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1. INTRODUCTION
If 4–dimensional manifolds admitt fibration structures, then we can understand

their topology in detail. Elliptic surfaces, complex surfaces admitting elliptic fi-
brations whose generic fibers are smooth elliptic curves, were deeply studied by
Kodaira, Kas, Moishezon and so on. Matsumoto considered smooth -manifolds ad-
mitting topological elliptic fibrations, that is, smooth fibrations whose generic fibers
are homeomorphic to a real 2-dimensional torus. Matsumoto [11] and Ue [29] ob-
tained the classification theorem of such topological elliptic surfaces, which asserts
that diffeomorpism types of minimal, topological elliptic surfaces are determined
by the Euler characteristic $e$ , the genus of the base space and the multiplicities
of multiple fibers. It is interesting that exotic differential structures were found
in such topological elliptic surfaces. Using the gauge theory Donaldson showed
that Dolgachev surfaces give exotic differentiable structures on the rational ellip-
tic surface $E(1)\cong \mathbb{C}P^{2}\# 9\overline{\mathbb{C}P^{2}}$ , that is, Dolgachev surfaces are homeomorphic to
$E(1)$ but not diffeomorphic. By using Donaldson’s polynomial invariants, the au-
thor and Kametani [5] also showed that surfaces obtained from the elliptic surface
$E(k)$ by logarithmic transformations give exotic differentiable structures on $E(k)$ .
They calculated the invariants by using the fact that the moduli space of irreducible
Hermitian-Einstein connections on a $U(2)$-bundle $P$ coincides with the moduli space
of stable holomorphic structures on $P$ . So, the study of moduli spaces of stable rank
2 vector bundles over smooth complex algebraic surfaces has contributed to the
study of differentiable structures on their underlying smooth 4-manifolds.

After that, the center of -dimensional topology has shifted from the study of
differentiable structures to one of symplectic structures. The study of Lefschetz fi-
brations in -dimensinal topology becomes popular from the latter half in the $1990’ \mathrm{s}$ .
A Lefschetz fibration is a. smooth fibration of a smooth -manifold over a surface
with finitely many critical points as complex analogs of Morse functions. The im-
portance of Lefschetz fibrations from the viewpoint of topology was reverified by
Matsumoto [12]. The study of Lefschetz pencils and Lefschetz fibrations has been
the center of -dimensional symplectic topology by the support of the remarkable
works of Donaldson [ $1_{\mathrm{J}}^{\rceil}$ and Gompf [$4_{\rfloor}^{1}$ , which implies that Lefschetz fibrations pro-
vide a topological characterization of symplectic -manifolds. Therefore, most of
symplectic 4–manifolds correspond to most of -manifolds with Lefschetz fibrations.

The geography problem in complex surfaces is the characterization of pairs of
integers which are realized as $(c_{1}^{2}, c_{2})\backslash$ of complex surfaces, and it is wel studied
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in algebraic geometry. By the classification of complex surfaces due to Kodaira,
a simply connected complex surface is rational, elliptic or of general type. We
know completely the range which rational surfaces and elliptic surfaces cover in
the $(c_{1}^{2}, c_{2})$-plane. Minimal surfaces of general type must satisfy that $c_{1}^{2},$ $c_{2}>0$

and $(c_{2}-36)/5\leq c_{1}^{2}\leq 3c_{2}$ (the Noether inequality and $\mathrm{B}\mathrm{o}\mathrm{g}\mathrm{o}\mathrm{n}_{\wedge}|\mathrm{o}\mathrm{l}\mathrm{o}\mathrm{v}- \mathrm{M}\mathrm{i}\mathrm{y}\mathrm{a}\mathrm{o}\mathrm{f}\mathrm{f}\mathrm{i}\mathrm{Y}\mathrm{a}\mathrm{u}$

inequality).
A simply connected complex surface is K\"ahler and so symplectic. Therefore, the

geography problem for symplectic $4 \frac{-}{}\mathrm{m}\mathrm{a}\mathrm{n}\mathrm{i}\mathrm{f}\mathrm{o}\mathrm{l}\mathrm{d}\mathrm{s}$ comes into our mind. This problem
is raised by $\mathrm{M}\mathrm{c}\mathrm{C}\mathrm{a}\mathrm{r}\mathrm{t}\mathrm{h}\mathrm{y}$ and Wolfson [13]:

(1) Which pairs of integers are realized as $(c_{1}^{2}, c_{2})$ of a symplectic -manifold ?
(2) If there is a symplectic $4 \frac{-}{}\mathrm{m}\mathrm{a}\mathrm{n}\mathrm{i}\mathrm{f}\mathrm{o}\mathrm{l}\mathrm{d}$ corresponding to a given lattice point

$(c_{\mathrm{i}}^{2}, c_{2})$ , are there many distinct symplectic structures on it ?
The remarkable works of Donaldson and Gompf suggest that the geography of sym-
plectic 4-manifolds is nearly the same as one of Lefschetz fibrations. Every lattice
point $(c_{1}^{2}, c_{2})$ except finitely many lying in $(c_{2}-36)/5\leq c_{1}^{2}\leq 2c_{2}$ is realized as the
total space of a Lefschetz fibration [18]. Fintushel and Stern showed that there ex-
ists a minimal Lefschetz fibration which does not satisfy the Noether inequality $[3_{\rfloor}^{1}$ .
In $\lceil\lfloor 25$], Stipsicz addressed the Bogomolov-hfiyaoka-Yau inequality for Lefschetz fi-
brations.

Topologists often construct new manifolds by the cut-and-paste method. As one
can make a new manifold from given manifolds by taking the connected sum, one can
make a new Lefschetz fibration from given Lefschetz fibrations by taking the fiber
sum. Instead of investigating all of the investigation objects, we restrict them to
prime (or irreducible) things and often investigate these. Therefore, it is natural to
investigate the geography of irreducible Lefschetz fibrations, that is, Lefschetz fibra-
tions which cannot be decomposed as any nontrivial fiber sum. Lefschetz fibrations
with spheres of square-l have the following characteristics :

(1) Lefschetz fibrations come from Lefschetz pencils which Lefschetz introduced
to the study of topology of algebraic varieties. The blow-ups of a Lefschetz
pencil along the base locus yields a Lefschetz fibration with sections of square
$-1$ .

(2) Lefschetz fibrations with sections of square-l cannot be decomposed as any
nontrivial fiber sum [27].

Thus, we can judge that Le&chetz fibrations with spheres of square $-1$ are fun-
damental. In this note, we consider the geography problem of Lefschetz fibrations
with spheres of square-l. We have only to understand the horizontal direction of
a Lefschetz fibration to investigate the geography because the vertical direction is
understood well. It is our fundamental idea to draw information in the horizontal
direction by using spheres of square-l.
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2. TOPOLOGICAL INVARIANTS OF LEFSCHETZ FIBRATIONS AND THE NUMBERS
OF SINGULAR FIBERS

2.1. The deflnition of Lefschetz fibrations. A smooth map $f$ : $Xarrow\Sigma$ from a
closed, connected, oriented smooth -manifold $X$ onto a closed: connected, oriented
smooth 2-manifold $\Sigma$ is said to be a Lefschetz fibration, if $f$ admits finitely many
critical points $C=\{p_{1},p_{2}, \ldots,p_{k}\}$ on which $f$ is injective and ar$\mathit{0}$und which there
are orientation-preserving complex coordinate neighborhoods such that locally $f$

can be expressed as $f(z_{1}, z_{2})=z_{1}^{2}+z_{2}^{2}$ . It is a consequence of this definition that
$f|x\backslash c$ : $X\backslash Carrow\Sigma\backslash f(C)$ is a smooth fiber bundle with fiber a closed oriented
2-manifold. If the genus of a generic fiber is $g$ , we refer to $f$ as a genus-g Lefschetz
fibration. Moreover, we assume that $f$ is relatively minimal, that is, there is no fiber
containing a sphere of square-l.

A fiber containing a critical point is called a singular fiber, which is obtained by
collapsing a simple closed curve, called a vanishing cycle, on a nearby generic fiber
to a point. A singular fiber is called reducible or irreducible according to whether the
corresponding vanishing cycle separates or dose not separate in the generic fiber. In
particular, if a vanishing cycle a separates the closed surface $\Sigma_{g}$ of genus $g$ into two
components with genera $h$ and $g-h(1\leq h\leq[g/2])$ , then the reducible singular
fiber corresponding to a is said to be of type $E_{h}$ .

The local monodromy around a singular fiber of a Lefschetz fibration $f$ : $Xarrow S^{2}$

is a positive Dehn twist $t_{a}$ along the corresponding vanishing cycle $a$ .

Figure 1 : positive Dehn twist

The product of all the local monodromies of $f$ is trivial in the mapping class group
$\Gamma_{g}$ of genus $g$ . Such a relation in $\Gamma_{g}$

$t_{a_{1}}t_{a_{2}}\cdots t_{a_{\mu}}=1$

is called a positive relation, where $a_{1},$ $a_{2},$
$\ldots,$ $a_{\mu}$ are vanishing cycles of $f$ . The

following theorem implies that genus-g Lefschetz fibrations correspond to positive
relations in $\Gamma_{\mathit{9}}$ .

Theorem 2.1 (Matsumoto [12]). Suppose that $g\geq 2$ . Then, there is $a$ one-to-one
correspondence:

$\{_{LFwithnsingularfibers}^{isomorphismclassesof}\}on_{\mathrm{f}^{t}[]^{one}}$ {conjugacy classes of $\rho$},

where $\rho:\pi_{1}(S^{2}-\{f(p_{i})’ s\}, b_{0})arrow\Gamma_{g}$ is the monodromy representation.
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It is the following theorems to become the clue that the study of Lefschetz fibra-
tions became popular.

Theorem 2.2 (Donaldson [1]). Every symplectic 4-manifold admits a Lefschetz
pencil whose closed fibers are symplectic submanifolds.

Thurston investigated the symplectic structures on surface-bundles over surfaces
and gave the first example of a symplectic closed manifold which is not K\"ahler.

Gompf proved the following theorem by generalizing the symplecticness of surface-
bundles over surfaces.

Theorem 2.3 (Gompf [4]). Let $f$ : $Xarrow S^{2}$ be a Lefschetz fibration and let $[F]$

denote the homology class of the fiber. If [$F_{d}\rceil\neq 0$ in $H_{2}(X;\mathbb{R})$ , then $X$ admits a
symplectic structure such that fibers are symplectic submanifolds.

If the fiber- genus $g$ is greater than 1, then the homology class of a generic fiber
of $f$ is not torsion in $H_{2}(X;\mathbb{Z})$ , and so this theorem states that such an $X$ admits
a symplectic structure with svymplectic fibers.

Rom now on, we suppose that the fiber- genus $g$ is greater than 1 and we can
use the symplectic topology. Combinling the remarkable theorems of Donaldson and
Gompf gives the following topological characterization of symplectic 4-manifolds.

Corollary 2.1. A 4-manifold $X$ admits a symplectic structure if and only if it
admits a Lefschetz pencil.

2.2. The signature of Lefschetz flbrations. The Hirzebruch’s signature theorem
implies that the pair $(c_{1}^{2}, c_{2})$ of Chern numbers are determined by the signature and
the Euler characteristic. So, it is important to calculate the signature and the Euler
characteristic of a 4–manifold admitting a Lefschetz fibration. Every singular fiber of
a genus-g Lefschetz fibration $f$ : $Xarrow S^{2}\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{b}\mathrm{u}\mathrm{t}\text{\’{e}}+1$ to the Euler characteristic
$e(X)$ . If the fibration $f$ has $\mu$ singular fibers, then we have $e(X)=4(1-g)+\mu$ .

Compared with the Euler characteristic, it is difficult to calculate the signature of
X. Now we introduce some signature formulae. They are the formula for hyperellip-
tic Lefschetz fibrations and the formula for general (possibly non-hyperelliptic) Lef-
schetz fibrations. Let $F_{1},$ $F_{2},$

$\ldots$ , $F_{\mu}$ be singular fibers of $f$ : $Xarrow S^{2}$ . Let $N(F_{1})$ de-
note the tubular neighborhood of $F_{i}(i=1,2, \ldots, \mu)$ . We set $X_{0}=X- \bigcup_{i=1}^{\mu}N(F_{i})$ .
Then the restriction $f_{|X_{\mathrm{O}}}$ : $X_{0}arrow f(X_{0})$ is the associated $\Sigma_{g}$-bundle over the punc-
tured sphere. Since an irreducible singular fiber and a reducible singular fiber con-
tribute $0$ and-l to the signature $\sigma(X)$ respectively, it follows from the Novikov’s
additivity that we have

$\sigma(X)=\sigma(X_{0})-\sum_{h=1}^{[g/2]}s_{h}$

. where $s_{h}$ denotes the number of singular fibers of type $II_{h}$ . The signature $\sigma(X_{0})$ of
the bundle part $X_{0}$ can be calculated from the signature cocycle $\tau_{g}$ . The signature
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cocycle $\tau_{g}$ is defined algebraically. Let $P=S^{2}-\mathrm{I}\mathrm{I}_{i=1}^{3}$ Int $D_{i}^{2}$ be a pants and
$E(\alpha,\beta)arrow P$ the $\Sigma_{g}$-bundle defined by monodromies or, $\beta\in\Gamma_{g}$ . Then, Meyer
showed [15] that for the signature of $E(\alpha, \beta)$ we have

$\sigma(E(\alpha, \beta)_{\text{ノ}^{})}=-\tau_{g}(\alpha, \beta)$ .
If $f\mathrm{h}\mathrm{a}_{\iota}\mathrm{s}\mu$ singular fibers, then we decompose the $\mu$ punctured sphere $f(X_{0})$ into
$\mu$ pairs $P_{1},$ $P_{2},$

$\ldots,$
$P_{\mu}$ of pants. Then it follows from the Novikov’s additivity and

Meyer’s theorem that we have

$\sigma(X_{0})=\sum_{i=1}^{\mu}\sigma(f^{-1}(P_{i}))=-\sum_{i=1}^{\mu}\tau_{g}(t_{a_{*-1}}.\cdots t_{a_{2}}t_{a_{1}}, t_{a_{i}})$.

Here $a_{1},$ $a_{2},$ $\ldots,$ $a_{\mu}$ are vanishing cycles of $f$ .

Matsumoto-Endo’s signature formula: A hyperelliptic Lefschetz fibration is a
Lefschetz fibration whose monodromy representation $\rho$ is equivalent to one taking
isotopy classes commuting with the hyperelliptic involution $\iota$ : $\Sigma_{g}arrow\Sigma_{g}$ . Since
the hyperelliptic mapping class group $\Gamma_{2}^{\mathrm{h}\mathrm{y}\mathrm{p}}$ of genus 2 agrees with $\Gamma_{2}$ , every genus-2
Lefschetz fibration is hyperelliptic.

When we restrict the signature cocycle $\tau_{\mathit{9}}$ to the hyperelliptic mapping class group
$\Gamma_{\mathit{9}}^{\mathrm{h}\mathrm{y}\mathrm{p}}$ , its cohomology class $[\tau_{g}^{H}]\in H^{2}(\Gamma_{g}^{\Phi \mathrm{p}};\mathbb{Z})$ is of finite order. So we can calculate
the terms of signature cocycles by the coboundary maps called Meyer’s functions.
Matsumoto [12] and Endo [2] calculated Meyer’s functions and obtained the signa-
ture formula for hyperelliptic Lefschetz fibrations.

Theorem 2.4 (Matsumoto $[12_{\mathrm{J}}^{\rceil}$ , Endo [2]). Suppose that $f$ : $Xarrow S^{2}$ is a genus-g
hyperelliptic Lefschetz fibration with $n_{0}$ irreducible singular fibers and $s_{h}$ singular
fibers of type $\Pi_{h}(h=1,2, \ldots, [g/2])$ . Then, we have

$\sigma(X)=-\frac{g+1}{\mathit{2}g+1}n_{0}+\sum_{h=1}^{[g/2]}(\frac{4h(g-h)}{2g+1}-1)s_{h}$ .

Smith’s signature formula: Smith obtained the signature formula for general
(possibly non-hyperelliptic) Lefschetz fibrations by using the geometry of the moduli
space of stable curves. We denote the Deligne-Mumford compactified moduli space
of stable curves of genus $g$ by $\overline{\mathcal{M}_{g}}$ . Let $f$ : $Xarrow S^{2}$ be a genus-g Lefschetz fibration.
Then we can define the moduli map $\phi_{f}$ : $S^{2}arrow\overline{\mathcal{M}_{\mathit{9}}}$ of $f$ by

$\phi_{f}(x):=[f^{-1}(x)]\in\overline{\mathcal{M}_{\mathit{9}}}$ $(\forall x\in S^{2})$ .
In particular, if $f$ : $Xarrow \mathbb{C}P^{1}$ is holomorphic, then the image $\Phi_{f}(\mathbb{C}P^{1})$ is a rational
curve in $\overline{\mathcal{M}_{g}}$ .

Theorem 2.5 (Smith [23]). For any genus-g Lefschetz fibration $f$ : $Xarrow S^{2}$ with $\mu$

singular fibers, namely $\mu=n_{0}+\sum_{h=1}^{[g/2]}s_{h}$ , the signature of $X$ is given by
$\sigma(X)=4\langle c_{1}(\lambda), [\phi_{f}(S^{2})]\rangle-\mu$
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where $\lambdaarrow\overline{\mathcal{M}_{g}}$ denotes the Hodge bundle with fiber the determinant $line\wedge^{g}H^{0}(C;K_{C})$

above $[C_{\mathrm{J}}^{\rceil}$ .

For a projective fibration $f$ : $Xarrow \mathbb{C}P^{1}$ , this theorem $\mathrm{f}\mathrm{o}\mathrm{U}\mathrm{o}\mathrm{w}\mathrm{s}$ from Mumford’s
formula. Smith’s formula is a generalization of the Atiyah’s formula for smooth
fibrations, and related work by Meyer.

2.3. The numbers of singular flbers of Lefschetz flbrations. It is conjectured
that symplectic -manifolds which are not the blow-ups of ruled surfaces satisfy
$e\geq 0$ for the Euler characteristic $e$ . Since the Euler characteristic $e$ of a genus-g
Le&chetz fibration is given by $e=4(1-g)+\mu$ , it is a problem whether to satisfy
$\mu\geq 4(g-1)$ . Let $N(g)$ denote the minimal number of singular fibers in genus-g
Lefschetz fibrations over $S^{2}$ . Then, the following estimates on $N(g)\backslash$ is given.

Theorem 2.6 (Korkmaz-Ozbagci [7], Stipsicz [26]). We have the estimates on $N(g)$

as follows :
(1) $N(2)=7$, or 8
(2) $N(g) \geq\frac{1}{5}(4g+2)$

Moreover, by considering the abelialization of the global monodromy of a Lefschetz
fibration, we obtain the congruence on the number of singular fibers. Noting that
the abelialization $H_{1}(\Gamma_{2;}\mathbb{Z}.)$ of $\Gamma_{2}$ is isomorphic to the cyclic group of order 10, the
following proposition is proved.

Proposition 2.1 (Persson). Suppose that a genus-2 Lefschetz fibration has $n_{0}$ irre-
ducible singular fibers and $s$ reducible singular fibers. Then, we have

$n_{\mathrm{O}}+\mathit{2}s\equiv 0$ (mod 10).

If $g\geq 3$ , then $H_{1}(\Gamma_{g};\mathbb{Z})=0$ , and so we can get no information on the number
of singular fibers. However, we can get information for hyperelliptic Lefschetz fibra-
tions. Since the abelialization $H_{1}(\Gamma_{g}^{\mathrm{h}\mathrm{y}\mathrm{p}};\mathbb{Z})$ of the hyperelliptic mapping class group
$\Gamma_{g}^{\mathrm{h}\mathrm{y}\mathrm{p}}$ is isomorphic to $\mathbb{Z}/2(2g+1)$ if $g$ is even and $\mathbb{Z}/4(2g+1)$ if $g$ is odd, we obtain
the congruence on the number of singular fibers of a hyperelliptic fibration.

Proposition 2.2 (Endo [2]). Suppose that $f$ : $Xarrow S^{2}$ is a genus-g hyperelliptic
Lefschetz fibration with $n_{0}$ irreducible singular fibers and $s_{h}$ singular fibers of type
$E_{h}(h=1,2, \ldots)[g/2])$ . Then, we have

$n \neq 4\sum_{h=1}^{[g/2]}h(2h+1)s_{h}\equiv 0(\mathrm{m}\mathrm{o}\mathrm{d} \{_{4(2g+1)}^{2(2g+1)}$ $(ifgiseven)(ifgisodd)\})$ .
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3. EXAMPLES OF LEFSCHBTZ FIBRATIONS

Let $\zeta_{1},$ $\zeta_{2},$

$\ldots,$
$\zeta_{2g+1}$ be Lickorish generators of the mapping class group $\Gamma_{g}$ of genus

$g.\mathrm{T}\mathrm{h}\mathrm{e}\mathrm{s}\mathrm{e}\Sigma_{\mathit{9}}$.
are given by positive Dehn twists along the following illustrated curves on

Figure 2 : Lickorish generators

Typical positive relations in $\Gamma_{g}$ are the followings :
$W_{1}$ : $(\zeta_{1}\cdot\zeta_{2}\cdots\zeta_{2g}\cdot\zeta_{2g+1}\cdot\zeta_{2g+1}\cdot\zeta_{2g}\cdots\zeta_{2}\cdot\zeta_{1})^{2}=1$

$W_{2}$ : $(\zeta_{1}\cdot\zeta_{2}\cdots\zeta_{2g}\cdot\zeta_{2g+1})^{2g+2}=1$

$W_{3}$ : $(\zeta_{1}\cdot\zeta_{2}\cdots\zeta_{2g})^{4g+2}=1$

Rom these positive relations, we can construct hyperelliptic genus- $\mathrm{g}$ Lefschetz fi-
brations with only irreducible singular fibers and with sections of self-intersection-l.
Furthermore, these Lefschetz fibrations are double branched covers of the Hirzebruch
surfaces and so holomorphic.

3.1. Examples of genus-2 Le&chetz fibrations. The Hirzebruch surface $\mathrm{F}_{n}=$

$\mathrm{p}(O_{\mathrm{C}P^{1}}\oplus O_{\mathrm{C}P^{1}}(n))$ has two disjoint holomorphic sections $\mathrm{A}_{n}$ and $\Delta_{-n}$ of square
$\pm n$ .
(1) $M_{1}=\mathbb{C}P^{2}\# 13\overline{\mathbb{C}P^{2}}$

The positive relation $\nu V_{1}$ : $(\zeta_{1}\cdot\zeta_{2}\cdot\zeta_{3}\cdot\zeta_{4}\cdot\zeta_{5}^{2}\cdot\zeta_{4}\cdot\zeta_{3}\cdot\zeta_{2}\cdot\zeta_{1})^{2}=1$ describes the
genus-2 Lefschetz fibration on the rational surface $\Lambda^{\text{ノ}}I_{1}$ obtained as a double covering
of $\mathrm{F}_{0}$ branched along a smooth algebraic curve in the linear system $|6\Delta+2F|$ . This
fibration is obtained from the composition of the covering projection with the bundle
projection $\mathrm{F}_{0}arrow S^{2}$ and has 20 irreducible singular fibers and sections of square-l.
(2) $M_{2}=K3\#\mathit{2}\overline{\mathbb{C}P^{2}}$

The positive relation $W_{2}$ : $(\zeta_{1}\cdot\zeta_{2}\cdot\zeta_{3}\cdot\zeta_{4}\cdot\zeta_{5})^{6}=1$ describes the genus-2 Lefschetz
fibration on $\mathrm{J}/I_{2}$ obtained as a double covering of $\mathrm{F}_{1}=\mathbb{C}P^{2}\#\overline{\mathbb{C}P^{2}}$ branched along a
smooth algebraic curve in the linear system $|6L|$ , where $L$ is a line in $\mathbb{C}P^{2}$ avoiding
the blown-up point. This fibration has 30 irreducible singular fibers and sections of
square-l.
(3) $M_{3}=H’(1)$ (Horikawa surface)

The positive relation $W_{3}$ : $(\zeta_{1}\cdot\zeta_{2}\cdot\zeta_{3}\cdot\zeta_{4})^{10}=1$ describes the genus-2 Lefschetz
fibration on $M_{3}$ obtained as a double covering of $\mathrm{F}_{2}$ branched along the disjoint
union of a smooth curve in the linear system $|5\Delta_{2}|$ and $\Delta_{-2}$ . This fibration has 40
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irreducible singular fibers and a section of square $-1$ . This section is a lift of the
component of the branched set coming from $\Delta_{-2}$ . On the other hand, a fiber sum of
two copies of the rational genus-2 Lefschetz fibration $\mathbb{C}P^{2}\# 13\overline{\mathbb{C}P^{2}}arrow S^{2}$ is a genus-2
Lefschetz fibration which has 40 irreducible singular fibers and the total space is
homeomorphic to $H’(1)$ but not diffeomorphic. See \S 5.
(4) $S^{2}\cross T^{2}\# 4\overline{\mathbb{C}P^{2}}$

Matsumoto showed that $S^{2}\cross T^{2}\# 4\overline{\mathbb{C}P^{2}}$ has a genus-2 Lefschetz fibration with 6
irreducible singular fibers and 2 reducible singular fibers. This also has a section of
square-l. The positive relation describing this fibration is $(\alpha_{1}\cdot\alpha_{2}\cdot\alpha_{3}\cdot\alpha_{4})^{2}=1$ ,
where $\alpha_{1},$

$\ldots,$
$\alpha_{4}$ are given by positive Dehn twists along curves indicated below:

Figure 3.

3.2. Examples of genus-3 Le&chetz flbrations.
(1) $\Lambda f_{1},$ $M_{2}$ and $M_{3}$ corresponding to positive relations $W_{1},$ $W_{2}$ and $W_{3}$ for $g=3$
have hypereUiptic and holomorphic genus-3 Lefschetz fibrations.
(2) $S^{2}\mathrm{x}T^{2}\# 8\overline{\mathbb{C}P^{2}}$

This has a non-hyperelliptic genus-3 Lefschetz fibration with positive relation
$(\alpha_{1}\cdot\alpha_{2}\cdot\alpha_{3}\cdot\alpha_{4}\cdot\beta_{1}^{2}\cdot\beta_{2}^{2})^{2}$ indicated below :

Figure 4.

This fibration also has a section of square-l.
(3) Fuller’s example

Fuller constructed a non-hyperelliptic and non-holomorphic genus-3 Lefschetz fi-
bration with positive relation $(\beta_{1}\cdot\beta_{2}\cdot\zeta_{4}\cdot\zeta_{3}\cdot\zeta_{2}\cdot\zeta_{1}\cdot\zeta_{5}\cdot\zeta_{4}\cdot\zeta_{3}\cdot\zeta_{2}\cdot\zeta_{6}\cdot\zeta_{b}\cdot\zeta_{4}\cdot\zeta_{3}\cdot(\zeta_{\overline{1}}\cdots\zeta_{6})^{10})=$

$1$ , where $\beta_{1}$ and $\beta_{2}$ are given by positive Dehn twists along curves indecated in Figure
4. This fibration also has a section of square-l.
(4) $T^{4}\# 4\overline{\mathbb{C}P^{2}}$

Smith [24] showed that $T^{4}\# 4\overline{\mathbb{C}P^{2}}$ has a non-hyperelliptic and holomorphic genus-3
Lefschetz fibration with 12 irreducible singular fibers and 4 sections of square-l.

134



This fibration is obtained by using the inverse of the usual Kummer construction
of a K3 surface which is elliptically fibered over $S^{2}$ with 16 disjoint (-2)-spheres
containing 4 sections and 12 singular fibers.

4. INDECOMPOSABILITY OF LEFSCHETZ FIBRATIONS AS FIBER SUM

As for spheres of square-l in the total space of a Lefschetz fibration, the problems
about the minimality or the fiber sum decomposability have been treated. Given
two genus-g Lefschetz fibrations $f_{i}$ : $X_{i}arrow S^{2}(i=1,2\rangle$ , we can construct a new
genus-g Lefschetz fibration as follows.

Removing regular neighborhoods of generic fibers in each, we glue the boundaries
of these remainders by using a fiber-preserving diffeomorphism of $\Sigma_{g}$ which can be
extended to $f_{i}(i=1,2)$ . Thus we obtain a genus-g Lefschetz fibration, which
is denoted by $X_{1}\# fX_{2}arrow B_{1}\# B_{2}$ and is called the fiber sum of $f_{1}$ and $f_{2}$ . $\Re^{f}\mathrm{h}\mathrm{i}\mathrm{c}\mathrm{h}$

Lefschetz fibration can be deconposed as a nontrivial fiber sum ? Stipsicz gave an
answer for this problem.

Theorem 4.1 ([27], [21]). If a Lefschetz fibration $f$ : $Xarrow S^{2}$ admits a section of
square-l, then $X$ cannot be decomposed as any nontrrivial fiber sum $X=X_{1}\# fX_{2}$ .

Stipsicz also proved the following theorem on the minimality of fiber sum.

Theorem 4.2 ([26]). For a Lefschetz fibration $f$ : $Xarrow S^{2}$ , the fiber sum $X\#_{f}X$ is
minimal.

Here the minimality implies that a manifold is minimal in the DIFF category, that
is, it cannot contain any smooth sphere of square-l. These theorems naturally lead
us to the following conjecture:

$\mathrm{C}\mathrm{o}\iota\dot{\mathrm{u}}\mathrm{e}\mathrm{c}\mathrm{t}\mathrm{u}\mathrm{r}\mathrm{e}4.1$ (Stipsicz). For nontrivial Lefschetz fibrations $f_{i}$ : $X_{i}arrow S^{2}(i=$

$1,2)$ , the fiber sum $X_{1}\# fX_{2}$ is minimal.

In the term of the mapping class group $\Gamma_{g}$ , this conjecture implies that if the
word $w$ in $\Gamma_{g}$ describing a positive relation is given by a positive Dehn twist along
a closed curve parallel to a boundary component of $\Sigma_{g,k}$ with boundary, then the
word $w$ cannot be written as a nontrivial product $w_{1}w_{2}$ where the word $w_{i}$ describes
a positive relation in $\Gamma_{g}$ . As far as the author can know, this conjecture is an open
problem.

5. 2-SPHERES OF SQUARE $-1$ IN LEFSCHETZ FIBRATIONS

5.1. $\mathrm{p}\mathrm{s}\mathrm{e}\mathrm{u}\mathrm{d}\infty \mathrm{h}\mathrm{o}\mathrm{l}\mathrm{o}\mathrm{m}o\mathrm{r}\mathrm{p}\mathrm{h}\mathrm{i}\mathrm{c}$ curves in symplectic -manifolds and the Gro-
mov invariant. Since we suppose that the fiber genus $g$ of a Lefschetz fibration
$Xarrow S^{2}$ is greater than 1, then $X$ has a symplectic structure. When $X$ has a smooth
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sphere of square-l, we would like to make use of it to draw information in the hori-
zontal direction. Since the one except for the differentiable structure is not supposed
on a embedded sphere at present, we know the intersection of it with a generic fiber
only algebraically, However, due to the development of -dimensional topology in
recent years we found that a smooth sphere of square $-1$ can be exchanged for a
pseudo-holomorphic rational curve of square-l.

We recall some definitions and some results about pseudrholomorphic curves in
symplectic -manifolds. Let $(M,\omega)$ be a connected, closed symplectic 4-manifold
with $J$ an $\omega$-compatible almost complex structure. A smooth map $\varphi$ : $\Sigmaarrow M$

from a possibly disconnected compact Riemann surface $(\Sigma,j)$ to $(M, J)$ is said to
be $J$-holomorphic if the differential $d\varphi$ satisfies

$d\varphi \mathrm{o}j=J\mathrm{o}d\varphi$ .

We call the image $\varphi(\Sigma)$ a $J$-holomorphic curve or pseudo-holomorphic curve. Then,
$\mathrm{M}\mathrm{c}\mathrm{D}\mathrm{u}\mathrm{f}\mathrm{f}[14]$ showed that pseudo-holomorphic curves have locally positive intersec-
tions. Hence, the number of algebraic intersections of pseudo-holomorphic curves
give information about geometric intersections. This is one of the advantages which
are brought by using pseudo-holomorphic curves.

In [28], Taubes defined the Gromov invariant $\mathrm{G}\mathrm{r}_{T}$ by counting with signs the
number of pseudo-holomorphic curves in a given homology class and showed that
Gromov invariants can be calculated in terms of Seiberg-Witten invariants. Given
a cohomology class $a\in H^{2}(M;\mathbb{Z})$ , we define $d(a)$ by

$d(\alpha)=-K_{M}\cdot a+a\cdot a$ ,

where $K_{M}$ denotes the symplectic canonical class of $(hf,\omega)$ and. is the cup product
pairing. If $d(a)>0$ , let $\Omega\subset M$ be a set of $d(\alpha)/2$ distinct points. If $d(a)\leq 0$ , we set
$\Omega=\emptyset$ . Then, we consider the space $\mathcal{H}(\alpha, J)$ of $J$-holomorphic curves representing
$PD(\alpha)$ and going through St. Here we denote $PD(\alpha)$ the Poincar\’e dual of $a$ . Then,
$\mathcal{H}(a, J)$ is an oriented -manifold for a generic choice of $J$ and $\Omega$ . Taubes proved
the regularity theorem for $\mathcal{H}(a, J)$ and introduced the Gromov invariant $\mathrm{G}\mathrm{r}_{T}$ as
follows: For a nonzero class $a,$ $\mathrm{G}\mathrm{r}_{T}(a)$ is defined to be the algebraic number of
pseudo-holomorphic curves in $\mathcal{H}(\alpha, J)$ , that is,

$\mathrm{G}\mathrm{r}_{T}(a)=\sum_{c\in \mathcal{H}(\alpha,J)}\epsilon(C)$
,

where $\epsilon(C)=\pm 1$ . We set $\mathrm{G}\mathrm{r}_{T}(0)=1$ . The Gromov invariants $\mathrm{G}\mathrm{r}_{T}$ are independent
of a generic choice of $J$ and $\Omega$ . Furthermore, he obtained the following structure
theorem.

Theorem 5.1 (Taubes’ structure theorem [28]). Let $(M,\omega)$ be a closed symplectic
4-manifold with $b_{2}^{+}(M)>1$ . Then the followings hold:

(1) $\mathrm{G}\mathrm{r}_{T}(K_{M})=\pm 1$ . In particular, the homology class $PD(K_{M})$ has a (possibely
disconnected) smooth pseudo-holomorphic representative. Hence, if $M$ is
minimal, then $c_{1}^{2}(M)=K_{M}^{2}\geq 0$.

(2) (The duality formula) For any cohomology class $a\in H^{2}(\mathrm{A}I;\mathbb{Z}),$ $\mathrm{G}\mathrm{r}_{T}(a)=$

$\pm \mathrm{G}\mathrm{r}_{T}(K_{M}-a)$ .
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(3) If $\mathrm{G}\mathrm{r}_{T}(\alpha)\neq 0$ , then $a$ satisfies $d(a)=0$ and can be represented by a pseudo-
holomorphic curve $C$ such that each component $C_{i}$ of $C$ is of genus $g(C_{i})=$

$1+_{\mathrm{t}}^{\mathrm{r}}C_{i\rfloor}^{\mathrm{t}2}$ .

5.2. 2-spheres of square $-1$ in Le&chetz flbrations. Now we can state the
following theorem on smoothly embedded spheres in a symplectic -manifold with
self-intersection number-l.

Theorem 5.2 ( $(-1)$-curve theorem, Taubes $\mathrm{r}28]\iota$

’ Li-Liu [9]). Let $(M,\omega)$ be a closed
symplectic 4-manifold. Suppose that $M$ is neither the blow-up of a rational surface
nor the blow-up of a ruled surface. Then, any smoothly embedded sphere of square
$-1$ is $\mathbb{Z}$-homologous to a pseudo-holomorphic rational curve of square-l after the
appropriate choice of an orientation of the sphere.

Taubes showed this theorem for $b_{2}^{+}(M)>1$ , and Li and Liu showed this theorem
for $b_{2}^{+}(M)=1$ .

Next we consider spheres of square-l in Lefschetz fibrations. Let $f$ : $Xarrow S^{2}$

be a genus-g Lefschetz fibration. Since we suppose that $g\geq 2,$ $X$ has a symplectic
structure $\omega$ with an $\omega$-compatible almost complex structure $J$ for which the fibers
are pseudo-holomorphic (Theorem 2.3). Let $E\in H^{2}(X;\mathbb{Z})$ be the Poincar\’e dual of
the homology class which is represented by a smoothly embedded sphere of square
$-1$ in $X$ . By changing the orientation of this sphere if necessary, we may assume
that $E\cdot \mathrm{r}_{\omega}$]$\mathrm{L}>0$ . We denote by $\mathcal{E}_{X}$ the set of all the Poincar\’e dual of the homology
classes $E$ which can be represented by smoothly embedded spheres of square $-1$

and satisfy E. $[\omega]>0$ . Moreover, let $F$ denote the Poincar\’e dual of the homology
class represented by a generic fiber. Then, we have the following theorem:

Theorem 5.3. Suppose that $X$ is neither the blow-up of a rational surface nor the
blow-up of a ruled surface. Moreover, we suppose that $\mathcal{E}_{X}$ is not empty, and set
$\epsilon_{x=}\{E_{1}, E_{2}, \ldots, E_{m}\}$ . Then, we have

$m \leq(\sum_{i=1}^{m}E_{i})\cdot F\leq 2g-2$ .

We need the folowing lemma to prove this theorem.

Lemma 5.1. If $X$ is neither the blow-up of a rational surface nor the blow-up of a
ruled surface, then $E\cdot F\geq 1$ for any $E\in \mathcal{E}_{X}$ .

Proof. There exists an $\omega$-compatible almovt complex structure $J$ on $X$ such that
fibers are $J$-holomorphic curves. By the $(-1)$-curve theorem, $E$ can be represented
by a $J$-holomorphic $(-1)$-curve $C$ .
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Suppose that $E\cdot F\leq 0$ . Since pseudo-holomorphic curves have locally positive
intersections $\lfloor 1r4$], $C$ must be contained in a certain singular fiber. However, this
contradicts that $f$ : $Xarrow S^{2}$ is relatively minimal. Therefore, $E\cdot F\geq 1$ . $\square$

Outline of the proof of Theorem 5.3. Equip $X$ with an almost complex structure $J$

such that fibers are $J$-holomorphic curves. Then there are symplectic representatives
$C_{1},$

$\ldots,$
$C_{m}$ of $E_{1},$

$\ldots,$
$E_{m}$ . Since $E_{i}\cdot F\geq 1$ , we have $m \leq(\sum_{i=1}^{m}E_{i})\cdot F$ (Lemma

5.1).
Case of $b_{2}^{+}(X)>1$ : There is a minimal symplectic -manifld $\mathrm{Y}$ of $X$ and we let
$\overline{\pi}$: $Xarrow \mathrm{Y}$ be the symplectic blow-down map. Since $X$ is obtained from $\mathrm{Y}$ by
blowing up with symplectic exceptional curves $C_{1},$

$\ldots,$
$C_{m}$ representing $E_{1},$

$\ldots,$
$E_{m}$ ,

we have
$K_{X}= \pi^{\mathrm{r}}K_{Y}+\sum_{i=1}^{m}E_{\mathrm{i}}$ .

By the adjunction formula, we have

$2g-2= \pi^{*}K_{\mathrm{Y}}\cdot F+(\sum_{i=1}^{m}E_{i})\cdot F$ .

On the other hand, it follows from the blow-up formula of the Gromov invariant
that there is a pseudo-holomorphic curve $S$ representing $\pi^{*}K_{Y}$ . If we let $S_{j}$ be any
irreducible component of $S$ , then $S_{j}\cdot F\geq 0$ because of the positivity of intersections
of pseudo-holomorphic curves and $F^{2}=0$ , and so $\pi^{*}K_{Y}\cdot F\geq 0$ , Hence, $2g-2\geq$

$( \sum_{i=1}^{m}E_{i})\cdot F$ .
Case of $b_{2}^{+}(X)=1$ : Since $X$ is not the blow-up of a ruled surface, there is a symplec-
tic mlimimall model of $X$ . In this case the author does not know whether $K_{X}$ can have
a pseudo-holomorphic representative or not, that is to say, whether $\mathrm{G}\mathrm{r}_{T}(K_{X})\neq 0$ or
not. Since $X$ is neither rational nor ruled, it follows from a result of Li and Liu [10]
that $\mathrm{G}\mathrm{r}_{T}(nK_{Y})\neq 0$ for $n\geq 2$ . By the blow-up formula of Gromov invariants, we
have $\mathrm{G}\mathrm{r}_{T}(n\pi^{*}K_{\mathrm{Y}})\neq 0$ for $n\geq 2$ . Hence, $n\pi^{*}K_{\mathrm{Y}}$ can be represented by a pseudo-
holomorphic curve, and so we can show that $(n\pi^{*}K_{Y})\cdot F\geq 0$ . Thus $\pi^{*}K_{\mathrm{Y}}\cdot F\geq 0$ .
Therefore, we can prove the required inequality in the same manner as the case of
$b_{2}^{+}(X)>1$ . $\square$

6. THE GEOGRAPHY OF NON-MINIMAL LBFSCHETZ FIBRATIONS

6.1. The geography of Lefschetz flbrations. The geography problem for com-
plex surfaces is the characterization of pairs of integers which are realized as $(c_{1}^{2}, c_{2})$

of complex surfaces. We would like to consider the geography problem for symplec-
tic 4-manifolds, in particular Lefschetz fibrations. By the Hirzebruch’s signature
theorem, we have

$K_{X}^{2}=3\sigma(X)+2e(X)$ .
Hence, the pair $(c_{1}^{2}, c_{2})$ of Chern numbers is equivalent to the pair $(\sigma, e)$ . Matsumoto-
Endo’s signature formula implies that the signature of the total space of a hyperel-
liptic Lefschetz fibration is calculated &om the number of singular fibers. The Euler
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characteristic of the total space of a Lefschetz fibration is also calculated from the
number of singular fibers. Hence, we regard the geography of Lefschetz fibrations as
characterizing the pair of the numbers of singular fibers $(n_{0}, s_{\tilde{1}}, \ldots, s_{[g/2]})$ .

6.2. The case $g=2$ . : We consider a genus-2 Lefschetz fibration $f$ : $Xarrow S^{2}$ with
spheres of square $-1$ . If $X$ is neither rational nor ruled, then Theorem 5.3 states
that $\mathcal{E}_{X}$ is one of the following three :

Type $(1, 1)$ : $\mathcal{E}_{X}=\{E_{1}, E_{2}\},$ $E_{1}\cdot F=E_{2}\cdot F=1$ .
Type (1) : $\mathcal{E}_{X}=\{E\},$ $E\cdot F=1$ .
Type (2) : $\mathcal{E}_{X}=\{E\},$ $E\cdot F=2$ .

In the first and the second cases, spheres representing $\mathcal{E}_{X}$ are sections of $f$ : $Xarrow S^{2}$ .
Note that $E_{1}$ . $E_{2}=0$ for $E_{1}$ and $E_{2}$ in Type $(1, 1)$ , which $\mathrm{f}\mathrm{o}\mathrm{U}\mathrm{o}\mathrm{w}\mathrm{s}$ ffom the proof of
Corollary 3 in [8].

Theorem 6.1. Only finitely many pairs $(c_{1}^{2}, c_{2})$ can be realized as genus-2 Lefschetz
fibrations $Xarrow S^{2}$ with 2-spheres of square $-1$ . Here, $c_{1}^{2}=c_{1}^{2}(X)([X])$ and $c_{2}=$

$c_{2}(X)([X])$ .

Outline of the proof of Theorem 6.1. We suppose that $f$ : $Xarrow S^{2}$ has $n_{0}$ irre-
ducible singular fibers and $s$ reducible singular fibers. By the Hirzebruch signature
theorem, the Matsumoto’s local signature formula [12] (Theorem 2.4) and Proposi-
tion 2.1, we have

$\{$

$K_{X}^{2}=3\sigma(X)+2e(X)$ ,
$\sigma(X)=-\frac{3}{5}n_{\mathrm{O}}-\frac{1}{5}s$, and
$e(X)=n_{0}+s-4$ ,
$n_{0}+2s\equiv 0$ (mod 10).

We suppose that $b_{2}^{+}(X)>1$ and $\mathcal{E}_{X}$ is of type (2). Set $A=K_{X}-E$ . By
the adjunction formula, we have $K_{X}$ . $F=\mathit{2},$ $K_{X}$ . $E=-1$ and so $A$ . $F=A$ .
$E=0$ . Since $\mathrm{G}\mathrm{r}_{T}(A)\neq 0,$ $A$ can be represented by a pseudo-holomorphic curve
$C= \bigcup_{i=1}^{m}C_{i}$ . Noting that $A\cdot F=0$ , each component $C_{i}$ of $C$ is contained in a
fiber, and so $[C_{i}]^{2}=0$ or-l. Because of the relative minimality of $f$ , fibers contain
no sphere-component and each component $C_{i}$ is not a sphere. Since $E\cdot F=2$

and $A\cdot E=0$ , each component $C_{i}$ is neither a generic fiber nor an irreducible
singular fiber, and so it is a component of a reducible singular fiber. Hence $C$

consists of components $C_{1},$ $C_{2},$
$\ldots,$

$C_{m}$ with $[C_{i}]^{2}=-1,$ $[C_{i}]\cdot[C_{j\rfloor}^{1}=0(i\neq j)$

and genus$(C_{i})=1(i,j=1,2, \ldots, m)$ . Then, by the adjunction formula, we have
$K_{X}\cdot[C_{i}]=1$ $(i=1,\mathit{2}, \ldots , m)$ , and so

2$A^{2}=A^{2}+A^{2}=K_{X}\cdot A\neq A^{2}$

$=K_{X} \cdot(\sum_{i=1}^{m}[C_{i\rfloor}^{\rceil})+(_{1=1}\sum^{m}(C_{i}\lfloor]’)\cdot(\sum_{i=1}^{m}[C_{i}])=\sum_{i=1}^{m}K_{X}\cdot[C_{i\rfloor}^{\rceil}+\sum_{i=1}^{m}[C_{i}]\cdot[C_{i\rfloor}^{1}$

$=m-m=0$.
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Hence, we get $K_{X}^{2}=A^{2}\perp 2A\cdot E+E^{2}=-1$ .
Therefore, the pair $(n_{0}, s)$ satisfies

$\{$

$n_{0}+7s=35$ ,
$n_{0}+2s\equiv 0$ (mod 10).

Since $f$ is not trivial [26], the required pairs $(n_{0}, s)$ are $(14, 3)$ and $(\mathit{2}8, 1)$ .
We can also show the other cases in the same manner. Thus only finitely many

pairs $(n_{0}, s)$ arise, and equivalently only finitely many pairs $(\mathrm{c}_{1}^{2}, c_{2})$ do so.

TABLE 1. Possible pairs $(n_{0}, s)$ as geography

Remark 6.1. The pairs $(n_{0}, s)=(\mathit{2}0,0),$ $(30,0)$ and $(40, 0)$ are realized as $\mathbb{C}P^{2}\# 13\overline{\mathbb{C}P^{2}}$,
$K3\# 2\overline{\mathbb{C}P^{2}}$ and the Horihwa surface $H’(1)$ , respectively. Moreover, the pair $(m, s)=$
$(6, 2)$ is realized as $S^{2}\cross T^{2}\# 4\overline{\mathbb{C}P^{2}}$ .

We can prove the following corollary from Table 1.

Corollary 6.1. We have the followings:
(1) The fiber sum $X\# fX$ of a genus-2 Lefschetz fibration $Xarrow S^{2}$ is minimal.
(2) The fiber sum $(\mathbb{C}P^{2}\# 13\overline{\mathbb{C}P^{2}})\# f(\mathbb{C}P^{2}\# 13\overline{\mathbb{C}P^{2}})$ has a topological 2-sphere of

square $-1$ but cannot contain any smooth 2-sphere of square $-1$ . In par-
ticular, this fiber sum is homeomorphic to the Horikawa surface $H’(1)$ but
not diffeomorphic.

(3) If a holomorphic genus-2 Lefschetz fibration $f$ : $Xarrow \mathbb{C}P^{1}$ without re-
ducible singular fibers is not minimal, then $f$ is isomorphic to $\mathbb{C}P^{2}\# 13\overline{\mathbb{C}P^{2}}_{J}$

$K3\# 2\overline{\mathbb{C}P^{2}}$ or $H’(1)$ .

6.3. The case $g=3$. : We consider a genus-3 Lefschetz fibration $f$ : $Xarrow S^{2}$ with
spheres of square $-1$ . If $X$ is neither rational a.nd ruled, Theorem 5.3 states that
the set EX of spheres of square-l consists of 11 types containing the followings:

Type $(1, 1, 1_{;}1)$ : $\mathcal{E}_{X}=\{E_{1,\ldots\backslash }.E_{4}\},$ $E_{1}\cdot F=\cdots=E_{4}\cdot F=1$

Type (2, 1, 1) : $\mathcal{E}_{X}=\{E, E_{1}, E_{2}\},$ $E\cdot F=2,$ $E_{1}\cdot F=E_{2}\cdot F=1$

Type $(3, 1)$ : $\mathcal{E}_{X}=\{E, E_{1}\},$ $E\cdot F=3,$ $E_{1}\cdot F=1$

Type $(2, 2)$ : $\mathcal{E}_{X}=\{E_{1}, E_{2}\},$ $E_{1}\cdot F=E_{2}\cdot F=2$
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Type (4) : $\mathcal{E}_{X}=\{E\},$ $E\cdot F=4$

etc.

We can prove the following lemma in the same manner as the case ofg $=\mathit{2}$ .

Lemma 6.1. If $( \sum_{E\in \mathcal{E}_{X}}E)\cdot F=4$, then $K_{X}^{2}\leq s-k$ for some $k\in\{1,\mathit{2},3,4\}$ .
Moreover, in case of type (1, 1, 1), $K_{X}^{2}\leq s-k$ for some $k\in\{2,3,4\}$ .

Hyperelliptic case: Let $f$ : $Xarrow S^{2}$ be a $\mathrm{n}\mathrm{o}\mathrm{n}- \mathrm{m}\dot{\mathrm{i}}\mathrm{l}\mathrm{i}\mathrm{I}\mathrm{m}\mathrm{n}\mathrm{a}\mathrm{l}$ hypereliptic genus-3
Lefschetz fibra,tion with $n_{0}$ irreducible singular fibers and $s$ reducible singular fibers.
Then, by Endo’s signature formula (Theorem 2.4) we have $\sigma(X)=-4n_{0}/7+s/7$,
and so the pair $(c_{1}^{2}\backslash ’ c_{2})$ of Chern numbers is equivalent to the pair $(n_{0}, s)$ of singular
fibers for hyperelliptic fibrations. Thus it follows from the Hirzebruch’s signature
theorem and Proposition 2.2 that

$\{$

$\frac{2}{7}n_{0}+\frac{17}{7}s=K_{X}^{2}+16$ ,

$n_{0}+12s\equiv 0$ (mod 28)

Hence, from Lemma 6.1, we have

Theorem 6.2. Only finitely many $(n_{0}, s)$ can be realized as hyperdliptic genus-3
Lefschetz fibrations with $( \sum_{E\in \mathcal{E}_{X}}E)\cdot F=4$ . Hence, only finitely many $(c_{1}^{2}, c_{2})$ can
be realized as such hyperelliptic genus-3 Lefschetz fibrations.
Non-hyperelliptic case: Let $f$ : $Xarrow S^{2}$ be a non-minimal genus-3 Lefschetz
fibration with $n_{0}$ irreducible singular fibers and $s$ reducible singular fibers. Then,
by Smith’s signature formula we have $\sigma(X)=4\langle c_{1}(\lambda), [\phi_{f}(S^{2})]\rangle-(n_{0}+s)$ .

Let $\Delta_{0}$ and $\Delta_{1}$ be the divisor of irreducible and reducible nodal curves, respec-
tively. Then the Deligne-Mumford moduli space $\overline{\mathcal{M}_{3}}$ of stable curves of genus 3
is given by adjoining $\Delta_{0},$ $\Delta_{1}$ to .M3. Let $\overline{\mathcal{H}_{3}}$ denote the divisor of hyperelliptic
curves of genus 3 in M3. A theorem of Harer states that the Hodge class $c_{1}(\lambda)$

and $[\Delta_{0}],$ [ $\Delta_{1}!$ generate $H^{2}$ (M3; Z), and the cohomology class $[\overline{\mathcal{H}_{3}}]$ is given, up to a
positive rational multiple, by

$[\overline{\mathcal{H}_{3}}]=9c_{1}(\lambda)-|\Delta_{0}\mathrm{r}]\mathrm{L}-3[\Delta_{1}]$ .

Suppose that $f$ : $Xarrow \mathbb{C}P^{\mathrm{i}}$ is non-hyperelliptic and holomorphic. Since a holo-
morphic fibration $f$ gives rise to a rational curve $[\phi_{f}(\mathbb{C}P^{1})]$ in $\overline{\mathcal{M}_{3}}$ and has positive
intersection with all effective divisors in which they are not contained. Hence, we
have

$\langle\overline{\lfloor H_{3}}], [\phi_{f}(\mathbb{C}P^{1})]\rangle\geq 0$ .
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Since $\langle_{\mathrm{t}}^{\zeta}\overline{\mathcal{H}_{3}}], \lceil\phi_{f}(\sim \mathbb{C}P^{1})_{\rfloor}^{1}\rangle$ is given, up to a positive rational multiple, by
$\langle[\overline{\mathcal{H}_{3_{\mathrm{J}}}}^{\rceil}, [\phi_{f}(\mathbb{C}P^{1})]\rangle=\langle 9c_{1}(\lambda)\backslash -[\Delta_{0}]-3[\Delta_{1}\rfloor\neg, [\phi_{f}(\mathbb{C}P^{1})]\rangle$

$= \frac{9}{4}(\sigma(X)+n_{0}+s)-n_{0}-3s$

$= \frac{9}{4}\sigma(X)+\frac{5}{4}n_{0}-\frac{3}{4}s$ ,

we can obtain the following inequality:

$\sigma(X)\geq-\frac{5}{9}n_{0}+\frac{1}{3}s$ .
Thus we get the relations

$\{_{5n_{0\geq s}}^{K_{X}^{2}\leq s}e\sigma(X)\geq=\frac{x_{5})k}{+9},n_{0}-\frac{1}{3}sK_{X}^{2}=3\sigma(+2e(X)(X)=n_{\mathrm{O}}s-8,’$ , hence,

for some $k\in\{1,\mathit{2},3,4\}$ . From these inequalities, we can estimate the numbers of
singular fibers.

Theorem 6.3. Only finitely many $(n_{0}, s)$ can be realized as pairs of the numbers
of singular fibers of non-hyperelliptic and holomorphic genus-S Lefschetz fibrations
with $( \sum_{E\in \mathcal{E}_{X}}E)\cdot F=4$ .

For example, $T^{4}\# 4\overline{\mathbb{C}P^{2}}$ has a non-hyperelliptic and holomorphic genus-3 Leffihetz
fibration with 12 irreducible singular fibers and 4 sections of square-l. See \S 3.

7. CONCLUDING REMARK

We close this note by some remarks about Smith’s signature formula for Le&chetz
fibrations.

The Hodge class $c_{1}(\lambda)$ is ample on the moduli space $\mathcal{M}_{g}$ but not on the Deligne
Mumford compactified moduli space $\overline{\mathcal{M}_{g}}$ . The moduli space $\mathcal{M}_{2}$ of genus 2 is
affine [16], and so an ample divisor on $\mathcal{M}_{2}$ is empty. Hence, $c_{1}(\lambda)$ is a combination
of $\mathrm{r}\Delta_{0}\lfloor 1$, and $[\Delta_{1}]$ . In fact, Mumford [16] showed that

$10c_{1}(\lambda)=_{\mathrm{t}^{\Delta_{0}]_{\urcorner^{1}}- 2[\Delta_{1_{\mathrm{J}}^{1_{\mathrm{I}}}}}}^{\mathrm{r}}$ .
Therefore, it follows from Smith’s formula that the signature of a genus-2 Lefschetz
fibration $Xarrow S^{2}$ with $n_{0}$ irreducible singular fibers and $s$ reducible singular fibers
is given by

$\sigma(X)=-\frac{3}{5}n_{0}-\frac{1}{5}s$.

This is the formula proved by Matsumoto [12]. Hence, the folowing problem comes
to mind :
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Problem. Prove Endo’s signature formula for hyperelliptic genus-g $(\geq 3)$ Lefschetz
fibrations from Smith’s signature formula.

For Lefschetz fibrations, we will show the slope inequa,lity due to Konno [6] from
Smith’s formula. We recall the slope $\lambda_{f}$ of a holomorphic fibration $f$ : $Xarrow B$ .
Relative numerical invariants $K_{f}^{2},$

$\chi_{f}$ are defined by

$K_{f}^{2}=c_{1}(X)^{2}-8\chi(O_{F})\chi(O_{B})$,
$\chi_{f}=\chi(O_{X})-\chi(O_{F})\chi(O_{B})$ .

Then the slope of $f$ is defined as the following ratio:

$\lambda_{f}=\frac{K_{f}^{2}}{\chi_{f}}$ .

In particular, the slope $\lambda_{f}$ of a $\mathrm{g}\mathrm{e}\mathrm{n}\iota \mathrm{x}\mathrm{s}- g$ fibration $f$ : $Xarrow \mathbb{C}P^{1}$ is given topologically
as folows:

$\lambda_{f}=\frac{K_{f}^{2}}{\chi_{f}}=\frac{4(3\sigma(X)+2e(X)+8g-8)}{\sigma(X)+e(X)+4g-4}$ .

Konno obtained the following inequality:

Theorem 7.1. (Konno [6]). For a non-hyperelliptic genus-3 holomorphic fibration
$f$ : $Xarrow B$ , we have the inequality $\lambda_{f}\geq 3$ .

We can prove this inequality for non-hyperelliptic, holomorphic genus-3 Lefschetz
fibrations over $\mathbb{C}P^{1}\mathrm{h}\mathrm{o}\mathrm{m}$ Smith’s formula. Let $f$ : $Xarrow \mathbb{C}P^{1}$ be such a Lefschetz
fibration with $n_{0}$ irreducible singular fibers and $s$ reducible singular fibers. Since $f$

is holomorphic, we have $\langle[\mathcal{H}_{3}\neg, [\phi_{f}(\mathbb{C}P^{1})_{\rfloor}^{1}\rangle\geq 0$ . On the other hand, we have

$\langle\ulcorner \mathcal{H}_{3}], [\phi_{f}(\mathbb{C}P^{1})]\rangle=\langle 9c_{1}(\lambda)-\mathrm{f}\mathrm{i}\Delta_{0}]-3[\Delta_{1}], [\phi_{f}(\mathbb{C}P^{1})]\rangle$

$= \frac{9}{4}\langle 4c_{1}(\lambda), [\phi_{f}(\mathbb{C}P^{1})]\rangle-\langle[\Delta_{0}], \mathrm{L}\phi_{f}\Gamma(\mathbb{C}P^{1})_{\rfloor}^{-}’\rangle$

$-3\langle_{\lfloor}^{\mathrm{r}}\Delta_{1}], [\phi_{f}(\mathbb{C}P^{1})]\rangle$

$= \frac{9}{4}(\sigma(X)+n_{0}+s)-n_{0}-3s$

$= \frac{9}{4}\sigma(X)+\frac{5}{4}n_{0}-\frac{3}{4}s$

$= \frac{9\sigma(X)+5(n_{0}+s)-8s}{4}$

$= \frac{9\sigma(X)+5(e(X)+8)-8s}{4}$

$= \frac{9\sigma(X)+5e(X)-8s+40}{4}$ .

Hence, we obtain $9\sigma(X)+5e(X)+40\geq 9\sigma_{\backslash }^{(}X)+5e(X)-8s+40\geq 0$. Moreover,
because of $e(_{\backslash }X)+8=n_{0}+s>0$ , we have $9(\sigma(X)+e(X)+8)=\{9(\sigma(X)+e(X)+$
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$8)-4(e(X)+8)\}_{\urcorner^{1}}- 4(e(X)+8)=(9\sigma(X)+5e(X)+40)+4(e(X)+8)>0$ . Therefore,
it follows from these inequalities that we have

$\lambda_{f}-3=\frac{9\sigma(X)+5e(X)+40}{\sigma(X)-\acute{r}e(X)+8}\geq 0$ .

Proposition 7.1 (Smith [22]). Let $f$ : $Xarrow S^{2}$ be a genus-3 Lefschetz fibration
with only irreducible singular fibers. Suppose that

(1) $e(X)+1\not\equiv 0$ (mod 7) and
(2) $9\sigma(X)+5e(X)+40<0$ .

Then $f$ is not isomorphic to a holomorphic fibration.

The assumption (1) is equivalent to the fact that the number of irreducible singular
fibers is not divisible by 7, and so it follows from Endo’s signature formula that $f$

is not hypereliptic. The assumption (2) is equivalent to $\langle\ulcorner \mathcal{H}_{3}], [\phi_{f}(\mathbb{C}P^{1})_{\mathrm{J}}^{\rceil}\rangle<0$ , or
$\lambda_{f}<3$ . Therefore, $f$ is not isomorphic to a holomorphic fibration. For example,
since the genus-3 Lefschetz fibration given by Fuler satisfies the assumptions (1)
and (2), this fibration is not isomorphic to a holomorphic fibration.
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