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1 Introduction

Let A be a fixed set with k elements where k > 1.
For a positive integer n let O&") be the set of all
n-ary operations on A, that is, maps from A" into
A, or n-variable functions on A, and let

Os= G 01(4").
n=1l

Denote by 74 the set of all projections €7, 1 <
i < n, over A where e} is defined by

e Ty, -1 Tiye oy Tn) =24

for every (z1,...,2n) € A™.

In this paper we consider only the case where A
is a finite set. For simplicity, and without losing
generality, let

A={0,1,...,k -1}

for £ > 1. An important factor about the set 4 is
the number of the elements in A and we often write
E instead of A when |A| = k. Also, write O{™, O,
and J instead of OSI'), O4 and Ja, respectively.

Deflnition 1.1 A subset C of Oy is a clone on
E}. if the following conditions are satisfied:

(i) C contains Ji.
(i) C© is closed under (functional) composition.
The set of all clones on Ey, is denoted by Ly. The

set Ly ordered by inclusion is called the lattice of
clones on Ey and is denoted by L.

The structure of L is completely known by E. -
Post ([Po41]). However, the structure of £y for
every k > 3 is extremely complex and at present
mostly unknown. The cardinality of the lattice of
clones is known for each k > 2: |£2| = Ro ([Po4l))
and |Lx| = 2% for 3 < k < Wo ([IM59)).

Maximal clones and minimal clones are defined
as follows:

Definition 1.2 A clone C is o maximal clone if
it 18 a co-atom of L. In other words, C is a mazx-
imal clone if it satisfies the following conditions:

(i) CCOy.
(i) For any C' € Ly, C € C' C O implies
C' = O.

Deflnition 1.3 A clone C is ¢ minimal clone if
it is an atom of L. In other words, C is a minimal
clone if it satisfies the following conditions:

(i) JccC.
(ii) For any C’ € Ly, Jx € C' C C implies
C'= Ji.

Maximal clones are completely known by I. G.
Rosenberg [Ro70]. They are characterized in terms
of relations. In contrast to maximal clones, the
problem of determining all minimal clones is still
open, except for k = 2 and 3.

The problem of determining all minimal clones
for every k > 3 is now generally recognized as one
of the most challenging problems in clone theory.
Quite a few papers have been published in connec-
tion to this problem and many of them contain nice
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and interesting results. However, one may see these
results only to show the difficulty of this problem.

In this paper, we present a proposal to look at
this problem from a new point of view. (See also
[MP06].) We consider only the cases where k is a
power of some prime number, i.e., k = p® for some
prime p and e > 1. For such k, we may incorporate
the algebraic structure of a field in the base set Ey.
This can be done without loss of generality for our
purpose. Now the set E}, is viewed as a Galois field.

B =GF(k) ={0,1,...,k -1}

Then, consider an operation f € 0,(:') as a polyno-
mial (in & usual sense) on a finite field Ex. Our task
is to extract some nice properties which a polyno-
mial must satisfy in order to be a generator of a
minimal clone.

As an initial stage of this study, we discuss in this
paper the relatively easily handled cases: The case
where polynomials are linear and the case where
polynomials are monomials. We show that, for ev-
ery prime k, (i) linear function az + (k—a + 1)y
is minimal for any 1 < a < % and (ii) monomial

zy*~! is a unique monomial which is minimal.

2 Minimal Clones

For F C O, (F) denotes the clone generated by F,
that is, (F") is the least clone containing F. When
Fis a sigleton, i.e., F = {f}, (F) is simply denoted
by (f)-

Lemma 2.1 A minimal clone is generated by a

single function. That is, for any minimal clone
C € Lk there exists f € Ok such that C = (f).

Complete list of minimal clones is known only for
k = 2 and 3. However, we have the type theorem of
minimal clones due to I. G. Rosenberg.

Definition 2.1 An function f on Ex is minimal
if (i) it generates a minimal clone and (ii) every
function from (f) whose arity is smaller than the
arity of f is a projection.

Theorem 2.2 ([Ro86]) Every minimal function
belongs to one of the following five types:

(1) Unary functions f on Ej such that either
(i) f2 (= fof) = f or(ii) f is a permutation
of prime order p (i.e., fP =1id).

(2) Idempotent binary functions; i.e., f € O@
such that f(z,z) = z for every x € Ej.

(8) Majority functions; i.e., f € O®) such that

f(z’zly) = f(z,y,:c) = f(y,z,z) =z for ev-
ery z, y € Ey.

(4) Semiprojections; i.e., f € O™ (3 < n < k)
such that there exists i (1 < i < n) satisfying
f(ay,...,an) = a; whenever ay,...,a, € Ej
are not pairwise distinct.

(8) If k = 2™, the ternary functions f(z,y,z) ==
z + y + z where (Ex;+) is an elementary
2-group (i.e., the additive group of an m-
dimensional vector space over GF(2)).

Corollary 2.3 The number of minimal clones is
finite for every k > 1.

For k = 3, B. Csékdny determined all minimal
clones by listing minimal functions generating them
([Cs83)).

3 Minimal Clones on a Finite
Field

In this section, let k be a prime and (Ejx;+,-) be
a finite field (Galois field). We consider only idem-
potent binary functions (Item (2) in Theorem 2.2).
Over a field Ex, a function f € Of) can be ex-
pressed as

fav)= Y. ayziy’
0<i,j<k
where a;; € Ej for 0 < i, j < k. Note that the
operations + and - are the operations performed

over Z mod k. Also, note that z* = z for every
z € Eg.
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3.1 Conjecture on Linear Functions

First, consider linear functions generating minimal
clones.

Lemma 3.1 Let f(z,y) = ax + by + ¢ for some
a,b,c € Ey. If f is idempotent then a +b = 1
(mod k) and c=0.

Observation 1:
(i) For k = 3, 2z + 2y is minimal.

(ii) For k = 5, 2z + 4y and 3z + 3y are minimal,
which generate the same minimal clone.

(iif) For k =7, 2z+6y, 3z+5y and 4z+4y are min-
imal, which generate the same minimal clone.

(iv) For k = 11, az + by is minimal for all 1 <
a, b < 11 such that a + b = 12. All generate
the same minimal clone.

This observation leads us to establish the follow-
ing conjecture.

Conjecture 1: For any prime k, linear function
az + (k- a+ 1)y is minimal for any 1 < a < k.

3.2 Conjecture on Monomials

Secondly, we shall consider monomials, i.e., poly-
nomials consisting of a single term. We assume
without loss of generality that a monomial is of the
form cz® y* where 1 <s<t<k.

Lemma 3.2 Let f(z,y) = cz®y* for some s,t €
N and some ¢ € Ey. If f is idempotent then c = 1.

Lemma 3.3 Let f(z,y) = z* y* for some s,t € N.
If f is idempotent then s+t = k.

Proof This follows from the equation z* = z. O

Proposition 3.4 For any prime k, f(z,y) =

zy*! is minimal.

Proof We can readily verify, e.g., f(f(z,¥),¥y) =

fy), f(fy2)y) = flzy), flz, flz,y) =
f(z,y), etc., which justify the assertion of Propo-
sition. a

Observation 2:

(i) For k = 3, zy* is the only monomial which is
minimal.
(ii) For k = 5, zy* is the only monomial which is
minimal.
(iii) For k = 7, zy® is the only monomial which is
minimal.
(iv) For k = 11, zy'0 is the only monomial which
is minimal.
From this observation we are lead to conjecture

the following.

Conjecture 2: Let k be a prime. Among mono-
mials 2°yt, 1 < s <t < k, the monomial zy*~1 is
the only monomial which is minimal.

3.3 Results on Linear Functions

Due to A. Szendrei, Conjecture 1 is known to hold
(Personal communication).

Theorem 3.5 For any prime k, linear function
az + (k — a + 1)y is minimal for any 1 < a < k.
Moreover, all such linear functions generate the
same minimal clone. ’

3.4 Results on Monomials

Next, we shall consider Conjecture 2.
Lemma 8.6 For any 1 < 8 < k we have
zyk-l € (I‘ yk—n)'

Proof. There are two cases to be considered.

Case 1: ged(s,k—1)=1
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Fermat’s theorem asserts that
(mod k —1)
where ¢ is the Euler’s function, which implies

g#k=1) =1

elh—1) p_ gw(k~1)
z® Y =

= gyt 1,

It is easy to see that z*"* " y¥==*“"" can be

obtained from z?® y*~* by repeated application of
functional composition. So the assertion of the
lemma follows.

Nowputt=k—-sforl<s<k

‘The case ged(t, k — 1) = 1 is handled similarly.

Case 2: gcd(s,k—1)# 1 and ged(t,k—1) #1
In this case we prove the following claim.

Claim. For some ¢ > 1, s8¢+ t° —
(mod k — 1)

(st)e =1

Proof of Claim. Since k is a prime, ged(s,t) = 1.
Let k—1=a- -+ such that ged(s,5y) =1 and
ged(t, ay) = 1. Then, again, by Fermat’s theorem
we have
5B =1 (mod By) and ¥ =1 (mod av).
Let ¢ = (@) - ¢(B7) then ¢ > 1 and c satisfies
=1 (modfy) and t*=1 (mod av).
This means that there exists m,n € N such that
£=14+m(By) and t°=1+n(aw),
from which it follows that
(8¢ = 1)(t° - 1) = (af)(mny).
Hence we have
sf+te—(st)=1 (mod k-1)
for some ¢ > 1. This completes the proof of Claim.

As in Case 1, it is not difficult to see that z%y*—*
for u = §°+1°— (st)° can be obtained from z*® y*~—*
by repeated application of functional composition.
Therefore the assertion of the lemma holds. 0

On the other hand, it is readily verified that
z* y*~* where 1 < s < k cannot be obtained from
zy*~1. Hence we have:

Corollary 3.7 Let k be a prime and 1 < 8 < k.
Then z* y*~* is not minimal.

To conclude, Conjecture 2 is settled affirmatively
by Proposition 3.4 and Corollary 3.7.

Theorem 3.8 Let k be a prime and 1 < s < k.
Then zy*~! is a unique monomial which is minimal
(up to the interchange of variables).
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