in ©2) weak solutions of (1.1) are indeed
viscosity solutions.

Lemma 2.2. Let u be a continuous weak solution of (1.1) for p > 2. Then u is a
viscosity solution of '

2 — -
(2.4) { Fp(Du, D*u) =0 in Q,

Bp(z,u,Du) =0 on 6Q.

Proof. For points zp € §2 and test functions ¢ such that u(zo) = ¢(xo) and u — ¢
has a strict minimum at zp the argument is a simple variation of the argument in
[JLM].

If zg € 02 we want to prove

max { | D¢(z0)1P~2 < D(xo), v(zo) > —g(2o),
—(p — 2)| D|P~* Acod(20) — | DIP~2Ad(z0) } 2 0.
Assume that this is not the case. Multiplying by (¢ — u)" extended to zero outside
of B(zo,r) we obtain

[ ipvppuDw-v < [ o~ ),
{¥>u} san{y>u}
and
[ ipurtoup@-wx [ -,
{>u} ann{y>u}
Therefore,

C(N,p) /{ 1o D= DU

< [ (DP2DY - |DuP2Du, DGt ) <0,
{¥>u} ’

again a contradiction. This proves that u is a viscosity supersolution. The proof of

the fact that u is a viscosity subsolution is similar. O
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Remark 2.1. If B, is monotone in the variable -g—:j Definition 2.1 takes a sim-
pler form, see [B]. This is indeed the case for (2.3). More concretely, if u is a
- supersolution and ¢ € C*(Q) is such that u — ¢ has a strict minimum at o with
u(zg) = ¢(zp), then

(1) if zo € Q, then

_{lD¢($o)\2A¢($O)
p—2

+ Bendlan) } 20,
and if
(2) If zo € 8Q, then ,
|Dé(z0)[P~*(D(zq), v(z0)) 2 g(zo).
~ Note however that (1.5) does not verify this monotonicity condition.
Proof of Theorem 1 2, (Sketch) First, note that —Axue = 0 in the viscosity sense
in Q by standard arguments (See {J} or [BBM].)

The point is to check the boundary condition. There are six cases to be consid-
ered.

Case 1: vy — ¢ has a strict minimum at zo € 9Q with g(zp) > 0. Using the
uniform convergence of up, to v We obtain that up, — ¢ has a minimum at some
point z; € Q with z; — z¢. If z; € Q for infinitely many ¢, we obtain

On the other hand if z; € 602 we have, by Remark 2.1,

8
|D¢!p‘_2(mz’)5§($i) > g(i).
Since g(zg) > 0, we have D¢(zo) # 0, and we obtain
|Dg|(z0) = 1.
Moreover, we also have
Q?( y=0
ov Zo) = 4

Hence, if voo — ¢ has a strict minimum at zg € 85 with g(zo) > 0, we have
. o
(2.5) max {mm{—l + | Dé|(z0), —5%(930)} ,-—Aoocb(a:o)} >0.

Case 2: vy — ¢ has a strict maximum at zg € Q with g(zo) > 0. The
argument is similar to Case 1.

Case 3: vy, —¢ has a strict maximum at zy with g(zy) < 0. Using the uniform
convergence of up, t0 Voo We obtain that u,, — ¢ has a maximum at some point
z; € Q with z; — zo. If z; € Q for infinitely many i, we can argue as before and
obtain
' ~Ao(z0) 0.
On the other hand if z; € 62 we have
_ 0

1D g2 (@) < g(z).

Since g(zo) < 0, D¢(zg) # 0 and we obtain

|Dol(z0) = 1,
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and

al/ (mg} < 0.

Hence, the following inequality holds

26)  min {max{1 - [Dgl(z0) 52 (a0)} , ~Bblon) | <0

Case 4: v, — ¢ has a strict minimum at zq € 0Q with g(zp) < 0. The
a.rgument is similar to Case 3.

Case 5: Vs — ¢ has a strict minimum at zp € Q with g(zo) = 0. Using the
uniform convergence of up, t0 Voo We obtain that up, — ¢ has a minimum at some
point z; € Q with z; — zo. If z; € Q for infinitely many i, we can argue as before
and obtain :

— A p(zg) 2 0.
On the other hand if z; € 95 we have
_ 0 :
DG (2) 35 (24) 2 g(z2)
If D¢(zo) = 0, then we have
d¢ _
If D¢(zg) # O we obtain

8¢ 1 pi—2
2wz (pgle0) ot
If |D¢(zg)| > 1 then we have |
—@2(2: )=>0
v ="
Therefore, the following inequality holds
(2.7) A max {H(|D¢|(a)o))g—f—(wo) , —Aoo¢(xo)} >0

If o belongs to the interior of the set {g = 0} then we have,

IDYP~2(a) 22 (21) > glas) = 0.

Hence, passing to the limit, we obtain
= (z0) 2 0.
Therefore

(2.8) ‘ max{-g%(mo) ,—Aooqb(:ro)} > 0.
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Case 6: Vs — ¢ has a strict maximum at zp with g{zo) = 0. The argument
is similar to Case 5. |

Remark 2.2. If u, is the solution of (1.1) with boundary data g and iy 15 the
solution with boundary data § = Ag, A > 0, then

u(z) = A~V D).

Therefore the limit ve, i3 the same if we consider any positive multiple of g as
boundary data and the same subsequence.

As a consequence the limit problem must be invariant by scalar multiplication of
the data g. One could naively conjecture that the limits depends only on the sign of
g, however this conjecture is not true as we will see in §3 below.

3. EXAMPLES .

Example: An Interval. In Q = (=L, L) with g(L) = —g(~L) > 0 the limit of
the solutions of (1.1), up, turns out to be ue(z) = z. It is easy to check that this
function is indeed the unique solution of the maximization problem (1.3) and of the
problem (1.5).

Example: The Annulus. Let 2 be the annulus

Q= {’I"l < |$Cl < 7‘2}.

Let us begin with a function go that is a positive constant g1 on |z| = r and &
negative constant go on |z| = 7o satisfyting the constraint

/ go=/ 91+/ g2 =0.
N |z]=71 jzi=T2

As we stated in the introduction, the limit vy is the cone,

(39) veo(2) = C(2) = (l—g—, [wl) -1l

To check this fact we observe that, by uniqueness, the solutions u, of (1.1) are
radial hence the limit v, must be a radial function. Direct integration shows that
it must be a cone with gradient one.

Note however that the cone (3.9) may not be a maximizer of (1.3) for another
nonradial boundary datum g with sign(g) = sign(go). In fact, consider a cone with
the vertex slightly displaced,

(3.10) Curo(z) = C — |z — Z0|.
One may concentrate g on |z| = r; near a point Z and on |z| = ri near a point
# preserving the total integral and the sign. It is easy to show that in this case

the centered cone given by (3.9) does not maximizes (1.3) since for a suitable g we
obtain

/ g(z)C(z) dz </ 9(x)Cyy (z) de.
a0 a0

Since this can be done without altering the sign of g we have that there is no
uniqueness for the limit problem (1.5). Moreover, the limit ve depends on
the shape of g not only on its sign (see Remark 2.2.)

Example: The Disk. Now let us present a more interesting and non-trivial .
example of a domain and boundary data such that uniqueness holds. Let © be a
disk in R?, D = {|(z,y)| < 1} with boundary datum g(z,y) > 0 for z > 0 and
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g(z,y) < 0 for z < 0 with [, ¢ = 0. In this case, by using arguments from the
Monge-Kantorovich theory we have the uniqueness of the limit limp oo up. See
[GMPR)] for the details.

[Am]
[ACJ]
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