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Abstract

We introduce a parametric representation of fuzzy numbers with bounded supports as well as we consider
a Banach space including the set of fuzzy numbers, where the addition in the Banach space is the same one
due to the extension principle but the difference and scalar products are not the same as those of the principle.
In this article we treat initial value problems of fuzzy differential equations and give existence and uniqueness
theorems and sufficient conditions for the continuous dependence with respect to initial conditions of solutions.

1 Introduction

Let I = [0,1]. Denote a set of fuzzy numbers with bounded supports by F* as follows (e.g. [6, 7]): The
following definition means that a fuzzy number can be identified with a membership function.

Definition 1.1 Denote a set of fuzzy numbers with bounded supports and strict fuzzy convezity by
Fit = {u: R — I satisfying (i)~(iv) below}.
i) p has a unigue number m € R such that u(m) = 1 (normality);
(i) supp(p) = cl({€ € R : u(€) > 0}) is bounded in R (bounded support);
(iii) p is strictly fuzzy convez on supp(u) as follows:

(8) if supp(u) # {m}, then
p(M& + (1 — N&) > minfu(é), u(é2)]

for &1,62 € supp(p) with &1 #£ & and 0 <A< 15
(b) if supp(u) = {m}, then p(m) =1 and pu(§) =0 for { # m;
(iv) u is upper semi-continuous on R (upper semi-continuity).
p is called a membership function if u € Ft. Fuzzy numbers are identified by membership functions. In what
follows we denote the a—cut sets of & by
pa = La(p) = { € R: p(§) 2 a}

for a € (0, 1] By the extension principle due to Zadeh, the binary operation between fuzzy numbers is nonlinear.
Tt does not necessarily hold that (k; + k2)u = ki + kap for a membership function u € F§* and k; € R,i=1,2
with k; + k2 > 0,k; <0< ka.

We introduce the following parametric representation of u € F* as

z1(a) = min La(p), @2(a) = max La(p)



for0<a<1and

1(0) = min supp(p), 22(0) = max supp(u).

From the strict fuzzy convexity it can be seen that a fuzzy number z = (1, z2) means a bounded continuous
curve over R? and 7 () < z3(a) for o € I (see [8].)

In Section 2 we show that the set of fuzzy numbers F* construct a Banach space by the Puri-Ralescue’s
method .

In Section 3 we discuss differentiation and integration of fuzzy functions. In the case of differentiation our
representation of fuzzy numbers is enable to calculate addition , scalar product and difference without difficulties,
but it is not easy to calculate the difference by the extension principle. Moreover we define the integral of fuzzy
functions by calculating end-points of a—cut sets.

In Section 4 we treat initial value problems of fuzzy differential equations z' = f(t,z). We give existence
and uniqueness theorems of the fuzzy differential equations and we show sufficient conditions for the continuous
dependence with respect to initial conditions of solutions.

2 Induced Normed Space of Fuzzy Numbers

Let g : R x R — R be an R—valued function. The corresponding binary operation of two fuzzy numbers
z,y € F& to g(x,y) : F&t x F* — F¢t is calculated by the extension principle of Zadeh. The membership
function py(5,y) of g is as follows:

Hg(z,y) &= E=:(‘;E€’) min(u; (§1), #2(é2))

Here ,£1,&2 € R and p, u2 are membership functions of z,y, respectively. From the extension principle, it
follows that, in case where g(z,y) =z +y,

I-‘z+y(£)

= (e min(k(&)

=max{a € I: { =6 + &2, & € La(mi),i=1,2}
=max{a € I: £ € [z1(a) + y1(a), z2(a) + y2(a)]}.

Thus we get
z4+y=(T1+y,22+p2).
In the similar way we have
z-y=(21 - Y2, 22— )
Denote a metric by
d(z,y) = sup max(|z1(e) — (@)}, |z2(@) = va(@)])
[

for z = (1, %2), ¥ = (y1,%2) € 3"
Theorem 2.1 F¢ is a complete metric space in C(I)%.

Proof See [8].
According to the extension principle of Zadeh, for respective membership functions gz, puy of z,y € F¢* and
A € R, the following addition and a scalar product are given as follows :

Hory(§) = sup{a€[0,1]:
E=bL+6&, 6 € La(l‘z)’£2 € La(ﬂ'u)};
kz(§/2)  (A#0)
0 (A=0, £ #0)
sup pz(n) (A=0, £{=0)
ne€R

i

Baz(§)

172



In [5] they introduced the following equivalence relation (z,y) ~ (u,v) for (z,y), (u,v) € F§t x Ft,i.e.,
(z,y) ~ (u,v) =z +v=u+y. (2.1)

Putting £ = (21,22),y = (y1,42), 2 = (u1,u2),v = (v1,v2) by the parametric representation, the relation (2.1)
means that the following equations hold.

Titvizui+y (i=1,2)

Denote an equivalence class by (z,y) = {(u,v) € Fg* x Ft : (u,v) ~ (z,9)} for z,y € F* and the set of
equivalence classes by

F)?/ ~={(z,9) : 2,y € F}
such that one of the following cases (i) and (ii) hold:
(i) if (z,9) ~ (u,v), then (z,) = (u,v);
() if (z,9) # (u,v), then {z,y) N (u,v) = 0.
Then (F?%)?/ ~ is a linear space with the following addition and scalar product

(29) + () = (2 + 1,y + ) (2:2)
Az, \ (A>0)
May) = { ‘«3»”3, (-Nz) (A<0) 23)

for A € R and (z,y), (u,v) € (F*)2/ ~ . They denote a norm in (Fzt)?/ ~ by
Il {z,9) = S:I;dH(La(l‘z):La(”‘v))-

Here dy is the Hausdorff metric is as follows:

dr(L , L =max( su inf - suj inf -
1 (La(piz), La(py)) (eei..%’,,.nerf.wn'f nl,ﬂehl()”.) fGLa(#y)M n})

It can be easily seen that || (z,y) ||= d(z,y). Note that || (z,y) ||= 0 in (F}*)2/ ~ if and only if z = y in F§*.

3 Fuzzy Differential and Fuzzy Integral

In this section we consider fuzzy function in a Banach space induced by the normed space (F#t)?/ ~ . It can
be seen that for z,y € FJ*
(,y) = (z,0) +(0,y) = (z,0) — (y,0).

Denoting a set of fuzzy numbers by
Xo = {(z,0) € (53")*/ ~: 2,0 € 7'},

which is & Banach space ( see e.g., [8]). Then we have (F§*)?/ ~= X — Xo.

Denote the completion of (Fg*)?/ ~ by X. Let J be an interval in R. In what follows we consider a function
f:J — X a8 f ={(f1, f2),0). Here f has the parametric representation of f = (f1, f2), where f;(t,a) fori =1,2
are the end-points of the a—cut set of f In this section we give definitions of differentiation and integration of
fuzzy functions.

A fuzzy function f : J — X is said to be differentiable at o € J, if there exists an 5 € X such that for any
€ > 0 there exists a § > 0 satisfying

I f(@) = f(to) _

r—e nl<e
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for t € J and 0 < |t — to| < &. Denote = f (to) = %(to). f is differentiable on J if f is differentiable at any
¢ € J. In the similar way higher order derivatives of f are defined by f® = (f*-1)) for k = 2,3,-... (Cf.
(2, 3])

le [5] they define the embedding j : F* — X such that j(u) = (u,0). The function f : J — F¢* is
called differentiable in the sense of Puri-Ralescu, if j(f(-)) is differentiable. Suppose that f is differentiable at
t € J in the above sense, denoted the differential f (t) € F¢*. Then we have L36(f®) = (f (t),0),i.e., f is
differentiable in the sense of Puri-Ralescu. In [4, 5] H-difference and H-differentiation of f is treated as follows.
Suppose that for f(t + h), f(t) € F§t, there exists g € F§* such that f(t + h) = f(t) + g, then g is called to the
H-difference, denoted f(t+ h) — f(t). The function f is called H-differentiable at ¢ € J if there exists an n € F§*

such that both hm&o I—@i—}%—:—ﬁﬁ and hlix-li-o ﬂt)_';:ﬂ exist and equal to n. If f is H-differentiable, then
F&)y=n.
Proposition 3.1 If f is differentiable at to, then f is continuous at to.

Theorem 8.1 Denote a parametric representation of f by f = ((f1, f2),0). Here fi, fa are functions defined

on I xJ to R and the left-, right-end point of the a—cut set Lo(f(t)). If f is differentiable at ty, then it follows -

that there ezist £ f1(t, @), & f2(t, @) and that
. o, &
I (to) = (5;F1 35 f2) (to)-
Theorem 3.2 It follows that f (t) = 0 if and only if f(t) = const € X.
In the following definition we give one of integrals of fuzzy functions.

Definition 3.1 Let J = [a,b] and f be a mapping from J to X. Divide the interval J such that a =ty < t; <
n
ce<tp=band T € [ti-1,t)] fori=1,2,---,n. f is integrable over J if there exists the limit I‘{ilmozf(r,-)Ai,

i=1

where A; =t; — iy, |Al = é’?g"u A;. Define
. . .
/ f(8)ds = Iiillgo Z Flr)As.
@ i=1
Proposition 3.2. Let f be integrable over J. Then the following statements (i)-(ii) hold.
(i) f is bounded on J, i.e., there exists an M > O such that || f(t) |[< M fort e J.
(ii) If f(¢) € X fort € J, then [} f(s)ds € X fort e J.
Proposition 3.8 If f is continuous on [a,b] then f is integrable over the interval.

Theorem 3.3 Let f: J — X with f = {(f1, f2),0) be integrable over [a,b]. Then it follows that

b b b
[ #tets = ([ s, [ pateran 0
a a a
Conversely, if f1, fz are continuous on [a,b] X I, then f is integrable over [a, b).
Proposition 3.4 Let f be continuous on the interval [a, b].
t ,
Denote F(t) = / f(s)ds. Then the following properties (i) and (ii) hold.
3
(i) F is differentiable on [a,b] with F(t) € X and F' = f;
(ii) For ty,t; € [a,b] and t; < t2, we have f:" f(s)ds = F(t3) — F(t,).
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Proposition 3.5 Let f is continuous on [a,b]. Then it follows that

b b
I / f(s)ds ||< / | (s I ds.

Theorem 3.4 Let f : [a,b] — X be continuous on [a,b] and differentiable on (a,b), Then it follows that there
exists a number c € (a,b) such that

I £8) = f(a) < (—a) | £ () Il -

Definition 3.2 Let f: J — X™ such that f(t) = (f1(£), f2(), -+ ,fn(’t))T. f is differentiable on J if each f; is
differentiable on J for i = 1,2,--+,n. Define the derivative £ () = (f1(2), fa(t),- - ,f;(t))T.

Let f: [a,b] = X™ such that
£(&) = (f1(8), f2(t),~ -, Falt))T- f is integrable over [a,b] if f; is integrable over [a,b] for i =1,2,---,n. Define
the integral

/: Fla)da = ( /: fi(e)ds, fab e [ "

Tt can be easily proved that similar theorems and propositions concerning to X™~valued functions to ones in
this section hold.

4 Fuzzy Differential Equations
In this section we consider the initial value problems of the following type of fuzzy differential equation

z (t) = f(t,z(t) (4.4)
z(to) = To. | (4.5)

Here f: R x X" — X™ to € R,z0 € X™. .
We denote the initial value problem of higher order fuzzy differential equations by

2™ = f(t, z(t), (), -, z""D(B)) (4.6)
z®(ty) = 2%, k=0,1,---,n—1,

where f : R x X" — X,to € R,z € X. Define z1(t) = 2(t),22(t) = ' @), -+, Zn(t) = z(*~1)(t) s0 that the
above problem can be reduced to Problem ((4.4),(4.5)). In this section we show some kinds of conditions to
solutions of ((4.4),(4.5)) for the existence, uniqueness and continuation.

Definition 4.1 Define a norm || p ||= max(|t},|| z ||) for p = (t,z) € R x X™. Let pp € R x X. Denote
a neighborhood of py by U(po,8) = {p € R x X™ :|| p— po ||< 8} and a relative neighborhood of po by
V(po,8) = U(po,8) N(R x X™) for § >0. Let V C R x X™. V is said to be a relatively open subset mRx X",
if for any p € V there ezists a relative neighborhood V (p) € R x X™ such that V(p) C V. In the similar way we
define relatively open subsets in X™, X" x R,R x X" x R.

Consider a function f : V — X", where V is a relatively open subset in R x X™. f is said to satisfy a locally
Lipschitz condition if for any p = (to,20) € V there erists a relative neighborhood V(p) C V aend o number
Ly > 0 such that

" f(t,1:1) - f(t7m2) "S LP " Ty — T2 "
Jor (t,21), (t,22) € V(p).

Theorem 4.1 Let f : V — X™ satisfy the locally Lipschitz condition and be continuous on V. Then there exists
one and only one solution = of ((4.4),(4.5)) defined on [to, to + 1] passing through p = (to, o) € V, wherer > 0.

Suppose that the same conditions of Theorem 4.1 hold. Denote an interval J = {[to,T) € R : there exits
a solution z of ((4.4),(4.5)) on [to,T)}. For J € J there exists a unique solution of ((4.4),(4.5)) on J. Denote
J(to, %0) = UsezJ and z4(to,z0,t) = 24(t) for t € J € J. For t € J(to, o) there exists a unique value z;5(t).
The function 7 : V x J(to,2o) — X" is said to be the solution of ((4.4),(4.5)) with the maximal interval
J(to, Zo). Denote a mapping z; : R X X" x R — X™ defined on D(f) = {(to, o, %) : (to,%0) € V)t € J(to,%0)}-
See [9].
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Theorem 4.2 Suppose that the same conditions of Theorem 4.1 hold. Let J = [to, T] C J(to,zo) N J (to, ),
where T > ty. Then there exists an M > 0 such that

| £(to, 2o, t) — % (to, To, ) ||< M || zo — 20 |
forteJ

Consider the following fuzzy differential equation

o (t) = f(=(2)). 4.7

Corollary 4.1 Let f:V — X" satisfy the locally Lipschitz condition on V, where V € X" is a relatively open
subset. Then there ezists one and only one solution x of ((4.7),(4.5)) defined on [to,to + 7] passing through
? = (to,z0) € V, wherer > 0.

In the similar discussion concerning (4.4) the maximal interval J(#p.2o) and the corresponding to solution
x4 can be defined for (t,z0) € R x V (see [9]). It can be seen that

J(to,z0) = J(0,%0)+to
{t+1to:t € J(0,z0)}
and for t € J(tg, zp) we get
z¢(to, o, t) = z£(0, zo,t — to).
Thus we denote J(zo) = J(0,Zo), z#(%o,") = (0, o,*) and Do(f) = {(to,20) € V x J(z0)}.

Theorem 4.8 The same conditions of Corollary 4.1 hold. Then D (f) = {(zo,t) € Do(f) : t > 0} is a
relatively open subset in X™ x R and the mapping 5 is continuous on Do(f).

In what follows some type of Lipschiz condition plays an important role in discussing properties of solutions
for ((4.4),(4.5)).

Condition (L) For any p = (tg, zo) € V there ezists a relative neighborhood V(p) C V and a number L, > 0
such that

I £t 21) = ft2,22) 1< Ly || (2s21) — (t2,2) ||
for (t1,21), (t2, 22) € V(p).
A function y : J = R x X™ is said to be differentiable at ¢ € J if
y(t +h) = y(t) + Ch + o(h)
as h — 0, where ¢ € R X X™ and o(h)/h — 0, denoted ¢ = y/(t).

Theorem 4.4 Consider Problem ((4.4),(4.5)). Let f : V — X™ satisfy Condition (L), where V is a relatively
open subset in R x X™. Then D (f) = {(to,%0,t) € D(f) : t > to} is a relatively open subset in R x X™ x R
and the mapping =y is continuous on D(f).
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