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Abstract
In this paper, we study a problem of finding a scheduling for a single vehicle to process jobs located on a single line, where

each job has a handling time, a time window (a pair of a release time and a deadline), and a beneflt. The objective is to

maximize the total benefit from jobs processed by the vehicle. We present an $O(\gamma n^{(\theta+\rho)})$ time -appraximation algorithm

for the scheduling problem, where $n$ is the number of jobs, 7 is the ratio of the maximum length of a time window to

the minimum handling time, and $\rho$ is the maximum number of jobs that can be processed during the time period after

processing ajob $j$ and before visiting the job $j$ again by the deadline of $j$ .

1 Introduction
Vehicle Rout$i\mathrm{n}\mathrm{g}$ Scheduling Problem (VSP) has

been studied as one of the most important schedul-
ing problems $[3, 4]$ . We are given a set $J$ of $n$ jobs
(such as items to be picked up or facilities to be
inspected). Each job is characterized by a release
time, a handling time, a deadline and a benefit. For
ajob, the time interval between its release time and
deadline may be called its time utindow. A handling
time means the time required for processing its job,
where no interruption is allowed during a process
of any job. The problem asks to find a schedule
which minimizes (or maximizes) an objective func-
tion such as the completion time of processing all
jobs, the maximum lateness $\mathrm{h}\mathrm{o}\mathrm{m}$ deadlines, and so
on. The tour version of the VSP requires each ve-
hicle to return to its initial position at the end of a
schedule while the path version allows each vehicle
to stay at any position at the end of a schedule.

We consider a single vehicle scheduling problem
such that all jobs are located on a single line and
each job has a handling time, a time window, and
a benefit. We call this problem VSP-PATH (resp.,
MAX-VSP-PATH) if the objective is to minimize
the makespan (resp., to maximize the total ben-
efit from jobs processed by the vehicle). These
problems have important applications such as ship
scheduling, where a ship picks up cargoes along a
shoreline [9], and truck scheduling, where a truck

thble 1: Results on special cases of the VSP-
PATH.

delivers goods to customers along a highway [6].
Cargoes along a shoreline or customers along a
highway can be regarded as jobs on a straight line.
Tables 1 and 2 show a summary of the known re-
sults on several special cases of the VSP-PATH and
the MAX-VSP-PATH, respectively.

In this paper, we consider the path version of
the MAX-VSP-PATH with general time windows,
nonzero handling times, and general benefits. We
denote by 7 the ratio of the maximum length of a
time window to the minimum handling time and
by $\rho$ the maximum number of jobs that can be
processed during the time period after processing
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Table 2: Results on special cases of the MAX-VSP-
PATH.

rithm by using dynamic programming. Section 6
makes some concluding remarks.

a job $j$ and before visiting the job $j$ again by the
deadline of $j$ . The results obtained in this paper
are as follows. We first prove that the MAX-VSP-
PATH with nonzero handling times is weakly NP-
complete even if no two jobs $j$ and $j’$ are located
at close positions on the line in the sense that $j$

cannot be visited by the vehicle by its deadline
once $j$ and $j’$ are processed in this order. Such
an instance is called sparse, where $\rho$ of a sparse in-
stance is $0$ . Next, we present an $O(\gamma n^{(3+\rho)})$ time 2-
approximation algorithm. Moreover, we present an
$O(\gamma n^{2})$ time 2-approximation algorithm for sparse
instances. To derive these results, we first con-
vert the $\mathrm{M}\mathrm{A}\mathrm{X}-\mathrm{V}\mathrm{S}\mathrm{P}$-PATH into a problem of find-
ing a monotone curve in the $x,$ $y$-plane, where a
time window and a schedule for a vehicle are repre-
sented as a line segment of gradient 1 and a mono-
tone curve, respectively. Processing a job $j$ is rep-
resented as a curve in the $x,$ $y$-plane that intersects
the segment of the time window of $j$ . To find a
monotone curve that intersects a maximum benefit
set of line segments, we construct a digraph, called
a chart graph, such that each directed path in the
digraph is a monotone curve. We prove that there
exists a digraph with size $O(\gamma n^{2})$ that contains a
2-approximate solution.

The remainder of this paper is organized as fol-
lows. Section 2 introduces the MAX-VSP-PATH
and reduces this to a problem of finding a mono-
tone curve that intersects a maximum benefit set
of segments in the $x,$ $y$-plane. Section 3 defines a
chart graph, in order to find an approximate solu-
tion to the problem of finding an optimal mono-
tone curve. Section 4 proves that there exists a
chart graph that has a 2-approximate monotone
curve. Section 5 $\mathrm{p}\mathrm{r}o$poses an approximation algo-

2 Problem Description
In this section, we first formulate the MAX-

VSP-PATH, a problem of finding a single vehicle
scheduling to process jobs so as to maximize the
total benefit $\mathrm{h}\mathrm{o}\mathrm{m}$ the processed jobs. Let $\mathrm{R}$ and
$\mathrm{R}_{+}$ be the sets of reals and nonnegative reals, re-
spectively. An instance $I=(J, r, d, h, b, l)$ of the
MAX-VSP-PATH consists of a set $J$ of $n$ jobs, a
release time $r(j)\in \mathrm{R}_{+}$ , a deadline $d(j)\in \mathrm{R}_{+}$ , a
handling time $h(j)\in \mathrm{R}_{+}$ , a benefit $b(j)\in \mathrm{R}_{+}$ , and
a position $l(j)\in \mathrm{R}$ for each job $j\in J$ , where time
interval $[r(j), d(j)]$ is called the time utndow ofjob
$j\in J$ .

We are given a single vehicle which is initially
situated at position $0$ and time $0$ . A job $j\in J$ can
be processed if it is visited by the vehicle during the
time window $[r(j),d(j)]$ , and cannot be processed
otherwise. It takes $h(j)$ time to finish a process of
a job $j$ . The travel time for the vehicle to travel
$\mathrm{h}\mathrm{o}\mathrm{m}$ a job $j\in J$ to a job $j’\in J$ is by $|l(j)-$

$l(j’)|$ . $\mathrm{M}\mathrm{o}\mathrm{r}\infty \mathrm{v}\mathrm{e}\mathrm{r}$ , the vehicle gets beneflt $b(j)$ if it
processes job $j$ . A schedule $\sigma$ for a subset $J’\subseteq J$

of jobs is a bijection $\sigma$ : $\{1, \ldots, |J’|\}arrow J’$, and
is called feasible if all jobs can be processed by a
single vehicle which starts from position $0$ at time $0$

and visits $J’$ in the order of $\sigma(1),\sigma(2),$ $\ldots,\sigma(|J’|)$ .
In other words, a schedule $\sigma$ for $J’\subseteq J$ is feasible
if it admits arrival times $t(\sigma(i))$ at jobs $\sigma(i),$ $i=$

$1,$
$\ldots,$

$|J’|$ , such that

$t(\sigma(i))\in[r(\sigma(i)), d(\sigma(i))]$ , and

$t(\sigma(i))\geq t(\sigma(i-1))+h(\sigma(i-1))$

$+|l(\sigma(i-1))-l(\sigma(i))|$ ,

where $t(\sigma(\mathrm{O}))=h(\sigma(0))=0$ . The objective of this
problem is to find a feasible schedule $\sigma$ for a subset
$J’\subseteq J$ with the maximum benefit $\Sigma_{j\in J’}b(j)$ .

Throughout the paper, we assume that $J\neq\emptyset$

and

$h(j)>0,$ $b(j)>0,$ $r(j)\geq|l(j)|$ for all $j\in J.$ (1)

Note that the vehicle starting $\mathrm{h}\mathrm{o}\mathrm{m}$ position $0$ at
time $0$ cannot reach position $l(j)$ earlier than time
$|l(j)|$ . Let $h_{\min}= \min_{j\in J}h(j)$ . Define

$\gamma=\lfloor\frac{\max_{j\in J}(d(j)-r\mathrm{C}))}{h_{\min}}\rfloor+1$ . (2)

Moreover, let $\rho$ be the maximum number of jobs
that can be processed during the time period af-
ter processing a job $j$ before visiting the job $j$ by
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deadline of $j$ . We call an instance I sparse if $\rho=0$ ,
i.e., no two jobs $j$ and $j’$ are located at close po-
sitions on the line in the sense that $j$ cannot be
visited by the vehicle by its deadline once $j$ and $j’$

are processed in this order.

2.1 $\mathrm{N}\mathrm{P}$-hardness of the MAX-VSP-
PATH

In this section, we prove the $\mathrm{N}\mathrm{P}$-hardness of spe-
cial cases of the MAX-VSP-PATH.

Theorem 2.1 The MAX- $VSP$-PATH is strongly
$NP$-hard even if all jobs have the same length of
time windows and the same benefit.

PROOF: We can show a polynomial reduction $b\mathrm{o}\mathrm{m}$

the -PARTITION [5] to the problem (the detail is
omitted due to space limitation). 1

Theorem 2.2 The MAX-VSP-PATH is weakly
$NP$-hard even for sparse instances.

PROOF: We can show a polynomial reduction fron
the Knapsack problem [5] to the problem (the de
tail is omitted due to space hmitation). 1

2.2 Monotone Curves in the Plane

We represent a problem instance $I$ of the MAX-
VSP-PATH in the $x,y$-plane as follows. We con-
sider the $x,y$-plane $\mathrm{R}_{+}^{2}$ with nonnegative coordi-
nates, where the origin of the $x,$ $y$-plane, denoted
by $s_{0}$ , represents position $0$ at time $0$ . A pair of po-
sition $l$ on the line and time $t$ is mapped to point
$((t+l)/\sqrt{2}, (t-l)/\sqrt{2})$ in the $x,y$-plane. For each
job $j\in J$ , define points

$a(j)=((r(j)+l(j))/\sqrt{2}, (r(j)-l(j))/\sqrt{2})$,

and

$a’(j)=((d(j)+l(j))/\sqrt{2}, (d(j)-l(j))/\sqrt{2})$

and aline segment $\tau(j)=[a(j),a’(j)]$ of gradient 1
in the $x,y$-plane. A pair of time window $[r(j), d(j)]$

and position $l(j)$ is mapped to $\tau(j)$ in the $x$ , y-plane
(see Fig. 1), where we may also denote by $\tau(j)$ the
set of points on the line segment. For each $j\in J$ ,
let $h_{j}$ denote the vector $(h(j)/\sqrt{2},h(j)/\sqrt{2})$ and
let $h^{*}$ denote the vector $(h_{\min}/\sqrt{2}, h_{\min}/\sqrt{2})$ in the
$x$ , y-plane.

For a point $c=(c_{x}, c_{y})\in \mathrm{R}_{+}^{2}$ , let

$R(c)=\{c’=(c_{x}’, d_{y})|c_{x}\leq c_{x}’, c_{y}\leq c_{y}’\}$ ,

Figure 1: Time window $\tau(j)=[a(j), a’(j)]$ of job $j$

in the x,y-coordinate.

$L^{f}(c)=\{(c_{x}’, c_{y})|c_{x}\leq c_{x}’\}$ ,
$L^{u}(c)=\{(c_{x},c_{y}’)|\mathrm{c}_{\mathrm{y}}\leq c_{y}’\}$ .

Note that $L^{r}(c)$ (resp., $L$“ $(c)$ ) denotes the half line
start$i\mathrm{n}\mathrm{g}$ bom point $c$ in the rightward (resp., up-
ward) direction. We define a transitive $\mathrm{r}\mathrm{e}\mathrm{l}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\preceq$

by

$c\preceq c’\Leftrightarrow c’\in R(c)$ for $c$, $c’\in \mathrm{R}_{+}^{2}$ .
Let $\mathrm{I}\mathrm{I}(s_{0})$ be the set of all monotone curves start-

ing kom the origin $s_{0}$ in the $x,$ $y$-plane. We say
that a curve $\pi\in\Pi(s_{0})$ visits $\tau(j)$ if $\pi$ contains
a line segment $\overline{\pi}$ of gradient 1 and of length $h(j)$

that intersects $\tau(j)$ (see Fig. 2), where $\overline{\pi}$ is not nec-
essarily contained in $\tau(j)$ completely. AlthougY a
monotone curve $\pi\in \mathrm{I}\mathrm{I}(s_{0})$ may have more than
one such line segment $\overline{\pi}$ , we say that $\pi$ collects
$\tau(j)$ and gets benefit $b(j)$ when it visits $\tau(j)$ for
the first time, and denote by $g_{\pi}(j)$ and $f_{\pi}(j)$ the
beginning point and finishing point of such $\overline{\pi}$ , i.e.,
$\overline{\pi}=[g_{\pi}(j), f_{\pi}(j)]$ . Note that, for the same $j,$ $\tau(j)$

is not collected more than once.
We easily obtain the following observation.

Lemma 2.3 Let $J’$ be a subset of jobs. There is
a monotone curve $\pi\in\Pi(s_{0})$ that visits segments
$\tau(j),$ $j\in J’$ if and only if there is a feasible schedtile
$\sigma’$ that can process $dl$ jobs in $J$‘. 1

By this lemma, the problem is now to find a
monotone curve that collects a maximum benefit
set of segments $\tau(j)$ .

3 Chart Graph
In this section, we define an edge-weighted

acyclic digraph, called a chart graph, such that
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$x$

Figure 2: A monotone curve $\pi$ visiting $\tau(j)$ .

each directed path in a chart graph corresponds
to a monotone curve $p\in \mathrm{I}\mathrm{I}(s_{0})$ . We assume that a
given instance $I=(J, r, d, h, b, l)$ is represented as
a set of segments $\tau(j)$ for all $j\in J$ in the $x$ , y-plane.

A chart graph is a digraph $G=(V,E)$ such that
its vertex set $V$ is a finite subset of $R(s_{0})$ with
$s_{0}\in V$ and its edge set $E$ is a set of some ordered
pairs $(u,v)$ with $u,v\in V$ and $v\in R(u)-\{u\}$ .

For each job $j$ , let $\mathcal{E}_{\mathrm{j}}=\{(q, q+h_{j})|q\in\tau(j)\}$ ,
which we regard as a set of edges from point $q$ to
$q+h_{j}$ for all $q\in\tau(j)$ . Edge set $E$ of a chart graph
$G=(V, E)$ is partitioned into two subsets

$\overline{E}=E\cap\bigcup_{\mathrm{j}\in J}\mathcal{E}_{j},\tilde{E}=E-\bigcup_{j\in J}\mathcal{E}_{j}$

(see Fig. 3). Edge set $E$ of a chart graph $G=(V, E)$
may be denoted.by $E=\overline{E}\cup\overline{E}$ . We easily see that
any chart graph is acyclic.

Since each edge $(q,q’)\in E$ satisfies $q’\in R(q)$ ,
any directed path starting from the origin $s_{0}$ in $G$

is a monotone curve starting from the origin $s_{0}$ . Let
$\Pi_{G}(s_{0})$ denote the set of all directed path starting
from the origin $s_{0}$ in $G$ , where we may treat a path
$p\in \mathrm{I}\mathrm{I}_{G}(s_{0})$ as a monotone curve in the $x$ , y-plane,
i.e., $\Pi_{G}(s_{0})\subseteq\Pi(s_{0})$ . A directed path in $G$ visits
segment $\tau(j)$ by using an edge $(q, q+h_{j})\in\overline{E}$.

Let $\kappa(\pi)$ denote the total benefit of the segments
collected by a monotone curve $\pi\in\Pi(s_{0})$ . Let
$\nu(\pi)$ denote the number of segments collected by a
monotone curve $\pi\in\Pi(s_{0})$ . Let $\pi^{*}$ denote a curve
that collects a maximum benefit set of segments of
time windows over all monotone curves in $\Pi(s_{0})$ .
Such a curve $\pi^{*}$ is called an optimal curve. Let
$p^{*}$ denote a directed path in $\Pi_{G}(s_{0})$ that collects a
maximum benefit set of segments over all directed
paths in $G$ . Such a path $p^{*}$ is called an optimal path
in $\Pi_{G}(s_{0})$ . Note that $\kappa(p^{*})>0$ by assumption (1)

Figure 3: nlustration for a chart graph $G=$

(V, $E=\overline{E}\cup\tilde{E}$).

and $J\neq\emptyset$ . Define

$\alpha(G)=\frac{\kappa(\pi^{*})}{\kappa(\mathrm{p}^{l})}$ .

To find a path $\square _{G}(s_{0})$ that visits many segments,
we assign weight $0$ for each edge $e\in\tilde{E}$ and weight
$b(j)$ for each edge $e\in\overline{E}\cap \mathcal{E}_{j},$ $j\in J$ , and we define
the weight $w[p$) of a directed path $\mathrm{p}$ as the total
weight of edges in $p$ . Define

$\beta(G)=\max\{\frac{w(p)}{\kappa(p)}|p\in\Pi_{G}(s_{0}),$ $\kappa[p)>0\}$ .

By definition of 7, we easily observe the following
property.

Lemma 3.1 Any directed path in $G$ visits the
same segment of a time utndow at most 7 times
(hence $\beta(G)\leq\gamma$). I

The approximation ratio of a maximum weight
path to an optimal curve is bounded as follows.

Theorem 3.2 Let $\hat{p}\in\Pi_{G}(\epsilon_{0})$ denote a maximum
weight directed path in a chart graph $G$ , and $\pi^{*}\in$

$\Pi(s_{0})$ be an optimal curve. Then $\kappa(\pi^{*})/\kappa(p)\leq$

$\alpha(G)\beta(G)$ .

$\mathrm{P}\mathrm{R}\mathrm{O}\mathrm{O}\mathrm{F}:\wedge\cdot$ Let $p^{*}\in\Pi_{G}(s_{0})$ be an optimal path.
Since $p$ is a maximum weight path, we have $w(p)\geq$

$w(\mathrm{p}^{*})$ , and since $w(\mathrm{p}^{*})\geq\kappa(p)$ , we have $w(\hat{p})\geq$

$\kappa(p^{l})$ . On the other hand, $\mathrm{h}\mathrm{o}\mathrm{m}$ definition of $\alpha(G)$ ,
we have $\kappa(p^{*})=\kappa(\pi^{*})/\alpha(G)$ . Hence, we have
$w(\hat{p})\geq\kappa(\pi^{*})/\alpha(G)$ . Moreover, from definition of
$\beta(G)$ , we have $\kappa(\hat{p})\geq w(\hat{p})/\beta(G)$ . Therefore, it
holds $\kappa(\hat{p})\geq\kappa(\pi^{*})/(\alpha(G)\beta(G))$ . 1
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4 2-Approximate Path $L^{u}(q)$

This section gives how to construct from a given
instance $I$ a chart graph $G$ with a moderate size
that contains a 2-approximate path $p\in\Pi_{G}(s_{0})$ for
an optimal curve $\pi^{*}\in\Pi(s_{0})$ . Formally we will
prove the next theorem.

Theorem 4.1 Given an instance $I$ , there enists a
chart graph $G=(V, E)$ with $|V|=O(\gamma n),$ $|E|=$
$O(\gamma n^{2})$ and $\alpha(G)\leq 2$ . 1

Given an instance $I$ , a chart graph in Theo-
rem 4.1 can be constructed as follows. For each
$j\in J$ , let

$\theta(j)=\lfloor(d(j)-r(j))/h_{\min}\rfloor$ ,

$c.(j)=a(j)+ih^{*},$ $i=0,1,$ $\ldots,$
$\theta(j)$ ,

$c_{\theta(j)+1}(j)=a’(j)$ .

Note that $c_{0}(j)=a(j)$ . For each $j\in J$ , let $Q_{j}=$

$\{c_{i}(j)|i=0,1, \ldots, \theta(j)+1\},$ $Q_{\mathrm{j}}’=\{q+h_{j}|q\in$

$Q_{\mathrm{j}}\}$ . Let $Q= \bigcup_{j\in J}Q_{j}$ and $Q’= \bigcup_{j\in j}Q_{j}’$ . For a
point $z\in \mathrm{R}_{+}^{2}$ , let $J(z\rangle=\{j\in J|\tau(j)\cap R(z)\neq$

$\emptyset\}$ . Define the vertex and edge sets of chart graph
$G_{1}=(V_{1}, E_{1})$ by

$V_{1}=\{s_{0}\}\cup Q\cup Q’$ , $E_{1}=\overline{E}\cup\tilde{E}$ ,

where

$\overline{E}=\bigcup_{j\in J}\{(q, q+h_{j})|q\in Q_{j}\}$
,

$\tilde{E}=\bigcup_{j\in J}\{(s_{0}, a(j))\}\cup\bigcup_{j’\in J(q)}\{(q, c_{m}(j’))|$

$q \in Q’,m=\min\{i|c.(j’)\succeq q\}\}$ .

Each edge $(q, q+h_{j})\in\overline{E}$ is weighted by $b(j)$ and
each edge in $\tilde{E}$ is weighted by $0$ .

Figure 4 shows how an edge in $\tilde{E}$ outgoing from
a vertex $q\in Q$ on a segment $\tau(j)$ is constructed.
In this example, $\tilde{E}$ has no edges outgoing from $q$ to
any point on segment $\tau(j_{5})$ since $\tau(j_{5})\cap R(q)=\emptyset$ .
For $J(q)=\{j_{2},j_{3},j_{4}\}$ with $m= \min\{i|c.(j_{2})\succeq$

$q\},$ $0= \min\{i|c_{i}(j_{3})\succeq q\}$ , and $m’= \min\{i|$
$c_{i}(j_{4})\succeq q\}$ , three edges $(q, c_{m}\mathrm{C}2)),$ $(q, c_{0}(j_{3}))$ and
$(q, c_{m’}(j_{4}))\in\overline{E}$ will be constructed.

We first consider the size of chart graph $G_{1}$ .

Lemma 4.2 For a $cha\hslash$ graph $G_{1}=(V_{1}, E_{1})$ ,
$|V_{1}|=\Theta(\gamma n)$ and $|E_{1}|=\Theta(\gamma n^{2})$ .
PROOF: Since $|Q_{j}|$ $=$ $|Q_{j}’|$ $\leq$ $\theta(j)+2$ ,
$j$ $\in$ $J$ , and $\max_{j\in J}\theta(j)$ $=$ $\lfloor\max_{j\in J}(d(j)$ -

Figure 4: Mustration of edges $(q, c_{m}\mathrm{C}))\in\tilde{E}$ out-
going from a point $q\in Q’$ to a point $c_{m}(j)$ on a
segment $\tau(j),$ $j\in J(q)$ .

$\mathrm{r}(j))/\min_{j\in J}h(j)\rfloor=\gamma-1$ , we have $|Q|=||Q’|=$
$\Sigma_{j\in J}(\theta(j)+2)=O(n\gamma)$ . From this, we have
$|V_{1}|=O(\gamma n)$ and $|\overline{E}|=|Q’|=O(\gamma n)$ . Since $G_{1}$

has at most one edge in $\tilde{E}$ outgoing $\mathrm{h}\mathrm{o}\mathrm{m}$ each point
$q\in Q’$ to a point on a segment $\tau(j),$ $G_{1}$ has at
most $n$ edges in $\tilde{E}$ outgoing from each $q\in Q’$ .
Hence, $|\tilde{E}|=O(n|Q’|)=O(\gamma n^{2})$ . Therefore,
$|E_{1}|=|\overline{E}|+|\tilde{E}|=O(\gamma n^{2})$ .

We can construct an instance $I$ such that chart
graph $G_{1}$ has $|V_{1}|=\Omega(\gamma n)$ vertices and $|E_{1}|=$

$\Omega(\gamma n^{2})$ edges (the detail is omitted due to space
limitation). 1

We next prove that $\alpha(G_{1})\leq 2$ .

Lemma 4.3 Let $G_{1}$ be a $cha\hslash$ graph constructed
ffom an instance I in the above manner. For an ar-
bitrary curve $\pi\in\Pi(\epsilon_{0}),$ $G_{1}$ has a path $p\in\Pi_{G}(s\mathrm{o})$

such that $\kappa(p)\geq\kappa(\pi)/2$ .
PROOF: Given an arbitrary curve $\pi\in\Pi(s_{0})$ , we
number the segments collected by $\pi$ so that seg-
ment $\tau(i)$ denotes the $i\mathrm{t}\mathrm{h}$ segment collected by $\pi$ .

We proceed by an induction on $i$ . We assume
that, for the finishing point $f_{\pi}(i),$ $G_{1}$ has a path
$p\in\Pi_{G}(s_{0})$ such that

(A1) $p$ reaches a point $s’\in Q’$ with $f_{\pi}(i)\succeq s’$ ,

(A2) $\kappa(p)\geq\frac{1}{2}\sum_{k=1}^{i}b(k)$ .

Assumptions (A1) and (A2) hold for $i=1$ as
follows. Since $G_{1}$ has two edges (so, $c_{0}(1)$ ) $\in\tilde{E}$

and $(c_{0}(1), c_{0}(1)+h_{1})\in\overline{E}$ , a path consisting of
these two edges collects $\tau(1)$ and reaches point
$c_{0}(1)+h_{1}$ after collecting $\tau(1)$ . Since this path
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$L^{u}(s’)$ $L^{u}(s’)$

$s_{0}$

$s_{0}$

Figure 5: Case 2-(a) in the proof of Lemma 4.3.

starts to collect $\tau(1)\mathrm{h}\mathrm{o}\mathrm{m}$ its endpoint $c_{0}(1)$ , we
have $f_{\pi}(1)\succeq c\mathrm{o}(1)+h_{1}$ . Moreover, $c_{0}(1)+h_{1}\in Q’$ .

We now assume that (A1) and (A2) hold for some
$i<\nu(\pi)$ , and extend the endpoint $s’$ of path $p$ in
$G_{1}$ to another point $s”\in Q’$ . Since $\pi$ collects all
segments in $\{\tau(k)|i+1\leq k\leq\nu(\pi)\}$ , we have
$R(f_{\pi}(i))\cap\tau(k)\neq\emptyset$ for each $i+1\leq k\leq\nu(\pi)$ , and
since $f_{\pi}(i)\succeq s’$ , we have $R(s’)\cap\tau(k)\neq\emptyset$.

Case 1 $\nu(\pi)=i+1$ . Since $s’\in Q’$ and
$R(s’\rangle$ $\cap\tau(i+1)\neq\emptyset,$ $G_{1}$ has an edge $(s’, c_{m}(i+1))\in$
$\tilde{E}$ where $m= \min\{i|\mathrm{q}(i+1)\succeq s‘\}$ . Moreover,
$G_{1}$ has an edge $(c_{m}(i+1), c_{m}(i+1)+h_{1+1})\in\overline{E}$.
The path $p’\in\Pi_{G}(s_{0})$ obtained $\mathrm{h}\mathrm{o}\mathrm{m}p$ by adding
these two edges collects $\tau(i+1)$ . By induction hy-
pothesis, we have $\kappa(p’)\geq\frac{1}{2}\sum_{k=1}^{1+1}b(k)$ , proving the
lemma.

Case 2 $\nu(\pi)\geq i+2$ . Let $i’\in\{i+1, i+2\}$ be
such that $b(i’)= \max\{b(i+1), b(i+2)\}$ .

(a) $\tau(i’)\subset R(s’)$ (see Fig. 5). Since $\pi$ collects
$\tau(i’)$ , we have $f_{\pi}(i+2)\succeq c_{0}(i’)+h_{1’}$ . Since $s’\in Q$ ,
$G_{1}$ has two edges $(s’, c_{0}(i’))\in\tilde{E}$ and $(c_{0}(i’), \mathrm{c}_{0}(i’)+$

$h_{*}’)\in\overline{E}$ . Then the path $p’\in\Pi_{G}(s_{0})$ obtained
from $p$ by adding these two edges reaches point
$s”=\mathrm{c}_{0}(i’)+h_{:}$, after collecting $\tau(i’)$ . Hence the
resulting path $p’$ satisfies

$\kappa(p’)\geq\frac{1}{2}\sum_{k=1}^{*}.b(k)+b(i’)\geq\frac{1}{2}\sum_{k=1}^{1+2}b(k)$ ,

implying that (A2) holds for $i+2$ . Moreover, points
$s”=c_{0}(i’)+h:’\in Q’$ and $f_{\pi}(i+2)$ satisfy condition
(A1) for $i+2$ .

(b) $\tau(i’)\not\subset R(s’)$ (see Fig. 6). In this case, seg-
ment $\tau(i’)$ intersects $L^{r}(s’)$ or $L^{u}(s’)$ since $R(s’)\cap$

$\tau(i’)\neq\emptyset$ ; We assume without loss of general-
ity that $\tau(i’)$ intersects $L^{f}(s’)$ at a point $z$ . Let
$m= \min\{i|c_{i}(i’)\succeq s’\}$ . Since $G_{1}$ has two edges

Figure 6: Case 2-(b) in the proof of Lemma 4.3.

$(s‘, c_{m}(i’))\in\overline{E}$ and $(c_{m}(i’), c_{m}(i’)+h_{:}’)\in\overline{E}$, the
path $p’\in\Pi_{G}(s_{0})$ obtained ffom $p$ by adding these
two edges reaches point $s”=c_{m}(i’)+h_{i’}$ after col-
lecting $\tau(i’)$ . Hence the resulting path $p’$ satisfies
$\kappa(p’)\geq\frac{1}{2}\sum_{k=1}^{1}\kappa(k)+b(i’)\geq\sum_{k=1}^{i+2}\kappa(k)$ , imply-
ing that (A2) holds for $i+2$ . Since $z$ is an in-
tersection point of segment $\tau(i’)$ with $L$‘ $(s$‘ $)$ and
$f_{\pi}(i)\succeq s’$ , we have $f_{\pi}(i+2)\succeq z+h_{i+1}+h_{i+2}$ . On
the other hand, since $z+h_{\min}\succeq c_{m}(i’)$ , we have
$z+h_{\min}+h_{i’}\succeq c_{m}(i’)+h:’$ . Hence, we finally have
$f_{\pi}(i+2)\succeq c_{m}(i’)+h_{i’}=s$“, implying condition
(A2) for $i+2$ . I

Lemmas 4.2 and 4.3 prove Theorem 4.1.

5 Computing a 2-approximate
Solution

In this section, we describe an algorithm for find-
ing a directed path in $G_{1}=(V_{1}, E_{1})$ that visits a
maximum benefit set of segments $\tau(j)$ . We call a
directed path which does not visit the same seg-
ment more than once a non-overlapping path.

We apply dynamic programming to compute a
maximum benefit non-overlapping path in $G_{1}$ . By
definition of $\rho$ , we have the following lemma.

Lemma 5.1 Let $\pi\in\Pi(s_{0})$ denote a monotone
curve, and let $\tau(i)$ denote the $ith$ segment collected
by $\pi$ . If $\nu(\pi)\leq\rho$ or $\tau(k)\not\in\{\tau(k-1),\tau(k$ -

2), . . ., $\tau(k-\rho-1)\}$ for each
$\rho+1\leq k\leq\nu(\pi)|$’

then $\pi$ is a non-overlapping path.

By Lemma 5.1, a dynamic programming al-
gorithm computes a maximum weight non-
overlapping path by maintaining lists of last $\rho+1$

segments collected by curves.
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Theorem 5.2 For an instance I to the MAX-
$VSP$-PATH, a 2-approximation solution can be ob-
tained in $O(\gamma n^{(3+\rho)})$ time. 1

For sparse instances, by modifying $G_{1}$ , we can
obtain a 2-approximation solution by computing
a maximum weight path $p$ in the modified acyclic
digraph.

Theorem 5.3 For a sparse instance I to the
MAX- $VSP$-PATH, a $Z$-approximate solution can be
obtained in $O(\gamma n^{2})$ time. 1

6 Concluding Remarks
In this paper, we designed an approximation

algorithm for the MAX-VSP-PATH with general
time windows, nonzero handling times and general
benefits. For this, we regarded the MAX-VSP-
PATH as the problem of finding a monotone curve
that collects a maximum benefit set of segments in
the $x,y$-plane. We then introduced a chart graph
to approximate an optimal monotone curve by a
directed path. Based on this chart graph, we in-
troduced approximation algorithms. We gave an
$O(\gamma n^{(3+\rho)})$ time 2-approximation algorithm, and
gave an $O(\gamma n^{2})$ time 2-approximation algorithm
for sparse instances. We proved that the MAX-
VSP-PATH is weakly $\mathrm{N}\mathrm{P}$-complete even for sparse
instances with nonzero handling times. It is left
as a remaining task to analyze the problem com-
plexity of the MAX-VSP-PATH when $\rho$ is con-
stant. We remark that the idea of reducing the
problem to an monotone curve problem has been
used by Bar-Yehuda et al. [2] to design approxi-
mation algorithms for the MAX-VSP-PATH with
no handling time. However, our method of con-
$\mathrm{s}\mathrm{t}\mathrm{r}\mathrm{u}\mathrm{c}\mathrm{t}\dot{\mathrm{o}}\mathrm{g}$ a digraph that approximates an optimal
monotone curve is completely different from their
digraphs. In fact, our chart graph cannot handle
instances with zero handling time, and it is im-
portant to investigate a common generalization of
these two ways of approximating monotone curves
by digraphs.
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