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Abstract

We prove that confluence is undecidable for flat TRSe. Here, a TRS is flat if the heights of the left and
right-hand sides of each rewrite rule are at most one.

1 Introduction

A term rewriting system(TRS) is a set of directed equations (called rewrite rules). A TRS is confluent(Church-
Rosser) if any two convertible terms are joinable. Confluence is an important property since it implies the
unicity of normal forms [1], and has received much attention so far.

But, confluence is undecidable in general and so even if we restricts to monadic or semi-constructor TRSs [6].
On the other hand, it is known decidable for terminating TRSs [5] and right-(ground or variable) TRSs [2]. In
paricular, confluence is decidable for right-linear shallow TRSs [3], hence we show here that the right-linearity
condition is necessary for decidability.

Recently, Jacquemard [4] has reported that confluence is undecidable for flat TRSs. Here, a TRS is flat if

_the heights of the left and right-hand sides of each rewrite rule are at most one. However, we found that the

proof is incorrect. In this paper, we give a correct proof of the undecidability.

2 Preliminaries

We assume that the reader is familiar with standard definitions of rewrite systems [1] and we just recall here
the main notations used in this paper.

Let £ be the empty sequence. Let X be a set of variables. Let F be a finite set of operation symbols
graded by an arity function ar: F — N(= {0,1,2,---}), Fn = {f € F | ar(f) = n}. Let T be a set of terms
built from X and F We use z as a variable, f, h as function symbols, r, s, as terms, 0 as a substitution. The
height of a term is defined as follows: height(a) = 0 if a is a variable or a constant and height(f(t1,...,ts)) =
1+ max{height(t1), ..., height(ts)} if n > 0.

A position in a term is expressed by a sequence of positive integers, and positions are partially ordered by
the prefix ordering >. Let s}, be the subterm of s at position p. Let s >qp ¢ if ¢ is a subterm of s. For position
p and term t, we use st], to denote the term obtained from s by replacing a subterm s, by ¢.

A rewrite rule o — 8 is a directed equation over terms. A TRS R is a finite set of rewrite rules. A term s
reduces to ¢ at position p by a TRS R, denoted s By t, if 8p = af and t = s[B0], for some rewrite rule o — S

and substitution 8. For s &g t, p and R may be omitted. Let —= be — U =, and « the inverse of —. s and
t are joinable if s—* - «*t, denoted s | t. t is reachable from s if s =* t. r is confluent on TRS R if for every
s «% r—%t, sl t. ATRS Ris confluent if every r is confluent on R. Let v: s, By gp-.- P25 5, be a rewrite

sequence. This sequence is abbreviated to v: s; —* s,. 7 is called p-invariant if ¢ > p for any redex position ¢
>p
of v, and we write vy: 83 —* 8.

Definition 1 A rule a — 3 is flat if height(a) < 1 and height(8) < 1. A TRS R is flat if every rule in R is flat.

Definition 2 A finite automaton is a 5-tuple (Q, L, §, F'S, go) where Q is a finite set of states, ¥ is a finite set
of iuput symbols, 6 : Q@ x £ — Q is a function, F'S C Q is a finite set of final states, and go € Q is the initial
state.
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Let ¢ be a mapping from T to T. A mapping ¢ can be extended to TRSs as follows: ¢(R) = {¢(a) —
#B) | a - B € R}\{t =t ]|t e T} A mapping ¢ can be extended to substitutions as follows: let
#(60) = {z — ¢(t) | = — t € 6}. The following lemma holds for ¢.

Lemma 38 R is confluent iff there exists a mapping ¢ : T — T that satisfies the following conditions (1)-(4).
(1) If s >R t then ¢(s) —%(r) P(t)-
(2) —¢(r) € =%
(3) t =% 4(2).
(4) #(R) is confluent.

Proof Only if part: Let ¢ be an identity mapping. If part: Let s «% r —% t. By Condition (1), ¢(s) ¥R
#(r) =4y ¢(t). By Condition (4), ¢(s) lg(r) #(t). By Condition (2), #(s) |r ¢(t). By Condition (3),
8 —'% ¢(s) and t —% ¢(t). Thus, s | L. O

This lemma is used in Section 4.

3 Joinability and reachability for flat TRSs

Jacquemard [4] has reported that reachability and joinability are also undecidable for flat TRSs and the con-
fluence problem is reducible to the reachability one, so that the former is also undecidable. But, we found that
the reducibility proof is incorrect and contains some errors not easy to correct. First, we give a more simplified
proof of undecidability for joinability and reachability than that given in [4]. Notations used in the proof (but
undefined in Section 2) are similar to those of [4].

Let P = {(u;,v;) € Tt x Tt | 1 < i < k} be an instance of the Post’s Correspondence Problem (PCP).
Note that the alphabet T is fixed. Let Ip = maxy<i<k(|wi, [v:]). Let _ be a new symbol and A = {1,---,lp} x
(2U {.})%. We shall use a product operator ® which associates to two words of =+ a word of A* as follows:
a1---0n ®aj---ap, = (l,a1,a1)---(lp,aip,a,), where ay,-- ,an,08},--- ,ap, € L,0; = _forall s € {n+
1,---,lp},and o} = _forall j € {m+1,---,lp}.

Example 4 Let Ip = 4, then a ® bab = (1,3,b)(2, _,a)(3,_,b){4,_, ).

Let A= (Q4,A,04,Fa,q94) and B = (Qp, Z,85, Fp,gp) be two finite automata recognizing the respective
sets L(A) = {u; ® v |1 < i < k}* and L(B) = ©t. We may assume that both g4 and gp are non final. We
assume that the automata A and B are clean (i.e., any state is reachable from the initial state g4(or gg) by
some input string).

We assume given 13 disjoint copies of the above signatures, colored with color i € {0, - - - ,12}: £ = {a® |
a €L}, QF = {4 | g € Qu}, Q¥ = {¢¥ | g € @5}, A® = {d¥) | d € A}. Let €12 = A® U TW UT®),
035 = A®UAWUTO), and Q = QP UQP UQY UQP L QLY U QLY UQYP. Let e be a constant. For a

ground term ¢ built with AU U {e}, t®) is defined as follows: () = e and (f(¢;))®) = Ot for f € AUT
and term t;.

The following flat TRS R, is defined on an extended signature Fy = QU{e, 0,1}, F; = 8%12u034  F, = {f},
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and Fy = {g} :

T$? = (g% —d9(¢®) | ¢ € algd)}U{q¥ —e]|qe FSa}

Tl(;'j) = {q® = a0 (™) | ¢ € bp(q,a)}U{¢*¥ — | g€ FSp}
St = {a¥)(z) - a¥(z)|a e T}
PGI) = {d9(z) —d9(z)|de A}

H(l"j) = {{n,0,d)V(z) > aP(z)|ne{l,---,lp},a€ L, d’ e ZU{}}
U{(n,_,a’)(‘)(z) —z|ne{2- - ,lp},d e TU{}}
I = {(n,a,d)9@a)—dP)|ne{l,,lplae TU{},d' €L}
U{{n,a, Y (z) »z|ne{2, - ,lp},ae TU{}}
Ry = T‘(‘s,s) U TXr,z) U Tf") U Ti9,4) U TJ(BIO'S) U Tx(an's)
UP(S.O) U ngspl) U Hg4'2) U P(4.0) U 5(5.1) U 3(5,2) U T;(le'O)
R = Rou{0—f(gf,d7,d5, 4, ¢ 5",
f(:c31 g, T4,24, x5a‘ $5) b E(ZS, s, T4,T4,T5, 25, 4192))a
‘(301 x1,22,%0, 71, T2, 3:0) - 1}
If 0 —%, 1 then the rules of R, are applied as described in the following pic.

0 — f( q(s) q(") q(s) q(9) q(m) (11)

A A A 2 ] q
T“(‘G,s) TXT-S) T‘gsﬁ) T‘(‘9-4) T§°’5) T§1‘5)

f( s, ts, ta, t4, ts, is )
l
G( i3 ) t(g11) t(:,2 4 [} t5a s, ((412)
\ X 12,0
peO i m? pwo) g g62) Tl )
g( to, t1, ta, to, ty, t2, o )—1

Definition 5§

(1) Let =% (s) = {t | s =% t}. For aset C C {0,---,12}, let GC be the set of ground terms built with e and
colored function symbols in Usec(E® U A® U QY U @Y).
(2) The index of an i-colored term built with A() U {e} is defined as follows: index(e) = £ and
index({n, a, a’) ¥ (t)) = n index(t).
Lemma 6 Let to = ((us, ®v;,) - - (ui,, ® vi,, )(¢))?.

(1) If ¢ =%, to then ¢§) to.

*
"’T‘(‘"”UP(’N)

2) 1f ¢§) —%, to then ¢§) —*
A Ro A

TT{Oup@o to.

Proof

!
(1) By the definition of Ro, ¢’ ~yu., pwm g 10 Where I = {(n, ,a)O(z) ~z[n € {2, e},
a’ € TU{_}}. Note that index(to) = (1---1p)™. In this rewrite sequence, if there is at least one application

of some rule of ng’"‘", index(to) = (1---1p)™ does not hold, since any rule of n§3'“' can not delete any
symbol of form (1,4, a’)®. Thus, the proposition holds.

(2) Similar to (1). O
Lemma 7 0 —%, 1iff PCP has a solution.
>
Proof Only if part: By the definition of Ry, 0 =z, f(¢%, ¢, ¢, ¢, ¢4, ¢4V —-»io f(ts, ts, ta, ta, L5, t5)

>€
oy B(ts,tarte e ts,ts, 00 7) —k, €(to,t1,t2,to,t1,t2,t0) —r, 1. By the definition of Ro, —%, (4f)) €
G1013,6} —%, (qu) c o137} —%, (q,(f)) C Gl0.248} —%, (qf:)) C Gl03.49) —% (qgm) C G{1:28.10}
and —%, (q(Bn)) C G{125.11} We first show that the following condition (I) holds. (I) t; € G}, i € {0,---,5}.
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Note that t3 € G{012} holds, since t5 €—%, (g% En - —%, (4 ). Similarly, t4 € G194} and t5 € G125} hold.
Since t3 =%, to and ts —%, to, we havetg € G{o 18} 1 G{0:24} = {9}, Similarly, ¢t; € G{%} and ¢, € G{? hold.
Hence, the condition (I) holds for i € {0,1,2}. For t3 € G{®13} since t3 =%, to € G and t3 =%, t1 € G}
t3 can not contain any symbol in G1%1}, so that tg € G{3} holds Similarly, t4 € G1#} and t5 € G5} hold.
Hence, (I) holds for i € {3,4, 5}, as claimed. By (I), we have t3 —»;_Igs,l, 11— ts and iy "’ng ty —5e. U5

By qu) —%, to, to = ((ui, ® viy) -+ - (us, ® v;,, )(€))© for some i1, ,im € {1,---,k}. Since an initial state

ga is not final, m > 0 holds. By Lemma 6, t3 —}%s,0) 20 < ps,0) 4- Thus, tg = ((ui;, viy) - - (Ui, ®v,~m)(e))(3)
and t4 = ((’u,.-1 @iy ) ('u.,'m ® vim)(e))(“). By t3 -4;_[(3") t1, 11 = ('I.l..i1 .. ~u.-m(e))(1). By t4 -—>’;I§..,) 1o, tp =
1

(951 e (D, BY t1 ey ts 5y 2, ts = (ty -+t ()® = (03, -5, (€))®. Hence, PCP has a
solution.

If part : Let ;- -ip be a solution of PCP, and let s = (ui, ® v;, ) - - - (w4, ® i, )(e) and t = ug, - uq,, (e).
Then, ¢ = v, -+ v;,, (¢) holds. By the definition of Ry, 0 — f(¢%,¢%, ¢, 4%, ¢4 %, ¢41) —
£(s®), @), 5@ @) £6) 1B)) _ g(s®), 5O, s4), @) 1(6) 4(6) 1Dy g(s(O),tm,t(z),S(O)J(n,tw,3(o>) -1
Note that (1, _,a")®(z) — z and (1,4, _}*)(z) — z need not in H(ls'l) and Hg4'2), since P C T+ x T, Hence,
0—-% 1 ' O

1

Since 1 is a normal form, 0 —% 1iff 0 | g, 1. Thus, the following theorem holds.

Theorem 8 Both joinability and reachability for flat TRSs are undecidable.

4 Confluence for flat TRSs

‘We show that confluence for flat TRSs is undecidable by reduction of the problem of the above section.

Let 832 = {d; | d € ©92}, where d, has arity 2. We add TRS R; in the previous section the following
rules:

=Ry U {e = 0} U {d(z) — d3(0,z),da(1,z) — z | d € ©9%}

TRS R; is flat.
First, we show that 0 —}% 1iff 0 —% 1. For this purpose, we need the following definition and lemma.

Definition 9 Let 4 be the mapping over ground terms defined as follows.

‘l/J(h(tl, i ’tﬂ)) = e (lf h € {0, 1: f; g})
P(da(t1,t2)) = d(9(t2)) (if d € ©°1%)
Y(h(t, -, ta)) = h{%(t1),- - ,%(ta)) (otherwise)

Let R = Ry U{e — 0} U {d(z) — d2(0,z) | d € 6%}

Lemma 10 For any ground term s, if s — g t then ¢(s) =%, ¥(2).
Proof We prove this lemma by induction on the structure of s.

Basis : If s € Q then s = 9(s) =g, ¥(t) =1t. If s € {¢,0} then ¥(s) =9(t) =e.

Induction step :

Caseof s € {f(slli Tt 136)’ g(sly Tty 37)} : In this case, 1/’(3) = ‘l/)(t) =e

Case of s = d(s;) where d € ©3% : If t = d(t;) and s; — gy t1 then ¢(s) = d(¥(s1)) —F, d(y(t1)) =
by the induction hypothesis. Otherwise t = d’(s;) with d’ € ©°1? and ¥(s) = d(¥(s1)) —r, &' (¥(s1)) = (t)

Case of s = d(s;) where d € ©%2 : If t = d(t;) and s; —py t1 then ¢(s) = d(¥(s1)) —F, d(¥(t1)) = ¥(2)
by the induction hypothesis. Otherwise t = d3(0, 51) and ¥(s) = ¥(t) = d(¥(s1)).

Case of s = dy(sy, s3) where d € ©%:2 : In this case, t = da(t1,?2) holds for some t1,t2 and either s; —p; t1
and s3 = t; or s3 =g, 13 and 81 =1y, so that ¢(s) = d(y(s2)) —F, d(¥(t2)) = ¥(¢) by the induction hypothesis.
a
Lemma 11 0 —»% 1iff 0 -} 1.

Proof Only if part By the deﬁmtlon of Rz, if 0 —%, 1 then there exists a shortest sequence ~ that satisfies
y:0—g, f(a5,45.q3. 6§, 452, g5") =5 Ra f(ts, s, %4, 24, t5,85) >R, &(t3, T3, 24,24, 85, 2, E >“

(to,t1,t2,to,t1,t2,to) —g, 1. If d3(1,2) — =z is applied in v then vy must contain a subsequenoe 0 —%, 1
since 1 appears only in the right-hand side of the rule g(zo,z1, x2, Z0, Z1,%2,Z0) — 1, and this contradicts
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the hypothesis that « is the shortest sequence as above, hence dz(1,z) — z is not applied in v. Thus,

6 8
f(qi’,qﬁf’,qi’,qfi’),q§§°),q§§”) —'g, f(ts, 3, 4,24, 85,15) and g(ts, ta, ta, ta, s, 15, 44 2) —R

g(to,t1,t2,t0, 21, 2,20). By Lemma 10, f((g'2), ¥(q5 ), ¥(d$)), $(a), ¥(a5 ™), ¥(a§ ")) ~%,
F(1(ts), ¥ (ts), Y(ta), B(ta), H(ts), ¥(ts)) and gt (ts), Y(ts), $(ta), B(ta), $lts), B(ts), b(gs ™)) =%,
g(¥(to), ¥(t1), ¥(t2), ¥(to), ¥(t1), ¥(t2), ¥ (t0)). Since ¢(g) = g for every g€ Q, 0 — g,

£, v(a0), (@), v(a5), 9(a$”), ¥(g5™)). By the definition of R;,

F(1(ts), Plts), B(ta), B(ta), Vlts), ¥(ts) =r, E(H(ts), Y(ts), B(ta), $(ts), Y(ts), (ts), ¥(g4>)) and

g(¢(t0)a d)(tl): ¢(t2)7 ¢(t0)v 1/’(t1), "/)(tZ)’ 'p(tO)) R 1 Thusa 0 —"R; 1.
If part : Obvious. (m]

Next, we show that R, is confluent iff 0 —%, 1 by using Lemma 3. Let ¢(t) be the term obtained from ¢ by
replacing every maximal ground subterm (w.r.t. >4) by 1. Note that ¢(Ro) = P& o I u POy
S(S,I)Us(5,2)’ ¢(R1) = ¢(R0)U{f(23, T3, T4, T4, T5, 35) - 5(273: Zz3,T4, T4, T5, T, 1)7 g(mﬂ’ z1, T2, Zo, L1, 22, xo) -
1}, and ¢(R3) = {d(z) — da(1,7),d2(1,z) = z | d € €12}, and the rules of T4 and Tz vanish in ¢(Ro).

Lemma 12 For 'any non-constant function symbol h € FU©32, A(1,-.-,1) —%Ra) 1
Proof For every d € 63, d(1) —4(z,) &'(1) for some d’ € ©%'2. For every d’' € ©°12, d'(1) —¢(r,) d3(1,1).

For every dj € ©3'2, dj(1,1) —4(r,) 1. Moreover, f(1,--- ,1) —4(r,) &(1,":*,1) —4(r,) 1. Thus, this lemma
holds. 0

We show now how the hypotheses of Lemma 3 hold for R2 and ¢.
Lemma 18 If 0 —%, 1 then the following propositions hold.
(1) If s —g, t then ¢(s) ~%(Ra) &(t).
(2) —4(ra) S =k,
(3) ¢ —3, #(0)
(4) ¢(Ry) is confluent.
Proof

(1) By induction on the structure of s. If s is a ground term then ¢(s) = ¢(t) = 1. Thus, we assume that s
is not ground. Let s —P-»Ra t. fp=-cthen s =caf — B0 =t where « — B € R2. Let s = h(sy,-+-,845)
for some h € FU©3? and sy, ,8n, @ = h(ay, -+ ,an), and i € {1,---,n}. Since R; is flat, a; € X U Fo.
Since s is not ground, ¢(s;) = ¢(a;8). If a; is a variable then ¢(a;0) = a;¢(0). If a; is a constant then

- ¢(8s) = p(as) = 1. Thus, ¢(s) = ¢(a)¢(6). Similarly, ¢(t) = $(8)¢(8), so ¢(s) —¢(r,) #(t) holds. If p # ¢ then
8=h(sg, -+ ,84 - ,80), t = h(81,-+ ,ti,-++ , 8p), and 8; — g, t; Where i € {1,--- ,n}. Since s is not ground,
#(s) = h(d(s1), -+ ,P(8), -+ ,#(sn)). By the induction hypothesis, ¢(s;) —¢(r,) #(t:). If t is not ground
then h(é(s1), - ,d(t:), -+, d(sn)) = #(t). If ¢ is ground then h(¢(sy),---,d(ts), -+, d(sn)) = h(1,--,1). By
Lemma 12, h(1,---,1) =% g,y 1 = ¢(t). Thus, $(8) —4(r,) $(¢) holds.

(2) Since (¢(Rz)) \ {d(z) — da(l,z) | d € 8%2} C Ry, it sufficies to show that if s = r{d(z6)], and t =
r{da2(1, z6)], then s —%, t. Since d(z6) — g, d2(0, 78) —%, da(1,z0), the proposition holds.

(3) It suffices to show that for any ground term t, t —%, 1. First, we show that for any g € Q, there exists s
which does not have function symbols belonging to Q such that g —%, s. Indeed, since both of the automata
A and B are clean, there exists « € A®* UA®W* UTE" such that g =%, u(e).

Thus, it suffices to show that for any ground term t which does not have function symbols belonging
to Q, t —%, 1 to show this lemma. We show this proposition by induction on the structure of ¢. Basis
: By e —p, 0 —»%, 1. Induction step : Let t = h(ti,--- ,t,) where n > 0. By the induction hypothesis,
h(th ter 1tn) —');?4 h(la R 1)' By Lemma 12: h(l’ ] 1) _';(R,) L By (2)’ h(l, Tty 1) "*;b‘ 1

(4) We can easily show that ¢(R;) is terminating by using a lexicographic path order induced by a precedence
> that satisfies the following conditions: for any d € 0345, d' € ©912,d" € 0312, d > d' > d’ >1andf > g> 1.
Thus, it sufficies to show that every critical peak of ¢(R3) is joinable.

|(%8,6)O(z) — (n,0,8)(z) ~ 6 (@) is oinsble by (n, a,a) (=) (e, a)P(1,2) » 7 —af)(1,2)
all)(z).

(n,_,a"YO(z) — (n,_,a")®(z) — = is joinable by (n, _,a’)®)(z) = (n,_,a")(1,2) — =.
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(n,a,0))(z) — (n,0,@")*)(z) — ' (z) is joinable by (n, a,a") O (z) — (n,8,a)§"(1,2) > z — @} (1,2) «
/(2)( )
(n,a, YO (z) + (n,a, _)#(z) — z is joinable by (n,a, YO (z) = (n,a, 91, z) > 2.
a(z) — a®)(z) — a®@(z) is joinable by a®(z) — a$(1,2) — z — o (1, z) « a® (). m)

Lemma 14 R; is confluent iff 0 —%, 1
Proof Only if part : By (n, _,a)(?(z) «pe.0 (n,_, a’)(s)(x) —p.» 7, confluence ensures that (n,_,a) O (z)

Ir, z. Smce zisa normal form, (n,_,a")(%)(z) —%, z. Thus, there exists sequence v : (n,_,a"}(?)(z) —g,
(n,.,a")(0,z) =%, (n,,0)(1,2) —p, z. If there exists such v, 0 —%_ 1 must hold.
If part : By Lemmata 3 and 13. O

By Lemmata 7, 11, 14, the following theorem holds.
Theorem 15 Confluence for flat TRSs is undecidable.
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