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Complexity-Theoretical Quantum List Decoding and Applications to
Quantum Hardcore Functions
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Abstract— We present three new quantum hardcore functions for any quantum one-way func-
tion. We also give a “quantum” solution to Damgérd’s question (CRYPTO’88) on his pseudorandom
generator by proving the quantum hardcore property of his generator, which has been unknown to
have the classical hardcore property. Our technical tool is quantum list-decoding of “classical” error-
correcting codes (rather than “quantum” error-correcting codes), which is defined on the platform of
computational complexity theory and cryptography (rather than information theory). In-particular,
we give a simple but powerful criterion that makes a polynomial-time computable code (seen as a
function) a quantum hardcore for any quantum one-way function. On their own interest, we also
give quantum list-decoding algorithms for codes whose associated quantum states (called codeword
states) are “almost” orthogonal using the technique of pretty good measurement.

Keywords: quantum hardcore, quantum one-way, quantum list-decoding, codeword state, phase
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1 Introduction: From Hardcore to List-
Decoding

Background: Modern cryptography heavily relies on
computational hardness and pseudorandomness. One

of its key notions is a hardcore bit of a one-way function—

a bit that can be completely determined by the infor-
mation available to the adversary but still looks ran-
dom to any feasible adversary. A hardcore function
transforms the onewayness into pseudorandomness by
generating such hardcore bits of a given one-way func-
tion. Such a hardcore function is a crucial element of
constructing a pseudorandom generator as well as a bit
commitment protocol from a one-way permutation, A
typical example is the inner product mod 2 function
GL,(r) of Goldreich and Levin [12], computing the
bitwise inner product modulo two (x,r), which con-
stitutes a hardcore bit for any (strong) one-way func-
tion. ! Since GL,(r) equals the rth bit of the codeword
HAD® = ((x,0™,(x,0"'1),- -+ ,(x, 1)) of message
x of a binary Hadamard code, Goldreich and Levin
essentially gave a polynomial-time list-decoding algo-
rithm for this Hadamard code. In the recent literature,
list-decoding has kept playing a key role in a general
construction of hardcores {2, 17].
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' Literally speaking, this statement is slightly misleading. To be
more accurate. such a hard-core function concerns only the one-
way function of the form f’(x,r) = (f(x),r) with || = poly(ix|)
induced from an arbitrary strong one-way function f. See, e.g.,
[11] for a detailed discussion.

Thirteen years later, the “quantum” hardcore prop-
erty (i.e., a hardcore property against feasible quan-
tum adversary) of GL,(-) was shown by Adcock and
Cleve {1}, who implicitly gave a simple and efficient
quantum algorithm that list-decodes x for the binary
Hadamard code by exploiting the robust nature of a
quantum algorithm of Bernstein and Vazirani [6]. The
simplicity of the proof of Adcock and Cleve can be
best compared to the original proof of Goldreich and
Levin, who employed a rather complicated algorithm
with powerful techniques: self-correction property of
the aforementioned Hadamard code and pairwise inde-
pendent sampling. This highlights a significant role of
robust quantum computation in list-decoding (and thus
hardcores); however, it has been vastly unexplored un-
til our work except for a quantum decoder of Barg
and Zhou [5] for the simplex code. No other quantum
hardcore has been proven so far. The efficiency of ro-
bust quantum algorithms with access to biased oracles
has been also discussed in a different context [3, 7, 18].
Our Major Contributions: As our main result, we
present three new quantum hardcore functions, HAD®,
SLS?, and PEQ (see Section 5 for their definition), for
any (strongly) quantum one-way function, the latter
two of which are not yet known to be hardcores in
a classical setting (see [13]). In particular, we prove
the quantum hardcore property of Damgérd’s pseudo-
random generator [8]. This gives a “quantum” solu-
tion to his question of whether his generator has the
classical hardcore property (this is also listed as an
open problem in [13]). Our proof technique exploits
quantum list-decodability of classical error-correcting
codes (rather than quantum error-correcting codes). For
our purpose, we formulate the notion of complexity-



theoretical quantum list-decoding to conduct message-

recovery from quantum-computational error rather than
information-theoretical error which is usually associ-

ated with transmission error. This notion naturally ex-

pands the classical framework of list-decoding. Our

goal is to give fast quantum list-decoding algorithms

for the aforementioned codes.

Proving the quantum hardcore property of a given
code C (seen as a function) corresponds to solving
the quantum list-decoding problem (QLDP) for C via
direct access to a quantum-computationally (or quan-
tumly) corrupted word, which is given as a black-box
oracle. The task of a quantum list-decoder is simply
to list all message candidates whose codewords match
the quantumly-corrupted word within a certain error
rate bound.

The key notion of this paper is a specific quantum
state, called a (k-shuffled) codeword state, which em-
bodies the full information on a given codeword. Note
that similar states have appeared in several quantum
algorithms in the literature [6, 9, 14, 20]. In our key
lemmas, we show (i) how to generate such a codeword
state from any (even adversarial) quantumly corrupted
word and (ii) how to convert a codeword-state decoder
(i.e., a quantum algorithm that recovers a message x
from a codeword state given as an input) to a quantum
list-decoding algorithm working with a quantumly cor-
rupted word. The robust construction made in the course
of our proofs also provides a useful means, known as
“hardness” reduction, which is often crucial in the se-
curity proof of a quantum cryptosystem. Moreover,
using pretty good measurement [10, 16], we present a
quantum list-decoding algorithm for any code whose
codeword states are “almost” orthogonal.

Further Implications: Classical list-decodable codes
have provided numerous applications in the theory of
classical computational complexity, including proving
hardcores for any one-way function, hardness ampli-
fication, and derandomization (see, e¢.g., [19]). Be-
cause our formulation of quantum list-decoding natu-
rally extends classical one, classical list-decoding al-
gorithms (e.g.. for Reed-Solomon codes) work in our
quantum setting as well. This will make our quantum
list-decoding a powerful tool in quantum complexity
theory and quantum computational cryptography.

2 Quantum Hardcore Functions

We begin with the notion of a quantum one-way
function, which naturally expands the classical notion
of one-way function. The notion has been studied in
the recent literature.

Definition 2.1 A function f from {0, 1}* to {0, I}* is
called (strongly) quantum one-way if (i) there exists a
polynomial-time deterministic algorithm G computing
f and (ii) for any polynomial-time quantum algorithm
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A, for any positive polynomial p, and for any suffi-
ciently large n, Precio.ip.a [FAGF0, 1") = f0)] <
1/p(n), where x is uniformly distributed over {0, 1}"
and the subscript A is a random variable determined
by measuring the final state of A on the computational
basis. We consider only length-regular (i.e., |f(x)] =
I(|x]) for length function I(n)) one-way functions.

For any quantum one-way function f, the notation
S’ denotes the function induced from f by the scheme:
fl(x,r) = (f(x),r) for all x,r € {0,1}" with |r| =
poly(}xl). Note that f” is also a quantum one-way func-
tion. Throughout this paper, we deal only with quan-
tum one-way function of this form in direct connection
to quantum hardcores.

The standard definition of a hardcore function A from
{0, 1}" to {0, 1} is given in terms of the indistinguisha-
bility between A(x) and a truly random variable over
{0, 1}"™_ Although a hardcore predicate (i.e., a hard-
core function of output length I(n) = 1) is usually de-
fined using the notion of nonapproximability instead
of indistinguishability, it is well-known that both no-
tions coincide for hardcore functions of output length
O(logn) (see Excise 3! in [11]). In this paper, we
conveniently define our quantum hardcores in terms
of nonapproximability.

Definition 2.2 Let f be any length-regular function.
A polynomial-time computable function # with length
function I(n) is called a quantum hardcore of f if, for
any polynomial-time quantum algorithm A, for any
polynomial p, and for any sufficiently large n,

L. - I(n)
xe“{’{mlﬂ(f(x),l ) = h(x)] - 1/2| < 1/p(n),

where x is uniformly distributed over {0, 1}" and the

subscript A is a random variable determined by mea-
suring the final state of A on the computational basis.

3 How to Prove Quantum Hardcores

We outline our argument of proving quantum hard-
core functions for any quantum one-way function. To
prove new quantum hardcores, we exploit the notion
of quantum list-decoding as a technical tool. Our ap-
proach toward list-decoding is, however, complexity-
theoretical in nature rather than information-theoretical.
Our main objects of quantum list-decoding are “clas-
sical” codes and codewords, which are manipulated in
a quantum fashion. Generally speaking, a code is a
set of strings of the same length over a finite alphabet
Z. Each string is indexed by a message and is called
a codeword. A code family is specified by a series
(T, Iy, X,) of message space I, index set /,,, and code
alphabet Z, for each length parameter n. For simplic-
ity, let I'™ = Upen Tn-



Usually, a code (family) C consists of codewords C,
for each message x € I'™", As standard in computational
complexity theory, we view the code C as a function
that, for each message length n (which serves as a ba-
sis parameter in this paper), maps I, X I, to Z,,. Let
N(n) = |yl and g(n) = |Zy|. It is convenient to assume
that T, G (T,)" so that n actually represents the length
of a message. By abbreviating C(x,y) as Cx(y), we
also treat C\(-) as a function mapping I, to Z,. Denote
by M(n) the block length |I,| of codeword C,. We sim-
ply setI, = {0, 1,..., M(n)- 1}, each element of which
can be expressed in [log, M(n)] bits. We freely iden-
tify C, with the vector (C;(0), Cx(1),:++,Cx(M(n) -
1)) in the ambient space (Z,,)M™ of dimension M(n).
We often work on a finite field and it is convenient to
regard I, as the finite field Fy(,) of numbers 0, 1,...,
g(n) - 1. The (Hamuming) distance d(Cy, Cy) between
two codewords C, and C, is the number of non-zero
components in the vector Cy — Cy. The minimal dis-
tance d(C) of a code C is the smallest distance be-
tween any pair of distinct codewords in C. The above-
described code is simply called a (M(n), n),m)-code?
(or (M(n), n, d(n))-code if d(n) is emphasized). We of-
ten drop a length parameter n from subscript and ar-
gument place whenever we discuss a set of codewords
with a “fixed” n (for instance, I' = I', and M = M(n)).

Now, we wish to prove that a code C(x, r) (seen as a
function) is indeed a quantum hardcore for any quan-
tum one-way function of the form f'(x,r) = (f(x),7r)
with || = poly({x]). First, we assume to the contrary
that there exists a feasible quantum algorithm A that
approximates Cx(r) from input (f(x), ) with probabil-
ity > 1/g(n) + &(n). To be more precise, the outcome
of A on input (y,7), where r € I and y = f(x) fora
certain x € [, is of the form:

A, r) = ay,r.CAr)" NC(r ))|¢y.r.C;(r)>

+ Z Qyp 5Py ns)
S€E~{C'x(r)

for certain amplitudes ay, s and ancilla quantum states
|65, Where the second register corresponds to the
output of the algorithm. For each fixed y, the algorithm
A,(+) =qes A(y, ) givesrise to the (unitary) oracle Oz,
defined by the maps:

OA M) = ) ey |l @ it @ )
37

for any strings (r,u,f), where @ is the bitwise XOR
and the notation | ® ¢, ;) denotes the quantum state
Topiein{Vidvns)lt @ v). This oracle O, describes com-
putational error (not transmission error) occurring dur-
ing the computation of C,. This type of erroneous
quantum computation is similar to the computational

2 In some literature, the notation (M(n), N(n))y(n) is used instead.
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errors (e.g., [1, 3, 4, 18]) dealt with in quantum com-
putational cryptography and quantum algorithm de-
signing. Remember that 0;;;,. may choose amplitudes
{@y,r,s}r.s, adversely, not favorably. '
Similar to the notion of a classically received word
in coding theory, we introduce our terminology con-

cemning an oracle which represents a “quantum-computationally”

corrupted word.

Definition 3.1 Fix n € N. We say that an oracle 0
represents a quantum-computationally (or quantumly)
corrupted word if O satisfies Olr)u)it) = 3 sex r lr)ud
s)t@ ¢, ;) for certain unit vectors |¢,.;) depending only
on (r,s). For convenience, we identify a quantumly
corrupted word with its representing oracle.

To lead to the desired contradiction, we wish to in-
vert f by “decoding” x from the quantumly corrupted
word 0. Notice that the entity (1/M(n)) Te;, larc.nl®
yields the probability of A’s computing C,(-) correctly
on average. This entity also indicates “closeness” be-
tween a codeword C,, and its quantumly corrupted word
0. In classical list-decoding, for any given oracle O
that represents a received word and for any error bound
e, we need to output a list that include all messages
x such that the relative (Hamming) distance between
codeword C, and its received word O is at most 1 — ¢
(i.e., Prres, [O(r) = Cy(r)] 2 1 - €). By setting p,s = |
if O(r) = s and 0 otherwise, the behavior of O can be
viewed in a unitary style as O||0) = T,¢;, prsir)ls).
The aforementioned entity (1/M(n)) e, lar.c.(n|* equals
the relative distance, Prye;,[O(r) = C,(r)], in a classi-
cal setting. For our convenience, we name this entity

. the presence of C, in O and denote it by Pre5(C,). The

requirement for the error rate of classical list-decoding
is rephrased as Prey(Cy) 2 1 ~e.

Here, we formulate a quantum version of a classical
list-decoding problem using our notions of quantumly
corrupted words and presence. Let C = {C,} .~ be
any (M(n), n, d(n)),m-code.

Quantum List Decoping ProsLEM (QLDP) ror Cope C

INpuT: 2 message length n, an error bias €, and a
confidence parameter &.

ImpLicIT INPUT: an oracle O representing a quan-
tumly corrupted word.

Output: with success probability at least 1 -6, a
list of messages that include all messages x € I,
such that Pres(C,) 2 1/q(n) + &; that is, code-
words C, have “slightly” higher presence in O
than the average.

For any given quamumly corrupted word O, how

many messages x satisfy the required inequality Pre3(C,) >

1/g(n) + €? An upper bound on the number of such



messages directly follows from a nice argument of Gu-
ruswami and Sudan [15], who gave a g-ary extension
of Johnson bound using a geometric method.

Lemma 3.2 Let n be any message length. Let &(n),
q(n), d(n), and M(n) satisfy that &(n) > £(n) =4
(I = 1/q(m)) 1 =d(m)/M(n)(1 +1/(g(n) ~ 1)). For any
(M(n), n, d(n)),m-code C and for any quantumly cor-
rupted word O, there are at most J(n) =g,/

~ min {M(n)(q(n) -1,
d(n)(1 - 1/¢(n)) }
d(n) (1 - 1/4(n)) + M(m)e(n2 — M(n)(1 - 1/¢(n))?
messages x € I, such that Pre(C,) 2 1/g(n) + &(n).

If &(n) = €(n), then the above bound is replaced by
2M(n)(gn) - 1)~ 1.

The proof of Lemma 3.2 is obtained by an adequate
modification of the proof in [15]. As a simple ex-
ample, consider the (¢",n,¢" - ¢"~'), Hadamard code
HAD@ = (HAD®),er,. Lemma 3.2 guarantees that,
for any quantumly corrupted word O, there are only
at most (1 — 1/¢)* /t~:$n)2 messages x that satisfy the
inequality Prey(HAD) > 1 /q + &(n).

Definition 3.3 Let C be any code. Any quantum algo-
rithm A that solves the QLDP for C is called a quan-
tum list-decoding algorithm for C. If A further runs in
time polynomial in (n, 1 /€, 1/6), it is called a polynomial-
time quantum list-decoding algorithm for C.

To complete our argument (which we started at the
beginning of this section), assume that there exists a
polynomial-time quantum list-decoding algorithm that
solves the QLDP for C,(-). Such a list-decoder may
output with high probability all possible candidates x’
of required presence. Since we can check that ¥ €
f71(x) in polynomial time, the list-decoder gives rise
to a polynomial-time quantum algorithm that inverts
S with high probability. Clearly, this contradicts the
quantum one-wayness of f. Therefore, we obtain the
following key theorem that bridges between quantum
hardcores and quantum list-decoding.

Theorem 3.4 Let C = {C,},er~ be any (M(n), n, d(n))g(ny-
code, which is also polynomial-time computable, where
log, M(n) € n®® and log, g(n) € n®D, If there exists

a polynomial-time quantum list-decoding algorithm for
C for any sufficiently large number n, then C(x,r) is a
quantum hardcore function for any quantum one-way
function of the form f'(x,r) = (f(x),r) with |x =
Mog, |TxI1 and |r| = [log, M(n)1.
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4 How to Construct Quantum List-Decoding
Algorithms

Due to Theorem 3.4, it suffices to solve the QLDP
for any given candidate of quantum hardcore func-
tions. Our goal is now to find a way to construct a
polynomial-time quantum list-decoder for a wide range
of codes. Classically, however, it seems hard to de-
sign such list-decoding algorithms in general. Never-
theless, the robust nature of quantum computation en-
ables us to prove that, if we have a decoding algorithm
A from a unique quantum state (called a codeword
state), then we can construct a list-decoding algorithm
by calling A as a black-box oracle. The notion of such
codeword states plays our central role as a technical.
tool in proving new quantum hardcores in Section 5.

Hereafter, we assume the arithmetic (multiplication,
addition, subtraction, etc.) on the finite field F, (of
numbers 0,1,...,g — 1), where q is a prime. Denote
by w, the complex number ¢2%/4,

Definition 4.1 Let C = {C}ser, be any (M(n), n)g(n)-
code and let k be any number in Fyu). A k-shuffled
codeword state for codeword C, that encodes a mes-
sage x € I', is the quantum state

i) =

1 k-Ctr)
rely

g(ll )particular when k = |, we write |C,) instead of
ICy ).

Remark: Codeword states for binary codes have ap-
peared implicitly in several important quantum algo-
rithms. For instance, Grover’s search algorithm [14]
produces such a codeword state after the first oracle
call. In the quantum algorithms of Bernstein and Vazi-
rani {6], of Deutch and Jozsa [9], and of van Dam,
Hallgren, and Ip [20], such codeword states were gen-
erated to obtain their desired results.

We consider how to generate the k-shuffied code-
word state IC_?‘)) for each g-ary codeword C, with ac-
cess to a quantumly corrupted word 0. Note that it
is easy to generate |C,) from the oracle Oc, that repre-
sents C,; without any corruption (behaving as the “stan-
dard” oracle). Here, we claim that there is a generic
quantum algorithm that generates codeword states for
any g-ary code C. For convenience, write F; = F,—{0}
throughout this paper.

Lemma 4.2 There exists a quantum algorithm A that,
for any quantumly corrupted word 0, for any message
x € I'y, and for any k € ]F; , generates the quantum
state i) = kX0 IOICHE) ) + 1AL from the initial state
W’io)) = |k)|0Mo8z MY 0)|04™) with only two queries
to O and 07!, where |7) is a fixed basis vector, and &’
is a complex number, and |A®) is a vector satisfying
((kl(Cff)I('rl)IAg") = 0 with the following condition:



for every x € Iy, there exists a number k € ]Fjl’ with the
inequality x| > (g/(g - 1)) [Preo(C,) - 1/q].

Isolating all individual messages x in Lemma 4.2
simultaneously requires a certain type of “orthogonal-
ity,” which we call phase-orthogonality.

Definition 4.3 A code C = {C}ser, is called k-shuffled
phase-orthogonal if, for any distinct messages x,y €
T, (CPIC®) = 0. If (CPICEY = 0 holds for every
number k € F;, the code C is simply called phase-
orthogonal.

Note that phase-orthogonality for a binary code, in
particular, is naturally induced from the standard in-
ner product of two codewords when we translate their
binary symbols {0, 1} into {+1,-1}.

It is not difficult to prove that, for any pair (Cx, Cy)
of codewords in a given (M(n), n, d(n))ym-code C, we '
have KC\ICy)l 2 1 -2 d(Cy,Cy)/M(n). In particu-
lar, a binary code C satisfies that (C,|Cy) = 1 -2~
d(C,, Cy)/M(n).

Assume that {C,}.r, is a phase-orthogonal code.
Such orthogonality makes it possible to prove the fol-
lowing theorem using Lemma 4.2.

Theorem 4.4 Let {C,}.r, be any phase-orthogonal code.

There exists a quantum algorithm A that, starting with
|¢©@) = |0)|0Mo8: M(m1)|0)|0'™) with any quantumly cor-
rupted word 0, A makes only two queries to 0 and
07! and generates the state [y’) = (1/ /g = 1) Zier;
Sxel, KOUNC® ) +|A’), such that, for every message
x € [, there exists a number k € F} satisfying PP
(g/(q = 1) [Pre(Cy) - 1/q], where (KKCLKTDIA") =
0 for any k € B;.

Now, we give the proof of our key lemma, Lemma
4.2. Notice that Lemma 4.2 is true for any g(n)-ary
code. The binary case (¢ = 2) was implicit in [1];
however, our argument for the general g(n)-ary case
is more involved because of the introduction of “k-
shuffledness.”

Proof Sketch of Lemma 4.2. First, we describe our
codeword-state generation algorithm A in detail. Fix
xel,andk e Fj andletm = [logs M(n).

(1) Start with the initial state: |y"") = [k)|0™)0)0’).

(2) Apply the Fourier transformation (F4)®" over B, to
the second register. We then obtain the superposition
WMy =/ Vi) S rer, INPHO)O?).

(3) Invoke O using the last three registers. The result-
ing stateis W) = (1/ VM) Trei, Teer, @rNSr).
(4) Encode the information on the first and the third re-
sisters into “phase” so that we obtain the state [¢(”) =

(1/ VM) T e, Tier, i aralNr)izNirs)-
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(5) Apply 07! to the last three registers. Let ") be
the resulting state (I ® Oy,

(6) The state I(/l;:)) can be expressed in the form Kﬁ“lk}lCﬁ"))l‘r)

+HAY), where ) = 0)l0¢) and (KKCPKTDIAL) =

0. The amplitude xi"’ equals Pres(Cy) + (1/M) 3¢,

k(z-Cx(r)) 2
Z::zicx(r) w," " larl*.

The non-trivial ?art of the lemma is to prove the

lower-bound of ng‘ |. For each j € F,, let 8; = (1/M)

Trety 12rc 1. BY letting ¥ = T jegy wh7B), k, can
be expressed as xﬁ“’ = Pre(;(Cx)-i»Re(x&"))Hm(x&k’ ). To
estimate lxg")l. it thus suffices to prove that, foreach x €
[, there exists a number k € F; such that Re(y®) >
=(1/(g=1))(1 = Prey(Cy)). Since kP = (Pren(Cy)+
Re(yO)? + Amx®))?, the lemma immediately fol-
lows.

To complete the proof, we employ an “adversary”
argument. Now, assume that our adversary has clev-
erly chosen O to make [k*'|? the smallest for every
k € F;. We argue that the adversary’s best choice is to
set B; = B/(g - 1) for all j € F}, where B = T g B
This follows directly from the claim below. We omit
the proof of the claim due to space limitation. Let
£z = e, X
Claiml 1. gx=-p.

2. For his best strategy, the adversary can be as-
sumed to have chosen {8;}er; so that 8; = By

for any j € F} and Im(x¥) = 0.

Since 8; = B/(g-1) forall j € F} and B = 1-By, it eas-
ily follows that Re(y'Y") 2 —(1/(g— 1)) (1 ~ Preg(C.)),
as required. o

The following theorem shows how to convert a codeword-

state decoder (i.e., a quantum algorithm that decodes
x from |C§“) for any k) into a quantum list-decoder.
This complements Theorem 4.4.

Theorem 4.5 Let C = {C,}.er, be any phase-orthogonal
(M(n),n,d(n))ym-code. Let k € F; and M’'(n) 2 0.
Let U, be any quantum algorithm that, for each fixed
x € Ty, decodes x from a k-shuffled codeword state
IC®) € Hyg with probability > 1 — £(n). Let V, be
any quantum algorithm that generates a quantum state
IC) consisting of a [log, M(n)]-qubit approximation of
the codeword state together with ancilla [log, M’(n)]
qubits generated from a quantumly corrupted word O

with success probability n(n). Assume that |((C%|(08: M1}

IC) 2 ¢(n) for every x € T, satisfying Pres(C,) 2
1/q(n) + &(n). If &) < £3(n)/2, then there exists a
quantum list-decoding algorithm W, for C of list size
at most

()& (m)/2 ~ £m))) ™" (log, I (m) + logy(1/6))1,



where J(n) is from Lemma 3.2, Moreover, if U, and
V, are polynomial-time computable and (£%(n)/2) —
£(n) and n(n) are polynomially-bounded functions, then
W, is a polynomial-time quantum list-decoding algo-
rithm for C.

Proof Sketch.  Given (n,&,6) and O as input, the
following algorithm solves the QLDP for each fixed
n € N, Let m = [log, M(n)] and m’ = [log, M'(n)].

(1) Run algorithm V,, to obtain the state |C) with prob-
ability at least 7.

(2) Apply algorithm U, to the first m qubits of |C) as
well as an appropriate number of ancilla qubits, say c.
We then obtain the state U,|C)0%).

(3) Measure the obtained state and add its measured
result to the list of message candidates.

(4) Repeat Steps (1)~(3) [(log, J(n) + log,(1/8))/e]
times and output the list, where e = n(1-¢- 1 -{2) >
()3 (n)/2 - E(n)).

We next claim the following, whose proof is omit-
ted due to space limitation. Let B = {x € T, |
Pres(CY") 2 1/g + ).

Claim2 1. The probability that x is observed when
measuring the quantum state obtained after Step
(2) on the computational basis is at least e.

2. If we perform Steps (1)—(3) [e~'(log, |B|+log,
(1/6))1 times, then we obtain a list that includes
all messages in BY with probability at least 1—4.

Since |B®| < J(n), we obtain the desired list of mes-
sage candidates at Step (4) with probability at least
1 — 6 by the above claim. a

At the end of this section, we show a general the-
orem, in which “almost phase-orthogonal” codes are
quantumly list-decodable. Our argument uses the no-
tion of pretty-good measurement (known also as square-

root measurement or least-squared measurement) (10,
16].

Theorem 4.6 letk € F, and let C be any (M(n), n, d(n)),
code such that there exists a constant ¢ € [0, 1/2] sat-
isfying |(c§“1c§.“ | < & for any distinct pair x,y € T
Let S be the matrix of the form (ICS), IC®), ..., IC% ).

If £ < 2¢% and rank(S) = N, then there exists a quan-
tum list-decoding algorithm for C.

Proof Sketch. From Lemma 4.2 and Theorem 4.5, it
suffices to construct a unitary operator U whose suc-
cess probability [{z|UIC.)? of decoding z from |C.) is
at least 1 — £ whenever [(C,|C\)| < ¢ for any distinct
x,y € I' and rank(§) = N.

We want to design U following an argument of pretty
good measurement [10, 16]. Note that, since rank(S) =
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N, the matrices S*S and §S* share the same eigen-
values, say Ag,...,Ay-1. Perform singular-value de-
composition and we obtain § = PTQ for M- and N-
dimensional unitary operators P and Q, respectively,
and a diagonal matrix T = diag(Vo, VA1,..., VAn-1,
0,...,0). We therefore have (z|y US |2)n = {zlyUPT Q|2)N,
where |2}y and |z) are respectively an M-dimensional

and an N-dimensional vectors,

The desired matrix U is defined as U = RP*, where
R=(¢ ! ) Itimmediately follows that (zly US|}y =
(ZIMRT Ql2)y = (zZInQ'T’ Qiz)x with the diagonal ma-
trix T’ = diag(vA, VA1,..., VAn-1). The success
probability of decoding z from ICE")) is therefore lower-
bounded by [zIQ"T’ Qi) > |Aminl, Where Amiq de-
notes min{|Ay}, |42, ..., |An-1l}.

The remaining task is to prove the following claim.

Claim 3 |Aminl 2 1 -€.

We omit the proof of this claim due to space limitation.
This completes the proof. n]

§ New Quantum Hardcore Functions

Finally, as our main result, we present three new
quantum hardcore functions, two of which are unknown
to be classically hardcores. We explain them as codes
and give polynomial-time list-decoding algorithms for
them., From Lemma 4.2 and Theorem 4.5, we only
need to build their codeword-state decoders.

Proposition 5.1 There exist polynomial-time quantum
list-decoding algorithms for the following codes: let-
ting p(n), g(n) be any functions from N to the primes,

1. The g(n)-ary Hadamard code HAD® with g(n) €

n%Y, whose codeword is defined as HAD¥(r) =
;7‘;51 x; - ry mod q(n).

2. The shifted Legendre symbol code SLSP, which
is a (p(n), n);-code with n = [log p(n)], whose
codeword is defined by the Legendre symbol®
as SLS%(r) = 1if (%) =-1,and SLS}(r) = 0
otherwise.

3. The pairwise equality code PEQ for even n €
N, which is a (2", n),-code, whose codeword is
PEQ,(r) = &’c EQ(Xixis1,iriv1), where EQ
denotes the equality predicate.

Combining Proposition 5.1 and Theorem 3.4, we
obtain the quantum hardcore property of all the afore-
mentioned codes.

Theorem 5.2 The functions HAD@, SLS?, and PEQ
are all quantum hardcore functions for any quantum

3 For any odd prime p. let (£) = 0if pix, (§) = 1 if pfxand xisa
quadratic residue modulo p. and (%) = -] otherwise.



one-way function of the form f’(x, r) = (f(x),r) with
|rl = poly(ix|), where f is an arbitrary quantum one-
way function.

Remark: Damgérd [8] introduced the so-called Leg-
endre generator, which produces a bit sequence whose
rth bit equals SLS”(r). He asked if his generator pos-
sesses the classical hardcore property. (This is also
listed as an open problem in [13].) Our result proves
the “quantum” hardcore property of Damgérd’s gener-
ator for any quantum one-way function.

Proof Sketch of Proposition 5.1. It suffices to provide
a codeword-state decoder for each given codeword.

(1) To decode x from the codeword state [HAD@),
we simply apply the Fourier transformation F over
Fy(n) and then extract x deterministically.

(2) Our codeword-state decoder is obtained by an
appropriate modification of a quantum algorithm of
van Dam, Hallgren, and Ip [20].

(3) Consider the circulant Hadamard transforma-
tion H¢:

-1 1 ] 0 0

1 1 0
He =4 (: il :) - F;l(s a0 3)a,
{ 1 ] 0

-1 0 0 -1

where Fy is the quantum Fourier transformation over
F,4. We can obtain x from the codeword state [PEQ,)
by applying U = Hg"/ 2, o
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