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Borel-Laplace transformations and invariant curves for the Hénon maps
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Let a and b be complex numbers with a # 0, and define f = f, 5 : C2 - C2 by

(z) L (1+y—am2> ’.
Y bx
which is called the Hénon map. If b = 0, the Hénon map f = f, o : C2 — C? is consistent

with a quadratic function C — C defined by = +— 1 — az?. Let P = (zf,yy) be a fixed
point of f, and let a be an eigenvalue of the derivative

Al
Dfp = (b 0), A= ——2a:rf.

Suppose o # 0. For n > 1 we let

D,=a" - \—ba™"

=a "(a" - a3)(a@" - ag),

where a; ad a3 are eigenvalues of Dfp. It is evident that D; = 0. Throughout this
paper we assume the following.

Basic assumption. For alln > 2, D, # 0.

By a result of Poincaré [P] it follows that if |a| # 1 and v, is an eigenvector of D fp for
@, then there is uniquely an analytic map ¢ : C — C? such that ¢(0) = P, ¢/'(0) = v,,
and f o ¢(t) = ¢(at) for all t € C. We call the analytic conjugacy (or semi-conjugacy)
¢ the Poincaré map. Note that if b # 0 then ¢ is univalent. When P is hyperbolic, i.e.
0 < |a1| <1 < |og|, if @ = a; then ¢(C) is consistent with the stable manifold of P and
if a = oy then ¢(C) is the unstable manifold of P.

In the case where |a| = 1, let & = €™ § € R. From a result of Siegel [S] we have
that if b = 0 and if there are constants ¢,d > 0 such that

C
|0—§|>q—g (Vpq€Z, ¢> 1)

then there is uniquely a univalent analytic map ¢ : D; = {2z € C | |2| < 1} — C?, the
Poincaré map by definition, such that ¢(D;) C C x {0}, #(0) = P, ¢'(0) = v,, and
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f o d(t) = ¢(at) for all t € D;. We remark that the set of 8’s satisfying the condition
above is of full measure ([S]).

Let (;L: (n=1,2,---) be the n-th convergent of 8. We say that 6 is a Bruno number
if

. lo
Z g dn+1 < too.
an

n=1

It can be checked that if 8 satisfies the Siegel condition above then it is a Bruno number.
By results of Bruno [B] and Yoccoz [Y] we have that, in the case where b = 0, 0 is a
Bruno number if and only if f is linearized by the Poincaré map at P, i.e. there is a
univalent analytic map ¢ : D; — C2 such that ¢(D;) C C x {0}, #(0) = P, ¢'(0) = v,
and f o ¢(t) = ¢(at) for all t € D;.

Let A; # 0, and define

AjAn 1+ AAn 2+ -+ A4y
Dy,

An= (n=2,3,).

Then it can be also checked that, in the case of b= 0, 6 is a Bruno number if and only
if the following condition is satisfied. See §1.

Condition (*). There is M > 0 such that |A,| < e™™ for all n > 2.

In comparison with the linearization stated above, we consider the functional equation
of form

(0.1) foop(t)=et+1).

It is easy to see that if ¢ is the Poincaré map and we let ¢(t) = ¢(at) then ¢ satisfies
the equation (0.1). The purpose of this paper is to cunstruct a solution to the equation
(0.1) by the method of Borel-Laplace transform which is developed by Ecalle [E] and
so on. In the case where |a| # 1, it will result in getting the solutions ¢ which are
different from the Poincaré maps ¢ in the sense that there are no analytic maps p such
that ¢ = ¢ op.

Let B; =1, and define

B\B,,_y+B3B,_2+ -+ B,, By

Bn = n'D,,

(n=2a3,"')'

To perform Laplace transform, the following condition will be needed.
Condition (**). There is M > 0 such that |n!B,| < e™™ for all n > 2.

In the case where 0 < |a| < 1, we have that |n!B,| — 0 as n = oo, and so Condition
(**) is satisfied. In this case we will obtain an analytic map ¢ : C — C2, a solution to
(0.1), with the property that ¢(t) = P as t — ¢*®o0 if €'® # —1. Also, for the case of
|@| > 1, the similar result will be obtained.

For the case of |a| = 1, the following theorem will be proved.
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Theorem 1. Suppose |a| = 1 and o3 # ao. Then, under Condition (**), fore >0
there is an analytic map ¢ : H = {z € C | Im z > R} — C2, with ¢'(t) # 0 for all
t € H, such that foo(t) = p(t+ 1) for allt € H, if Im t — 400 then o(t) = P and

©'(t) converge to an eigenvector for o, and @(H) is contained in the e-neighborhood of
P.

Question 1. Is there D, a complez 1-open disc, such that @(H) C D holds ?

It is evident that if b = 0 then the answer to Question 1 is affirmative.

If o = a; is of modulus one and 6 is a Bruno number and if |aa| # 1, then Condition
(**) is satisfied (see Fact below).

In this case, the answer to Question 1 is affirmative and, by a result of Bruno [B],
there is an f-invariant complex 1-open disc D such that fip : D = D is analytically
conJugate to a rotation.

Question 2. In the case above, is therep: H — D, an analytic map, such that p = ¢op
holds ?

Fact. If o = a1 is of modulus one and 6 is a Bruno number and if |aa| # 1, then
n!B, — 0 as n — oo.

This is checked as follows. For k& > 1 choose nj such that Gn, < k < gn,+1. Since 6

is a Bruno number, obviously —;"Jﬁ ~ 0 if k is sufficiently large. Let k be sufficiently

large, and take M > 0 such that for all £ with 1 < £ < k, |£1B,| < eM?. Then by
Stirling’s formula
IBel s Zil!_eMe S e—-NZlogE+€+M€,

where N > 0 is a constant, and hence

|BIHBk|+“‘+|Bk”BI| Se—Nklogk+lc+Mlc+__.+e—Nklogk+k+Mk

< e—Nklog §+k+1+log(k+1)+M(k+1)_

Therefore, we have

|(k+ 1)!Bg41] < Dl e~ Nklog §+k+1+108(k+1)+M(k+1),

k+1

and since g——o < l?-’: -6l < , it follows that the right side is
ﬂ-k n

gng+1 n), Qn +1

< @98 dn+1—Nklog ¥ +k+1+log(k+1)+M(k+1)

1
{-#“::k“ —N 21 log 5 +1+ 28540 1 Ay (k41)

(0.2)

l/\

< eM(k+1)

which implies that [n!Bn| < €™ for all n > 2 and, moreover, by (0.2) we have that
n!B, — 0 as n — 0. Therefore, Fact is obtained.
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In this paper we only discuss the case of fixed points of the Hénon maps. The authors
hope that the results in this paper is extended to the case of periodic points.

§1 Poincaré maps

As before, let a # 0 be one of eigenvalues of the derivative Dfp of the Hénon map

f at a fixed point P = (zy,ys), and let v4 = (d1,b;) be an eigenvalue for a. It follows
that @; # 0.

Let ¢(t) = (z(t) + zf,y(t) + y5). Then

_ (30 +ar) _ (y®)+a(t) - a{z)) +
resn=1 (3 5r) = (10 0 or =)

and ¢(at) = (z(at) + z5,y(ot) + ys). Assuming f o ¢(t) = ¢(at), we have
(1.1) z(at) — Az(t) — br(a~t) = —a{z(t)}>.

Expand z(t) in a formal power series

oo
z(t) = Z nt™,
n=1

and substitute this into (1.1). Then, comparing coefficients of terms of t” on both sides,
we obtain the coefficients

aay 2aa104
ag = ——— ag = —
Dy’ D3 ’
. a(@18n_1 + G28n_2+...8Gn_282 + Gn_181)
aln -_— D g seve
n

We remark that if a,b, a;, a2 and @, are real numbers, then so are all coefficients &,,’s.
Lemma 1.1. If0 < |a| < 1, then there exists C > 0 such that for alln > 1,

(1.2) |an| < C™|o™ 8",

Proof. Choose ng such that for all n > ny,

Y
a’(7‘l’D: 1)‘ 'al—logz < 1,

|

and take C > 0 such that

lanl® < Clof°™ (1< Vn < ny).
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If (1.2) is true for ng < i < n, then

wT
,an+1|T < ‘_—_| Zlazllan-i-l——l]
an w1 1
<
R A

and, choosing iy as |d;,||@n+1-io| = Maxi<i<n |@:||@n+1-:|, we have that the right side
is

1
L (P S TS e}
S'D ]" (|a’io"°)"%(Ian+1—ioln+1—'°) ntl
n+
A . i . —3
< | ™ (Clafs o) s (Corim -0
n
- Dn+1
l
an n+l lo ntl
Cla|*®
<Ipee| ™ Clel

< ClallOg(n+1).

Therefore, (1.2) holds for all n > 1.

In the case where 0 < |a| < 1, by Lemma 1.1 we obtain that x(t) is an entire
function. Since y(t) = bx(a~'t), it follows that y(t) is also an entire function. Letting
An = —aay for all n > 1. we see tha Condition (*) is satisfied. If |t| << 1, then since
¢'(0) = (2'(0),3'(0)) = (@1,ba"2d1) = v # (0,0), t — ¢(t) is injective, and hence
¢'(t) # (0,0). Let b # 0. Then f is a diffeomorphism. Since ¢(a™t) = f™ o ¢(t) for all
n > 0, it follows that ¢ : C — C? is injective. It is easy to see that

#(@"t) = —-Df5nd 1),

and therefore ¢'(t) # (0,0) for all t € C.

The above discussion also works for the case of |a| > 1. Hence, we obtain the same
results in the case where |a| > 1,

Proposition 1.2. Let z(t) be as above and suppose |a| # 1. Then z(t) is an entire
function and ¢ : C — C? defined by

(1.3) ¢(t) = (a(t) + z5, bz(a™'t) +yy)

is the Poincaré map. Coversely, any Poincaré map is of this form.

The followin proposition is easily obtained.
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Proposition 1.3. Let z(t) be as above and suppose |&| = 1. Then, under Condition
(*), there is an f-invariant complex 1-open disc D, containing P, such that f : D — D
is analytically conjugate to a rotation t — ot on D,. In addition, ¢ : C — C? defined
by (1.8) is the Poincaré map and, coversely, any Poincaré map is of this form.

By results of Bruno [B] and Yoccoz (Y], we also obtain the following.

Proposition 1.4. Let b = 0. Suppose a is of modulus one, and let o = €27 6§ € R.
Then @ is a Bruno number if and only if Condition (*) is satisfied.

§2 Borel-Laplace transform

In this section we consider an f-invariant curve at P = (x¢,ys) parameterized by the
complex variable t € C as follows;

(373 -G9)

() () = (™),

Then, the following difference equation of the seéond kind is obtained:

such that

(2.1) z(t+ 1) — Az(t) — bx(t — 1) = —a{z(t)}?,

and y(t) = bz(t — 1). It is easy to see that a power series of form

o
a
.'L‘(t) = Z tnil
n=0
is a formal solution to (2.1) if and only if a =1 and b= —1, i.e. a3 = ap = 1, which is

an excluded case by Basic assumption and make all the difference from the discussion
in §1. Note that, in this case, we have the power series

o0

an 6 15 663
m(t):zmz—t—z+§;—m+...’

n=0

and the difference equation (2.1) is related with the ordinary differential equation

L o) = ~ =Y
gz T T

under the correspondance of z(t + 1) — z(t) to %. Thus, the difference equation (2.1)
discussed in this paper is far from the integrable systems except the case of @ = 1 and
b = —1, and the perturbation theory does not work.
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To solve (2.1), we express z(t) as a Laplace transformation of some Riemann surface
X

(2.2) o) = £IX)(0) = [ X (Q)de.

The contour + is chosen later, depending on the positions and forms of branch points of
X, such that

(1) if Y(¢) is an entire function and is of exponential type, i.e. there are constants
C, M > 0 such that [Y(¢)| < CeMl¢l, then

[eerou=o,

~

and

@)
{ / et X ()dc)? = / e~ X x X(C)dC,

where * denotes the convolution defined by

¢
F+G= /0 F(¢ - ¢)G(¢)dC.

Then, from (2.1) it follows that

/ e e ¢ — A —be$)X(¢)d¢ = —a / e X * X(¢)d¢

v
= [t -ax < X() + OO,
7 _
where C(() is is an entire function of exponential type. Letting
A(Q) =e"¢ =X~ b,
we see that if a Riemann surface X satisfies the integral equation
(2.3) AX = —aX x X + C,
then a solution z(t) to the difference equation (2.1) is obtained by the Laplace transfor-
mation (2.2).
If X(¢) is a local solution to (2.3) in a neighborhood of the origin of C, obviously
X x X(0) =0, and so A(0)X(0) = C(0), from which it follows that

(1- A —b)X(0) = C(0).
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After the construction of local solutions X (¢) to (2.3), we will prove in §4 that X (0) =

(a+ba~1)/(2a), where & = a1, and a # 0, which implies that the constant term
C(0) must coincide with

(1= X—b)(a+bab)

c)= 2a

We remark that the entire function C'(¢) can be chosen as a constant function.

§3 Local solutions to the integral equation

In this section we construct local solutions X (¢) to the integral equation (2.3) in a
neighborhood of the origin of C. To do this, we assume that X(() is expressed as a
Taylor series

X(¢)=ao+ai¢+a®+---
in a neighborhood of the origin, and define X by
(3.1) X(¢) = a0+ X(¢)-
Substitute (3.1) into (2.3). Then, we obtain
(3.2) AX +2aa0x X =W,

where o
W=Wy—aX*xX, Wy=—aa2¢—apA+C.

Let AX = F, and substitute this into (3.2). Then we have

(3.3) F' +2a00A7'F = W',
where the prime denotes the derivative with respect to {. The solution to (3.3) is given
by )
Wl
F = F / —d¢’
o [ e
where
e ¢ — oy p 2aaq
. = ———= =
(3.9 o= (e -2

is a solution to the following homogeneous equation:
F§ +2aapA™ Fy = 0.
If 3 is not an integer, the function Fp in (3.4) is defined on the region

Ro=C\{sC|s€e [I,+00), ¢(=¢t, ¢, keZ},
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where for k € Z

and '
p+=—loglaa|,  p- = —loglazl,
—-n<ly =arga; <, —m < 0_ =arg az <.
In the case where 3 is a positive integer, Fy is a meromorphic function on C such that
each (i is a pole, and for the case of 3 a negative integer, each (" is a pole of Fp. It is

clear that if ag = 0, Fy is a constant function.
It turns out that the solution to (3.2) is

_ <
(3.5) X=A"F, / Wi
o Fo

Hence, the solution X () to (2.3) can be sigular at the points: ¢ = ¢J,¢r (k € Z),
where A({) = 0.

Now we let 3 be not an integer, and for ¢ > 0 small, introduce the region
Re=C\{s¢|s€ [1,+), ¢ € D((t,e)UD((  €), keZ}

where D(C,f, €) denotes the open disk with radius € centered at Cff respectively. To give
an algorithm to construct the solution X(¢) on Rg to (3.2), we formaly expand X (¢)
and W(¢) with a parameter ¢ as

X(Q) =) 0"Xu0), W)= " Wa()

n=0
Substituting these into (3.2), we have for each order of ¢
4 AXl + 2aaq * Xl = W,

AXz + 2aag * Xg = -—a(XH * Xl) = W]_,
A)Z'g + 2aayg *)23 = —a,(Xl * }~{2 + )2'2 * X’l) =Wa,

AX’n.H +2aao*)~(n+1 = —a(f(l $ Xp+Xox X1+ + Xno1 *X2+X'n*5cl)
=Wna .

coy
and, in the same way as above, each X, is given by

. <w
(3.6) X,=A"'F, | —2=Lq¢.
o Fo
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Let L > 0 be given arbitrarily. Then we can find M > 0 such that for ( € R, with
[Re ¢|, Im ¢| < L

(3.7) |1 X1] < MI¢).

Futhermore, there is N > 0 such that the derivative of X;
o/ 1y ¢ W(; ! 1 ¢ W(; ! 1 !
(3.8) X;=(A" )FO/ —F—dc + A~ FO/ ch + A7'W,
o To o Fo
satisfies the estimate

(3.9) 1 X1 < N(I¢| +1).

for all { € R, with |Re (|, |Im (| < L.

Lemma 3.1. Let ( € R satisfy |Re €|, |Im {| < L. Then forn >0 the function Xnq1
18 estimated as follows:

KLY <k
[ Xns1(O] < 2"nlla" M TINT 3" Chogn1 R
k=2n-+1
3In+1 IC k
[ Xni1(Q)] < 2°nlla|” M N"H kz n+1Ck-2n
2n

Proof. We see from (3.7) and (3,9) that the inequalities are true for n = 0. Let n > 0,
and suppose that the inequalities are true for n. Then, applying the following estimate
fOI' WT,H-]. to (3.6)

(Wil = 2laf | &) * Rnp + X+ Xt +X,,+1*x1[

< 2lal (1&] * Kna |+ 1Rg Kol + -+ 1 Xy X
' = €I
< gn+1 (n + 1)!|aln+1Mn+1N'n+1 Z "+1C’°‘2n"2_kT’
k=2n+2 ‘
we obtain
: RSy cl*
|[Xnsz| < 27 (n + 1)l]a MmN Y n+10k-2n-3 7,
k=2n+3 ’

and from the analogous formula to (3.8) it follows that the derivative of X, satisfies

3n+4 k
[ Xral 2% (n+ Yo" M N N Croane 3|k|'
k=2n+2
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Thus, we see that the inequalities are also true for n + 1, and the lemma is obtained.

By using Lemma 3.1 and letting 0 = 1 in X, X can be estimated as

1X]=lao+ X1 +... Xny1+...|
<lao| + | X1l + ... | Xnp1] +...

< lag| + - + 2% [2]1 o8]l (n'c_'”l)! .

Since

(211 o/ Bl MBI N ] g
{2 [2]"|(nﬁ)z N |<|} 20 (o)

X(¢) = a0+ Y, Xn(¢) uniformly converges on any bounded region of R., which
implies that X () is an analytic function on Ry.
If B = %1, then depending on the sign of 8, we choose the region

RE=C\{s¢|s€ [1,+0), ¢e€D(,e), keZ)}
or
R =C\ {s¢|se [1,+0), ¢ €D ,e), keZ},

and apply the same algorithm as above in order to construct the solution X (¢). Note
that each X,, is not singular at the points (; ’s if 3 = +1, and at pomts C sif 3= -1.
In these cases, it is concluded that the the solution X (¢) = ag + X(¢) to (3.2) is an
analytic function on the region

R§=C\{s¢|se [1,+00),¢{ = (ke Z)
if 8 = +1, and analytic on the region
Ry =C\{s¢|se [1,+00),{ =, k€ Z}

if 8= —1. In the case where 3 = 0,+2,£3, - - -, we obtain that X (¢) has no singularities
on C¢, i.e. an entire function.

We have chosen the first term ag to be arbitrary and applied the iteration algorithm
to solve the functional equation (3.2) on a neighborhood of the origin ¢ = 0. The result
is summarized as follows:

Proposition 3.2.
(1) If B is not an integer, then the solution to the functional equation (3.2)

X(¢)=ao+ an(o
n=1

uniformly converges on any compact subset of the region Ry, and is an analytic

function on Ry.
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(2) If B = +1, then X(() uniformly converges on any compact subset of the region
R, and is an analytic function on Ry

(3) If B = —1, then X({) uniformly converges on any compact subset of the region
Rq ; and is an analytic function on Ry .
(4) If B =10,42,43,---, then X({) is an entire function.

Let us present here the concrete form of X(() in a neighbourhood of the origin. We
expand A(¢), Fo(¢) and W{(¢) in terms of the Taylor series as

2n—1

o0 bt 2n
AQ=(-b-0-(+) ) s +1-0 Y oo
n=1 n=1 )

_(1l-o A B¢ 1-0q\" 1-o
FO(O_(l—az) T a (l—a;) (1+1—a2>+""

o 2n—1 0 C2n
—(l—b);m+(l+b)zm] .

n=1

W5(¢) = (1 + b)ap — aad + ag

and substitute the above series into (3.6). Then iteration algorithm with the convolution
in (3.6) that 5 )

X1 — W1 |—>X2'-—)W2|—>"'!——)Wm_.1 F—-)Xmﬁ—)
give rise to

X; = a1l +a12¢® +a13¢...,
Xo = a23¢® + agaC* +ags¢®...,
X3 = a3s¢® +asel® + azr(7. ..,

— 2m—1 2 2 1

It is remarkable that the coefficient amn’s are uniquely determined if the first term ag
in X(() is given. Thus, we have

(3.10) X =a+Xi+Xo+-- =) anl"

n=0

where the coefficient a,, € C is given as

Qn = Q1n + Q2n + Q3n + -+ + Amp, (mgn)
The concrete forms of a,’s are given with computer assist as follows:
_ (1+b)ag — aad
N="T"%x
-1 1- (03]
N — b)ag — aa? - -
as 2(1 —p = /\) [ﬁ ((1 -+ )ao aao) (1 1 ) + (1 b)aO:I

— Qg

_ (@ +b)ao — aa}) (1—a1>f’[ 8 (1 1—a1) 1+b }

(1—b—-A) l—az 1—0:1 _1—02 _1—b—)\
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§4 Analytic continuation of the local solutions

In this section we carry out the analytic continuation of the local solution X )
constructed in §3 from a neighbourhood of the origin to the points Ck , and show that
the constant term ag in (3.1) and the index 3 in (3. 4) are determined in considering the
form of the function X (¢) on a neighbourhood of ¢E.

In the case where § = 0,42,+3,---, from Propositin 3.2 it follows that X (¢) is an
entire funcitin, and hence the Laplace transform (2.2) gives a solution z(t) = 0, which
is the trivial one. Thus, we can consider 3 to be not an integer or to be § = *1.

Theorem 4.1. If the Laplace transform (2.2) gives the non-trivial solution to the dif-
ference equation (2.1), then
a+ba1
2a '’
where a = oy,05 and o # 0, and 8 = +1 ifa=0o; and B = -lifa=a;.

Qg =

Proof. We suppose that 3 is not an integer, and derive a contradiction. By Proposition
3.2 there is an analytic function X (¢) on R that is the solution on a neighbourhood of
the origin { = 0 to (2.3). Take and fix k € Z. In a neighbourhood of = py + 2k +
6.+ )i, the functions A(¢), Fo(¢) and W(¢) are expanded as

_ (S (S
= —'Aodd Z (2n — 1 even Z (2n)| y

Fol() = ( ) (€ -G IL+0 -G,

Qo — 1
(4.1)

' 2n—1
WO (C) _aa'O +ao odd Z (_‘C—QQ‘— even Z (C Ck) ’

opurd (2n —1)!

where A,4q = a+ ba~! and Aeyen = o — ba~ L.
Now we express the variable ¢ in (3.6) as

¢=¢C+¢&
For € > 0 given small, let

(X +e)Ce = (G + &) = lece - €] < 1

and divide the integral into two parts as follows:

¢ (1—&)¢k Crté
L=
0 0 (1—€)¢k

We introduce a microfunction arg £# defined by

L[ 1
2 =g (/c € (8- 1)(—sck)ﬁ'1) |
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Note that the argument of the function £~ outside the integral in (4.2) is determined,
while the integration path in the integral is not yet determined in this stage. Under
the above decomposition of the integral together with the expansions (4.1), the integral
(3.6) with n = 1 is expressed as

- < we
X, =A_1F0/ %dcl
o Fo
(4.3) = arg &7 (bjo + b} € + blo€% + .. )+ R1(§)

where b}, € C,n=0,1,2,--- and Ry(¢) is a regular function of £.
The iteration algorithm stated in §3 gives a series of the functions:
W1 = —-0,)21 * Xl
=arg £ (v12€? + 133 +...) + r1(€),
- ¢ w
Xy = A‘IFO/ mdg"
o Fo
=arg £ (b€ + b€ +...) + Ra(8),
Wa = —2aX; * X,
= arg £” (v2a€® + vt +...) + m2(6),
(4.4)

where b;,,,,, Umn € C, myn =1,2,.--, and R,,,(€) and r,,(£) are regular functions of £.
Here we used the following relation to caluculate the convolution integral in W,,:

¢ . ~
| &nle - 0Zn0ac
¢ . ..
=2 [ Zn(C~ ¢)Za(¢)AC
J
=2 T R - )Rl 42 / L Rl - ) RalC)aC
= § m n (Al—E)Ck m n

where the first integral only gives a regular function, while the second one contributes to
the part of the microfunction in terms of the relation ¢ = (i + €. From (4.3) and (4.4),
it turns out that the function X(¢) = ap + X(¢) in a neighbourhood of ¢ is given as

(4.5) X(¢)=arg £ > bn(¢ = Ge)" + R(C ~ ¢)

n=0

where b, € C, n = 0,1,2,--- and R(¢ — (x) is a regular function in a neighbourhood
of ( = (x. Note that the function X(¢) has the same form and the each value of b,
does not depend on the choice of { = (; (k € Z). To obtain the concrete form of the
coefficients b,’s, we need to solve the functional equation (3.2) in terms of the function
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X(¢) given by (4.5). To do this, we use the “var” operator introduced by Ecalle [E],
which is used to caluculate the Laplace transform of microfunctions and defined as

(4.7) | varF'(¢) = F(¢e*™) — F(()

for a microfunction F({). We apply the variational operator var to the functional equa-
tion (3.2) to obtain a univalued function. Taking var of the function X (¢), we have

@) var X(¢) = (¢ re™78 1) 3 b (¢ - Go)"

n=0

where 3 = 3, +iB; and ,, 5; € R. Note that for the regular function R(¢), var R(¢) = 0.
Taking var on both sides of (2.3) and substituting (4.4) into that, we have

Aeven

("Aoddg-f- '—2——62—) (bo+b1€+)

3
=—2a/0 (6o +a1(§~&)+...) (b +ba +...)d¢".

The first order O(¢) gives the following relation for ag:

Aodd
(4.8) ag = % .

Substituting (4.8) into the definition of 3 in (3.4) and taking account of the fact that
a3 and oz are two solutions to the quadratic equation ¢2 — A\{ — b= 0, we obtain

a1 +balt . : —
2aa0  Aoua oo =1 fa=a

- ;) — & - a1 — o as+ba? . _
1 2 1 2 '_2—2‘;2—_{_2? = -1 ifa = Qq,

which contradicts the assumption that 3 is not an integer. Therefore, the theorem is
obtained.

From Theorem 4.1 it follows that 3 = 1. If @ = 1, then by Proposition 3.2 the
solution X (¢) on a neighbourhood of the origin to (2.3) is given as an analytic function
on the region Ry . In the case of 3 = —1 the solution X () is given as that on the region
Rq - In this stage, it is not necessary to distinguish between 8 = +1 and 8 = —1. Thus,
in the following, Ry and Rj are denoted by the same symbol Ro, and C,': and ¢ are
denoted by the same symbol (.

Theorem 4.2. The form of the function X(() in a neighbourhood of each singularity
¢ = (x is given by

(4.9) X(¢) = bn(C — ¢k)"log(¢ — ¢k) + R(C — Cr)

n=0



with complex coefficents by and a reqular function R(()
Proof. The analogous iteration algorithm used in the proof of Theorem 4.1 give rise to
X1 = (bio +bué +...) log € + Ra(8),
Wi = (5126 + 5126 + ... ) log € + 71(€),
Xo = (1€ + +b22€? + ... ) log € + Ry (¢),
Wy = (03262 + B23€> + ... ) log £ + 72(€),

Xm = Omm-16™"" + +bmm€™ + ... ) log € + R (€),
Wm = (’Emmgm + "’.)"rnm+1€m-l-1 +... ) IOgE + Fm(£)3

where the coefficients by, and Umn are complex numbers, while R, (€) and 7m (&) are
regular functions of £&. This sequence of functions gives the function X (¢) of form (4.9).

§5 Global solution to the integral equation

In this section we give the solution X to the integral equation (2.3).
As before, let a # 0 be one of eigenvalues of the derivative D fp at P. We define the
lattice 'y generated by —log o as follows. For k € Z let (s = p + (2kw + 6)i, where

p=—loglal, -r<f=arga<m,
and let

. N
To={CeC|(=) Cr N=1,2,---}.
=1

It is easy to see that I'y is on the right half plane of C if 0 < || < 1, on the left half
plane if |a| > 1, and on the imaginary axis if |a| = 1. Note that ', is dense in the
imaginary axis in the case of |a| = 1.

150

Lemma 5.1. Let |a]# 1. For { € C\T, and a pafh w from the origin to ( in C\ Ty,

there is a smooth path  from the origin to { homotopic to w in C\T, such that (/2 € ¢
and & is symmetrical with respect to (/2.

By Lemma 5.1 we can perform the following algorithm;
N - W,
x{ = aR [ a,

W, = —2a(X™ « XM 44 X XV,
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Then
xX@®) :XfN) +X2(N) 4o+ XNy
is a Riemann suface, and
X = lim XM

N-oo

is the solution to the integral equation (2.3). In the case where |a| = 1, we can perform
the algorithm above and obtain the solution.

Theorem 5.2. Let ( == Zﬁ__l Ck, + &, and let w be a path from the origin to { in
C\Ta. Then X({) = X(¢,w) is given by the sum 3.0 . X,, of the following functions;

X1 = reg(¢),
Xy = (€ + €2 + €3 + - ) log € + reg(€),
Xy = (2 + 4% + 564+ ) (log €)?

+ (#€2 + +€% + %% + - ) log € + reg(¢),
Xy = (&3 + %€ + %85 + ... )(log €)®

+ (%€ + %€ + %65 + -+ )(log€)?

+ (R€% + #€* + €5 + -+ ) log £ + reg(€),

Xy = (2 44N 4 g™ 4 ) (log )N 2

4.

+ (*§N_2 + *§N—1 + *fN TR ) log &€ + reg(&),

XN — (*EN_l + *é-N + *£N+1 + - --)(logg)N

+ e

+ (*éN—l + *gN + *§N+1 + .- ) 10g£ + reg(ﬁ), |
Xns1 = (€N + gV 4 €N 42 4 (log €)Y

+ PP

+ (*{N 4+ #fNFL N2 L )log & + reg(€),

where *’s are complex coefficients and reg(£)’s are regular functions of €.

We remark that the complex coefficients *’s are written by a, b, ap, o and the special
values of the Hurwitz zeta, and that if a,b,a € R then all coefficients *’s are also real
numbers.
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§6 Resurgent functions and Laplace transformations

In the case where || # 1, we can obtain the resurgent functions X from the Riemann
surface X along the each line L; connecting the origin and (x. Then we define

xw=Aewf%mm«,

where Oy, is the angle of L. It can be proved that z(t) is an analytic function defined
on the whole plane C, and that z(t) does not depend on the choice of (x. If we let

o= (i) 57y, )

(t—1)+ys

then ¢ : C — C? satisfies the functional equation (0.1) and is different from the Poincaré
maps in the sense mentioned before.

The case of |a| = 1 is also discussed in the similar manner, and Theorem 1 can be
proved. '

For the details of this paper, the authors hope to appear elsewhere.

References

[B] A.Bruno, Analytical form of differential equations, Trans. Moscow Math. Soc.
25(1971), 131-288; 26(1972), 199-239.

[E] J.Ecalle, Les fonctions résurgence et leurs applications, T. I, II, III, Publ. Math.
d’Orsay, no 81-05, 81-06, 85-05.

[GS] V.Gelfreich and D.Sauzin, Borel summation and splitting of separatrices for the Hénon -

map, Ann. Inst. Fourier (Grenoble) 51(2001), 513-567.

[H] M.Hénon, A two-dimensional mapping with a strange attractor, Commun. Math.
Phys. 50(1976), 69-77.

[P] H.Poincaré, Sur une classe nouvelle de transcendantes uniformes, Journ. de. Math.
6(1890), 313-65.

[S] C.Siegel, Iteration of analytic functions, Ann. Math. 43(1942), 807-812.

[Y] J.Yoccoz, Petits diviseurs en dimension 1, Astérisque 231, 1995.



