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Weakly amenable group and CBAP
RAKERERZEPER KH H— (Naokazu Mizuta)

Graduate School of Mathematical Sciences,
University of Tokyo

In this note, we discuss weak amenability of groups which is a general-
ization of amenability in some sense.

Definition 1. A discrete group I' is said to be weakly amenable if there exists
a net (yp;) of finitely supported functions on I' such that y; — 1 pointwise
and lim sup [|my,||cc < C. Recall that the Herz-Schur norm ! |jmy|e is < C
iff there exist families of vectors(£s)ser and (m:)ser in a Hilbert space H such
that o(st™!) = (m, &) for every s € T and sup, ser [|Esllllmll < C. Since
lmylles < llollz in general, we may replace the term ”finitely supported”
in the above definition with "square summable”. The Cowling-Haagerup
constant Aqp(I) is the infimum of all such C for which such a net (;) exists.
We set Ap(I') = 00 if T is not weakly amenable.

Example 1. The following are easy from the definition.
1. If T is an amenable group, then Ay () = 1.
2. If A <T is a subgroup, then Ag(A) < Aw(T).
3. If {I;} is a directed family of groups, then Aq,(UT;) = sup; Aep(T).
Here are some non-amenable examples.

Theorem 1. A group " which acts properly on a tree weakly amenable with
Aa(T) = 1. In particular, free groups and SL(2,Z) are weakly amenable with
their Cowling-Haagerup constant 1.

'The Herz-Schur multiplier m,, is the Schur multiplier that is associated with the
kernel(s,t) — @(st™1) so that m,(A(s)) = @(s)A(s) for s € T,



Let T be a tree and we identify its vertex set with T. We denote by
dist(z,y) the graph distance of vertices z,y € T. Let x, be the charac-
teristic function on {(z,y) € T?dist(z,y) = n} and denote by m,, the
corresponding Schur multiplier on B(£%(T)).

Lemma 1. We have ||my, ||cs < 2n for every n.

Proof . Fix a geodesic ray w in T, i.e. w is an isometric function from Z,
into T. For every z € T, there exists a unique geodesic ray w, which starts
at  and eventually flows into w. It is not hard to see

n [n/2]
On(,0) = 3 _ (09 Oure(n-t)) = 3 Xn-2m(2, ¥)

for any z,y € T. In particular, xn, = 6 — 8,_2 for every n > 2. Since we
have |lmg, |lco < n + 1, we are done.

Lemma 2. Let T be a tree which is identified with its vertex set. Then,
there ezists a sequence of finitely supported functions ¢, : Zy — [0, 1] such
that @, — 1 pointwise and if we define kernels k, : T x T +— [0,1] by
kn = pn(dist(z,y)) for z,y € T, then limsup ||mg, |l < 1.

Proof . For any n > 1, the kernel

¥n(z,9) = exp(~-dist(z,))

is positive definite and hence my, is a u.c.p map on B(£%(T)). On the other
hand, since xx¥n = e s X« for every n and k, Lemma 1 implies that

-k
13" Maagalles < limyalles + 1D Maller < 1+ 2ke™.

k<K E>K k>K

Thus, if K, is chosen sufficiently large, then the kernel vn = Y i<k Xk¥n
satisfies ||y, |lee < 1+ n~1. Since w,(z,y) depends only on dist(z,y) and
¥n — 1 pointwise, we are done.

Proof of Theorem . Suppose that a group I' acts on a tree T and take func-
tions ¢, as in Lemma 2. Fix a base point o in T and consider the pseudo-
length function I(s) = dist(o,s0) on I'. Then, the functions ¢, on T, de-
fined by ¥,(s) = ¢n(l(s)) for s € T, satisfy that ¢, — 1 pointwise and
lim sup,, ||my, [lce < 1. Moreover, the functions 1, are finitely supported if
the I'-action on T is proper and we are done.
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Their exist weakly amenable groups whose Cowling-Haagerup constants
are greater than 1. They are lattices in real simple Lie groups of rank one.
Before stating the theorem, we note that the definition of weak amenability
extends to a locally compact group G. Moreover, for a lattice I' < G, one has
Aw(G) = Aw(T). The result is summarized in the following theorem whose
proof is beyond the scope of this note and we refer the reader to [CH].

Theorem 2. We have the following.
1. Ap(SO(1,n)) =1 and Ap(SU(1,n)) = 1.
2. Aw(Sp(1,n)) = 2n — 1 and Acp,(Fy(—a0)) = 21.

3. If the real rank of G is greater than or equal to 2, then Ay (G) = oo.
In particular, Aw,(SL(2,Z) x Z?) = co.

Definition 2. We say a C*-algebra A has the CBAP (completely bounded
approximation property) if there exists a net of finite rank maps 6; : A — A
such that §; — id4 in the point-norm topology and sup ||6;]jc, < C. The
Haagerup constant Ac,(A) is the infimum of all such C for which such a net
(6;) exists. We say Ab(A) = 0o if A does not have the CBAP.

We say a von Neumann algebra M has the weak*CBAP if there exists a
net of (weak*-continuous) finite rank maps 6; : M — M such that 6; — id,,
in the point-weak*-topology and sup||6;|lcc < C. The Haagerup constant
Acp(M) is the infimum of all such C for which such a net (6;) exists. We set
Aw(M) = oo if M does not have the weak* CBAP.

We trust that Ac, for C*-algebras and von Neumann algebras are not mixed
up. We remark that in the definition of weak* CBAP, it does not matter
whether weak*-continuity of finite rank maps is required or not. This fact is
non-trivial, but we do not give a proof because it requires the ”local reflex-
ivity” of the operator space predual of M. '

Theorem 3. Let I be a discrete group. Then, we have
Aep(T) = Aen(CF(T)) = A (L(T))

Proof . We trivially have Ac,(I') > Aeb(CH(T)) and Aw(T) > Aep(L(T)). To
prove the reverse inequalities at once, let a finite subset E C " and € > 0 be
given, and choose a finite rank map 6 : C}(T') — L(T") such that ||6||e, = C
and |1—7(A(s))*0(A(s)))| < € for s € E. It suffices to show that the function
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@(s) = T(A(s)*0(A(s))) is in £2(T') and ||(my)ic:myll < C. Since 6 is finite
rank, there exist finite sequences wy,...,w, € C¥T') and z1,...,z, € L([)
such that 8(a) = 3"y _; wk(a)zk for all a € C}(T'). It follows that

@(s) = T(A(8)"0(X(s))) = D wr(M(s))T(A(s)"zs)
k=1

Since sup,er Jwk(A(s))| < llwill and 3, cp [T(A(s)*zk|* = |lzxbe]> < oo for
every k, the function ¢ is in £2(T"). We denote by 7 by the *-homomorphism
from C}(T') into C}(T") ® C}(T') given by mw(A(s)) = A(s) ® A(s) for every
s € I. (We note that A® 1 and A ® X are unitarily equivalent.) Let V' be
the isometry from £2(T') into £2(") ® £2(T") given by V', = 8, ® 4, for s € T.
It is not hard to check that

my(a) = V*(idic:(ry ® 0)(n(a))V

for a € C}(T'), and hence ||(my)ic:(r)llev < |0]lcb-

There are some permanence properties of CBAP below. We does not
prove them and refer the reader to [AD],[BP],[SS1] and [SS2].

Example 2. We have the following.
1. If T';,4 = 1,2 are groups with A, (I;) = 1, then A (I; *T2) = 1.

2. If A £ T is a subgroup such that the homogeneous space I'/A is
amenable, then Ab(A) = A(T).

3. If I' is an amenable groups actiong on a C*-algebra A(resp. a von
Neumann algebra M), then Ac(A % T') = Acp(A) (resp.A(M x T) =
Ao (M)). _

4. We have Ach(A ®min B) = Acb(A)Aw(B) for any C*-algebras A and B.
A similar statement holds for von Neumann algebras. In particular,
A (T'1 X Tg) = Ap(T'1)Aep(T'2) for any groups I'; and T'.

Remark . Here we consider some counterexamples to basic constructions.
First, an extension of weakly amenable groups need not be weakly amenable.
(e.8.Z* x SL(2,Z)) Also, Z? x SL(2,Z) serves as a counterexample to weak
amenability for amalgamated free products. Indeed, Z% x SL(2,Z) can be
written as an amalgamated free product Z2 x Z, *z24z,Z* % Zg, whose factors
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are amenable groups. So, the class of C*-algebras with CBAP is not closed
under taking arbitrary amalgamated free products.

Next, it is well-known that the reduced group C*-algebra of exact group
is embeddable into a nuclear C*-algebra and, from the definition, nuclear C*-
algebras have CBAP(with Cowling-Haagerup constant 1), so a C*-subalgebra
of a C*-algebra with CBAP need not have CBAP (Consider Z? x SL(2,Z).).

Regarding to extensions, there are some observations in [DS]. But in [TH],
a non-exact C*-algebra which is an extension of C}(F,) by compact operators
was constructed. On the other hand, it is easy to see that a C*-algebra with
CBAP is exact. So the class of C*-algebras with CBAP is not closed under
taking arbitrary extensitons.

" Lastly, though the class of C*-algebras with CBAP is closed under min-
imal tensor products as cited above, the same does not hold for maximal
tensor products. Indeed, it is well-known that C*(I")(full group C*-algebra)
can be embedded into C}(I') ®max Cr (') as ”diagonals” (See [Pi].). So, if
is Fa, C*(I") ®max C?(T') is not exact and hence does not have CBAP.

References

[AD] C.Anantharaman-Delaroche, Amenable correspondences and approxi-
mation properties for von Neumann algebras, Pacific.J. 171 (2) (1995)
309-341 ‘

[BP] Weakly amenable groups and amalgamated products, M.Bozejko and
M.A Picardello, Proc. Amer. Math. Soc. 117 (4) (1993), 1039-1046.

[CH] M.Cowling and U.Haagerup, Completely bounded multipliers of the
Fourier algebra of a simple Lie group of real rank one, Invent. Math. 96
(1989), 507-549.

[DH] J.De Canniére and U.Haagerup, Multipliers of the Fourier algebras
of some simple Lie groups and their discrete subgroups, Amer.J.Math
107(1985), 455-500.

[DS] K.J.Dykema and R.R.Smith, The completely bounded approxi-
mation property for extended cuntz-pimsner algebras, Preprint,
arXiv:math.OA/0311247.

56



[Pi] G.Pisier, Introduction to operator space theory, London Mathematical
Society Lecture Note Series, 294, Cambridge University Press, Cam-
bridge, 2003.

[SS1] A.M.Sinclair and R.R.Smith, The Haagerup invariant for tensor prod-
ucts of operator spaces, Math. Proc. Cam. Phil. Soc. 120 (1996), 147-
1563.

[SS2] A.M.Sinclair and R.R.Smith, The completely bounded approxima-
tion property for discrete crossed products, Indiana Univ. Math. J. 46
(1997), 1311-1322.

[TH] S.Thorbjgnsen and U.Haagerup, A new application of random matri-
ces: Ext(Cry(F2)) is not a group, Annals. Math. 162 (2) (2005), 711-
775. ,

57



