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1 Introduction

The main purpose in this report is to describe briefly some results in [6], which have
recently been obtained jointly with Prof. H. Ishii, on representation of solutions of
Hamilton-Jacobi equations.

In connection with weak KAM theory, Fathi, Siconolfi, and others (see for instance
[2,4]) have recently investigated Hamilton-Jacobi equations on compact manifolds with-
out boundary and established a fairly general representation formula for their solutions.
A novel idea in this formula is in its crucial use of the Aubry set, which may be more
properly referred as the projected Aubry set. Indeed, as we will explain more precisely
later on, if u is the solution of H(z, Du) = 0, then the formula has roughly the form of

u(z) = inf{d(z,y) + ¢(y) | y € A},

where A is the Aubry set for H, ¢ is a given data, and d is the “Green function” for
H(z, Du) = 0 in terms of the max-plus algebra.

The results in [6] are concerned with the Dirichlet and state constraint problems for
Hamilton-Jacobi equations give representation formulas for viscosity solutions of these
problems. These formulas are variants or adaptations of the representation formula to
the Dirichlet and state constraint problems.

A very primitive form of our formula can be seen in the following well-known formula.
If u is a viscosity solution of the one-dimensional Dirichlet problem

|Du(z)| = |z|] forze(—-1,1) and wu(z)=0 forze{-1,1},
then
(1) u(z) = ua(z) := min{%(l - |z[%), %l:cl2 +a} forallze(~1,1]

and for some constant a € [—1/2,1/2].
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In this example the Aubry set .Ap comprises of the origin and all the boundary points
—land 1. Let d(- ,y) denote the maximal viscosity solution of | Dd(z,y)| < |z| in (—1,1)
satisfying d(y,y) = 0. Then we have

d(z,y) =

T
tlat],
E)

and, in particular,
uq(z) = min{a + d(z,0),d(z, —-1),d(z, 1)}.

We should remark that a representation formula like (1) has been already obtained in
Lions [1] for the multi-dimensional Hamilton-Jacobi equation |Du| = f(z), where f > 0
and f vanishes only a finite number of points z.

Our approach to establishing the representation formula does not depend on any
variational formulas (especially in the treatment of Aubry sets) and therefore is based
only on PDE techniques. This PDE approach is hidden or at least is not clearly stated
in previous work, but the presentations here and in [6] may hopefully clarifies this point.

We will be dealing only with viscosity solutions of Hamilton-Jacobi equations in this
note and thus in this note we mean by “solutions”, “subsolutions”, and “supersolutions”
viscosity solutions, viscosity subsolutions, and viscosity supersolutions, respectively.

This report is organized as follows. In Section 2 we give some preliminaries and
our assumptions. Representation formulas for solutions are treated in the case of the
Dirichlet problem in Sections 3 and 4 and in the case of the state constraint problem
in Section 5.

2 Assumptions and Preliminaries

Let Q be a bounded domain in R™. We consider the Hamilton-Jacobi equation
H(z, Du(z)) =0in .

We give a list of assumptions on the Hamiltonian H:
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Assumptions.

(HO) The function H : Q x R™® — R is continuous in Q x R™.
(H1) There is a subsolution ¢ € C(Q) such that
Hi¢l(z) < 0in Q.
For notational simplicity, we write H[¢|(z) for H(z, D¢(x)).
(H2) The function p— H(z,p) is convez for each z € S.
(H3) For any z € Q, there is M > 0 such that
{r eR" | H(z,p) < 0} C B(0, M).

Remark 1. H(z,p) := |p|~ |z satisfies (H0)-(H3). As we observes in the introduction,
in general, the uniqueness of the Dirichlet problem for H = 0 in Q does not hold under
(HO)-(H3). *

Hereinafter we give the preliminaries to define the Aubry set.

WedeﬁriedH:QxQARby
du(z,y) := sup{v(z) € C(Q) | H[v] < 0in Q,v(y) < 0}.
We note the following properties of dy.
1. H[dy(",y))(z) <0in Q for any y € Q.
2. Hldg(-,y)l(z) =0in 2\ {y} for any y € Q.

Property 1 is easy to be verified by using the stability in viscosity theory. We can verify
property 2 by using the Perron method.
We consider the Dirichlet problem

{ H(z, Du(z))

u

0 in Q,
g on O

Here H and g are given functions on Q x R"™ and 89, respectively. We assume that H
satisfies (H0)-(H3), and g is continuous function on 8. Moreover, 2 C R" is assumed
to satisfy the following assumption.

(D) The function dg : Q x Q — R defined by

(DP)

de(z,y) == inf{/T |IX@#)|dt | T>0,X € C(z,y, 1)},
0
where
Ca,y,T) = {X € AC(0,T]) | X(0) = 2, X(T) =3, X()) € 2 0 < ¢ < T)},

is uniformly continuous in Q x Q.
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Remark 2. A sufficient condition for a domain Q to satisfy (D) is that Q is bounded
and OS2 is Lipschitz.

Proposition 1. Let 2 satisfy (D). Then

dH(zay) < MdE(x7 y)9
where M is given by (H3), for any z,y € Q.

Proof. Let v be a subsolution of H[v] < 0 satisfying v(y) < 0. Then v is a solution of
|Dv| < M by (H3). Set ve(z) := v * p.(z), where € > 0 and Pe is a standard mollifier
kernel. We have |Dv,| < M. Fix any T > 0 and any X € C(z,y,T). Then we have

T . T - T -
ule) =) = [ Du(X () X0yt < | ipexenixwies < m [ ke

Hence we have
ve(z) — ve(y) < Mdg(z,y).
Sending € — 0 yields ’
v(z) — v(y) < Mdg(z,y).
By the arbitrariness of v, we have consequently
dH(x’ y) < 'MdE(iL‘, y)'
| O

Remark 3. Proposition 1 means that if Q satisfies (D), dy : @ x Q — R is uniformly
continuous in 2 x Q. Thus we may estend uniquely the domain of definition of dyy to
Q x Q by continuity. Hereafter we denote the resulting function defined on Q x 0} again
by dH.

Remark 4. By (H3) and (D), any viscosity subsolutions of H =0 are Lipschitz con-
tinuous on Q.

3 Main theorems for the Dirichlet problem

In view of the properties of dy stated above, we define the Aubry set as follows.
Definition 1. Define the set Ap as

Ap = {ye Q| Hldy(-,y)] =0in Q}UN
= {y€Q| Hldu(,y)] =0 in Q}.

We call Ap the Aubry set for the Dirichlet problem.

We show the main properties of the Aubry set Ap in the following propositions.
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Theorem 2. Let u,v € C(Q) be viscosity solutions of H=0. Then
u(z) = v(z) on Ap = u(z) = v(z) on Q.
Theorem 3. Let g: Ap — R be bounded and satisfy the compatibility condition, i.e.
9(z) — 9(y) < du(z,y) for z,y € Ap.
We define uy : @ — R by
ug(x) := inf{g(y) + du(z,y) | y € Ap}.
Then u, € C(€Y) and uy(x) = g(z) for any z € Ap. Moreover, H[u,)(z) =0 in .

Corollary 4 (Representation formula for the Dirichlet problem). Let g : Ap — R be
bounded and satisfy compatibility condition and let u : Q@ — R be a solution of

{H(w,Du(z)) 0 in Q,

g on AD.

ion

u

Then u(z) = uy(z).

4 Skétch of proof

Lemma 5. For a,b € R, let u,v € C(Q) be H[u] < a, H[v] < b in Q, respectively. Set
w(z) := Au(z) + (1 — A)v(z) for A € (0,1). Then

Hw] < Xa+ (1= A)b in Q.
Proof. Fix £ € Q. We choose a test function ¢ € C'({0) satisfying
w(E) = ¢(£), u(z) < é(z) in Q.
Here for a > 0, we set @, : QI x ! — R as
Ba(2,y) = Au(z) + (1 = Nv(y) — ¢(z) — ofz — y|>.
We cilopse (Tas Ya) € Q x 1 such that |

D(xy,Ys) ;= max D,.
(a1 o) axt

Then
‘I)a(mm Ya) 2 Pa(Ya) Ya)-

Therefore
Mu(ze) - u(ya)) - (¢(ma) - ¢(ya)) > alz, — yalz'



Moreover since u is Lipschitz continuous and ¢ is C*-class on {, we gain
a|zy — Yol < C,
where C := ALip(u) + maxg [D¢|. Taking subsequence, we get
(Za —Ya) = p (a — ).

Moreover
Tos Yo — & (0 — 00).
Thus we may assume z,, Y, € §2, if @ > 0 is enough large. The maps:

z — u(z)-— (i—da(m) + -}Ix ~ Yal? — . ; A”(ya))

o 1 A
T-A T3 ) — T3 u(E))

take maximum at z,,y, and u,v are a subsolution of H = a,H = b, respectively.
Therefore

v = u(e) - ((oglea -yl +

H(za,5(D9(z2) + 20(za ~ 1)) < a,
H(yay 75 (200a ~ ) < b

Sending o — oo yields

H(5, 5(D8(@) + ) < o,

HE 75(-2) < b,

by the continuity of H. Noting the convexity of Hamiltonian, we find that

i

H@D)@) = HEAGD86) +29) + (1~ M7= (~20)

< AH(E,5(D4(E) +39) + (1 = NH(E =< (~29))

< Aa+(1-A)b

Consequently we get H[w] < Aa + (1 — A)b. a
This comparison result is well known.
Lemma 6. Fora >0, let u,v € C(Q) be H[u] < —a,bH [v] 2 0 in Q, respectively. Then
u(z) < v(z) on 8Q = u(z) < v(z) on .

"The next lemma overcomes difficulties in the proof of Theorem 2. Here we show a
sketch of the proof of this lemma. Theorem 2 is a corollary of this lemma.



Lemma 7. Let K C {1\ Ap be compact set. Then there evist 6x > 0, wx € C(Q) such
that

H(IL‘, DwK(:c)) < —dg on K,
H(z, Dwk(z)) < 0in Q.

Proof. Fix z € 1\ Ap. Noting that dg(z, 2) is not a supersolution at {z}, we may
choose a test function ¢ € C*(Q) such that

dy(z,2) = ¢(x) 20 inQ, du(zz2) = ¢(2),
H(z,D¢(2)) < 0.
If we choose 8, > 0 well,
H(z,D¢(z)) < =0, for Vz € B(z,4,).
We set

We may choose 0 < r, < §,,€, > 0 such that ¢, is continuous in Q. By the properties
of ¢ and dy, we find that 1), satisfies

Hiy.]<0 inQ, HR,)<~5, in B(z,r,).
Next we fix K C ©\ Ap such that K is compact. Then {B(z,7.)},cm4, (Here r,

is chosen as before.) is an open covering of K. Because K is compact, there are

21,...,2zy € &\ Ap such that K C Uﬁ;l B(z;,7,,). Set

N
0 = i=rf_i.?Nrg, wi(z) = ;1/),..(:1:).

By lemma 5, we verify that wg, dx satisfy claims of this lemma. O
By the definition of dj;, we have the following proposition.
Proposition 8. Let u € C(Q) be a solution of H{u] < 0 in Q. Then
u(z) — u(y) < du(2,y) for ¥,y € .

Here we recall the viscosity theory due to Barron and Jensen. The definition of
viscosity solution in this theory is the following.

Definition 2. u € C(Q) is a BJ viscosity solution of H(zx, Du(z)) = 0 in Q if

H(z,p) =0 for any z€Q, any p€ D u(z).
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If Hamiltonian satisfies (H0)-(H3), the above definition of viscosity solution is equiv-
alent to the usual definition of viscosity solution due to Crandall and Lions. (see The-
orem 2.3. in [5]) Using this equivalence, we can verify that the function u, defined in
Theorem 3 is a solution of H =0 in 2.

A sketch of proof of Theorem 3. We show the continuity of u,. For y. € Ap, {g(vs) +
dy(z, Yn) Inen is uniformly bounded and equi-Lipschitz continuous. Thus we may take
a subsequence such that

9(yn,) + du(z, yn,) — u, uniformly as i — oo

by the Ascoli-Arzela theorem. Consequently u, is continuous on Q.

We can verify that u; = g on Ap, noting the definition of dy and the compatibility
condition. Hereafter we will prove u, is a solution of H = 0. We may choose a test
function ¢ € C'(f2) such that

uy(z) 2 ¢(z) in Q, uy(2) = &(2),
ug(x) — ¢(z) > |z — £* in Q.

Choose r > 0 such that B(£,r) C Q. By the definition of u,, for n € N there exists
Yn € Ap such that

o, 1 .
Ug({l?) + ;,; 2 g(yﬂ) + d}[(iD, yn)-
Set fa(x) := g(¥n) + du(z, yn) and choose z,, € B(%,r) such that

(fa = O)aw) = _min (f =)@

z€B(&,r

By the way of choice of the test function, |z, — £|° < 1/n. Thus we get z, — &.
Moreover by the definition of the Aubry set, f, is a solution of H = 0. In view of the
equivalence to a BJ viscosity solution and get

H(z,, ng(a:n)) = 0.

Sending n — oo here, we get
H(2, Dg(2)) = 0.

O
Corollary 4 is a direct consequence of Proposition 3 and Theorem 2.
5 State Constraint Problem
Now we consider the state constraint problem.
H(z,Du(z)) < 0 in Q, (SC)
H(z,Du(z)) > 0 on &

39



40

Here H and (Q satisfy the same assumptions in the case of the Dirichlet problem. As
before we define dg by

du(z,y) :=sup{v(z) € C(Q) | H] < 0in Q,v(y) < 0}.
We have the following lemma.
Lemma 9. d(:,y) is a solution of (SC) on Q\ {y} for any y € Q.
Proof. We ‘can show easily by the stability in viscosity theory that
H(z, Ddyg(z,y)) <0 in Q.
What we need to proove is:
H(z, Ddy(z,y)) 20 on Q\ {y}.

We will show this by contradiction. Assume that the above statement were not true.
Then we may choose the test function ¢ € C*(f2) such that for z € O\ {y},

d]{(x, y) - ¢($) 2 0 on n_\ {y}$ dH(z’ y) = ¢(Z),
H(z,D¢(2)) < 0.
Thus we may choose §, > 0 such that
H(z,D¢(z)) <0 in B(z,6,).

Here if 6, > 0 is enough small, we may assume that B(2,4,) C 0\ {y}. Define
w,:Q — R by

) = G T

If0 < r, <4,,¢, > 0 is enough small, w, is continuous on . Noting the properties of
¢ and dy, we find that w, is a subsolution of H = 0. Moreover

wo(y) = du(y,y) =0, wy(2) = ¢(2) + €&, > dy(2,y).
But this is the contradiction of the definition of d. O
Now we define the Aubry set for the state constraint problem as follows.
Definition 3. Define the set Asc as
Asc := {y € Q| dy(-,y)is a solution of (SC)}.
We call Asc the Aubry set for the state constraint problem.

We show main theorems about the state constraint problem below.



Theorem 10. Assume Agc # 0. Let g : Asc — R be bounded and satisfy the compat-
ibility condition. Define u, : §) by

uy(z) == inf{g(y) + du(z,y) | y € Asc}.
Then uyg is continuous on ¥ and the unique solution of

H(z,Du(z)) < 0 in
{H(z,Du(w)) >0 on Q,

U g on Asc.

Corollary 11 (Repr&ientatioﬁ formula for the state constraint problem). Let g :
Asc — R be bounded and satisfy the compatibility condition and u : & — R be @
solution of

H(z,Du(z)) < 0 in Q,
H(z,Du(z)) > 0 on 9,
u =g on Asc.

Then u(z) = uy(z).

The propositions above can be proved in the same way as those for the Dirichlet
problem. The following example examines a simple case:
Example 2: Consider the state constraint problem.

{lDu(x)l < flz) i (-2,2),
|Du(z)] 2 f(z) in [-2,2],

where
f(z) = -r-1 on [-2,-1), z+1 on [-1,0),
“ 1l =z+1 on [0,1), z—1 on [1,2].

Then we obtain
Asc = {-1} U {1},
Hz+1? on [-2,0),
= { —%—(z -12+1 on [0,1),
zz-12+1 on [1,2],

z+12%+1 on [-2,-1),
dp(z,1) =¢ —3(z+1>?+1 on [-1,0),
3@-1)?% on [0,2].
The solutions of this example are
Ua,8(Z) = min{dy(z, ~1) + ,du(z,1) + 8}

Here |a — 3| < dy(—1,1) = 1. The figure of u, g is as follows.
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