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Fast Diffusion in Multi-Degree-of-Freedom
Hamiltonian Systems with Saddle-Centers

BRAFTLEHM Ky #—3 (Kazuyuki Yagasaki)
Faculty of Engineering, Gifu University

1. Introduction
We study (n + 1)-degree-of-freedom Hamiltonian systems (n > 2) of the form
&=JD;H(z,y), y= JuDyH(z,y), (z,y)€ R? x R*™", (1)

where H : R? x R?*™ — R is C™* (r > 2n+4), and J,, is the 2m x 2m symplectic matrix,

0 id™
J’"‘(—idm 0 )

with id™ the m x m identity matrix. We especially assume that the z-plane is invari-
ant under the flow of (1) and there is a saddle-center with n pairs of purely imaginary
eigenvalues at the origin (z,y) = (0,0) (= O) having a homoclinic orbit on the z-plane
(see Section 2 for our precise assumptions). In this situation, there exist n-dimensional
whiskered invariant tori ncar the saddle-center.

We consider small perturbations near the homoclinic orbits, and develop a Melnikov-
type technique for detecting the existence of orbits transversely homoclinic or heteroclinic
to the invariant tori. Note that the system (1) does not take the form of a small per-
turbation of an integrable system unlike many other versions of Melnikov-type methods
(e.g., [5,10]). We also show that Arnold diffusion type motions occur if such heteroclinic
orbits exist. Numerical evidence of fast diffusion for a specific three-degree-of-frecdom
system is given. .

Similar methods are also applicable to two-degree-of-freedom Hamiltonian systems and
(four-dimensional) reversible systems. We briefly describc the methods and the relation
with the differential Galois theory for nonintegrability [8] in the two-degree-of-freedom
Hamiltonian case. See [11-16] for backgrounds and details on these results.

2. Assumptions

We make the following assumptions on (1).

(A1) D.H(0,0) = 0 and DyH(z,0) = O for any z € R2.
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Fig. 1. The phase portrait on the z-plane.

Assumption (A1) means that the origin O is an equilibrium of (1) and the z-plane,
{(z,y) € R? x R?"|y = 0}, is invariant under the flow of (1). The system restricted on
the z-plane,

&z = J1D,H(z,0), (2)
has an equilibrium at £ = 0. Moreover, DD, H(z,0) =0, j = 1,2,.. ., for any z € R%.

(A2) The cquilibrium z = 0 of (2) is a hyperbolic saddle and has a homoclinic orbit
z2(t). Let Ty = {z = z"(t)|t € R} U {0}. See Fig. 1.

(A3) The matrix J,,DzH (0,0) has n pairs of purely imaginary, nonzero eigenvalues +iwj,

j =1,...,n. In addition, the nonresonance condition

k-w=kw + - +kywn, #0 (3)
holds for any k = (ki,...,k.) € Z" such that 1 < |k| = 37, k; < 4, where “”
rcpresents the inner product and w = (wy, .. . ,wy).

Assumptions (A2) and (A3) mean that the equilibrium O is a saddle-center and has a
homoclinic orbit (z,y) = (z"(t),0). It follows from the center manifold theory (e.g., [9])
that the saddle-center O has a C™, 2n-dimensional local center manifold, W, (O), which
may be non-unique, as well as C", one-dimensional stable and unstable manifolds, W*(O)
and W¥(O), which coincide along the homoclinic orbit (z%(¢),0). By assumption (A2),
the two cigenvalucs of J1D211(0,0) is cxpressed as £\, where X is a positive rcal number
(see Section II1.C of [7]).

Under the above assumptions, using arguments given in the proof of Lemma 4 of [3]
and noting H is at least C°, we prove that there is a symplectic transformation (z,y) —
(s,u,I,9) € R x R x R® x T" such that the Hamiltonian H can be expressed as the
following normal form

H(s,u,I,dJ)=Asu-l—w-I+%(AI-I)+g(s,_u,I,1/)) - (4)

near the saddle-center O, where A is an n X n matrix, and g: Rx R x R* x T* — R is
C™*! for I # 0 and of higher order than 2 in s, u and I. Here T" = []}_, §! is the n-torus
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Fig. 2. Forced vibrations of a buckled beam.

with S? the circle of length 2. In the light of this observation, the following assumption
is made.

(A4) The matrix A is nonsingular.

Under assumptions (A1)-(A4), on W¢(Q) near O there exists a Cantor set of n-dimensional

invariant tori J, consisting of quasiperiodic orbits with n frequencies v; close to Wi,
~j =1,...,n, such that thc Diophantine condition,

k-v>clk|™™ fork € Z" and k # 0, (5)
holds, where v = (v,...,1,), and ¢ > 0 and 7 > n— 1 are constants. The invariant torus
J, is whiskered, i.c., it has (n + 1)-dimensional stable and unstablc manifolds, W*(.%,)
and W*(Z,).

Let

pla, ) = 50312, 0)(n, )

with f(z,y) = /1D, H(z,y), where 7 € R?". Finally, we assume the following.
(AS5) p(z,n) 0.
3. Motivated example: Free vibrations of an undamped, buckled beam

Holmes and Marsden [6] proved that chaotic motions exist in the partial-integral dif-
ferential cquation

1
i+ u" + [I‘ - n/ (u’)zd(} u” = €(f coswl — &) (6)
0
under the boundary conditions

u(0) =u(l) =0, w"(0)=1u"(1)=0.
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Eq.(6) represents a mathematical model for forced vibrations of a damped, buckled beam
shown in Fig. 2. This is one of the earliest examples of infinite dimensional systems in
which the existence of chaos was mathematically proven. Now we have the following
question: What dynamics does the buckled beam exhibit without damping and external
force?

To answer this question, we expand solutions of (6) as

n+l

u(2,t) = Zal(t) sinjimz, Hh =1 1<ja<-+<jny1, n2>1L )
I=1

Substituting (7) into (6) and changing the state variables as

(a'l: dh Qi+, d'H—l) Land (xh Z2, %, yl+n)7

we obtain a Hamiltonian system with the Hamiltonian
1 n 1 n Y n
Ha(z,y) = 5 (—_z’l‘ + Zw?y?) +3 (zf + Zj?+1y?) +5 (zﬁ +Zyﬁ+:) )
I=1 1=1 I=1

in the nondimensional form, where w; = ji114/(j3, 72 —T')/(T' — #2). Note that any
approximations are not required here. We easily see that all the assumptions of Section 2
are satisfied if 72 < y < j27? and the resonance condition (3) up to fourth-order holds
for 1 < |k| < 4. See [12] for more details. As we see in Section 5, our theory can answer
the above question.

4. Main results

Consider variational equations of (1) in the y-direction about the saddle-center O and
homoclinic orbit (z,y) = (z"(¢),0),

1= J.D}H(0,0)n (9)

and
n= JnDzH(zh(t)’ 0)77' (10)

We call (10) the normal variational equation of (1) along z"(t). We can express a fun-
damental matrix to (9) as ®(wii,. .., wnt), where ® is 27r-periodic in each arguments and
®(0,...,0) = id®. Let ¥(t) be a fundamental matrix to (10). Using a standard result
about asymptotic behavior of linear systems (e.g., Section 3.8 of [1]), we see that the
limits

By = lim &(-wt) ¥ () (11)

exist. Obviously, By are nonsingular matrices and we set By = B, BZL.
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Let e; be a 2n-dimensional real vector belonging to a two-dimensional linear vector
space spanned by eigenvectors for eigenvalues + iw; of J,,D;‘;H (0,0), and let

n .
=Y i€ (12)
=1

for r = (ry,...,7,) € RY, where R? = [17-,(0,00). Denote

aln) = 3DIH(0,0)(n, )

for n € R?". We define the Melnikov function M(0;r) as

M(6;7) = q(#) — q(Bo®(6)7)- (13)

The Melnikov function M depcnds not only on 8 € T" but also on r € R7 while it was
defined as a function of only & scalar variable when n = 1 (see Eq. (23). We prove the
following theorem.

Theorem 1 (i) Suppose that there is a point (8,7) = (6o,70) € T x R? such that
M(6p;70) =0 and -é%—M(Oo;ro);éO, i=1,...,n. (14)
J

Then near the saddle-center O there exist whiskered invariant tori In and F,2, respec-
tively, consisting of quasiperiodic orbits with frequency vectors v! and v2, such that on the
energy surface of J,1 and Fa WU(J,1) intersects W*(J,») transversely, where 17, j =
1,2, are close to w and satisfy the Diophantine condition (5). If ®(6o)7,, = Bo®(0o)y, for
some Oy € T™, one can set v = 12 in this statement, i.e., there ezist orbits transversely
homoclinic to J,, where v = V' =12,

(ii) Suppose that there are ¢ € T*, j = 1,...,N—1, and ¥ € R%, j =1,...,N,
such that condition (14) holds for (6g,m0) = (67,77), j=1,...,N—1, and ®(67)Rpsa1 =
By®(8)7,; for some 87 € T*, j = 1,...,N — 1. Then near O there exist N whiskered
invariant tori J5, j = 1,..., N, consisting of quasiperiodic orbits with frequency vectors
v,j=1,...,N, close to w and satisfying (5), such that on their energy surface W*(9,;)
intersects W®(J,s+1) transversely.

See [15] for the proof. A sequence of invariant tori such as i, j =1,...,N, in Theo-
rem 1 (ii) is called a transition chain.

Theorem 2 Suppose that in the Hamiltonian system (1) there is a transition chain of N
whiskered invariant tori 7, j = 1,..., N, consisting of quasiperiodic orbits with irrational
frequencies (see Fig. 3). Then there erists an open set of points arbitrarily close to F,
connected by trajectories with points arbitrarily close to Jy through points near i, i =
2,...,N -1, in tumn.
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Fig. 3. Arnold diffusion type motions.

See [15] for the proof.

The behavior detected by Theorem 2 is similar to Arnold diffusion in near-integrable
gystems (scc Section 1) although the drift speed can be very fast. In the situation of
Theorem 1(ii) it is &'(¢). We call this behavior in not near-integrable systems Arnold
diffusion type motions. For a transition chain of N whiskered invariant tori {4, ..., In}
one may have 7 = Jy. We say that such a traunsition chain is cyclic.

Suppose that there are two distinct, cyclic transition chains of N; + 2 and N, + 2
whiskered invariant tori, {%, Z',..., In,, o} and {F, Z2, ..., T, %}. Then, using
Theorem 2, we can find such trajectorics as start near %, pass ncar J;,..., J} or
near 72,..., I}, return near J and repeat these motions eternally. To parts of these
trajectories we can assign the symbol ‘1’ or ‘2’, depending on whether they pass near
TL,..., T ornear F2,..., I%,. Hence, therc cxist chaotic orbits characterized by the
Bernoulli shift. Thus, in very complicated manners the orbits detected in Theorem 2 can
drift near the locally invariant manifolds .#.

bl

5. Example

As an example, we consider the Hamiltonian

2
1 n 1 n 1 n .
H(z,y) =5 (—x% +Zw?y?) +7 (z% + Zﬁzy?) +35 (x% + Zy3.+z> (15)
=1 =1 =1

with { > 3 an integer. When f; = j?, the Hamiltonian (15) represents the finite degree-
of-freedom model (8) for the buckled beam. Eq. (2) has a pair of homoclinic orbits to
the saddle z = 0,

b (t) = (EV2secht, Fv/2secht tanh t) (16)

We assume that the non-resonance condition (3) holds up to fourth-order, so that as-
sumptions (A1)-(A5) hold.
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We can compute the Melnikov function
M(0, T‘) = war,z b (al COS(20[ + (}5[) — bl), (17)
=1
where ¢; is some constant and

2(7+/8B + 1/2)
=148, b= (VA .
o oA sinh?(7w;)

See Section 6 of [15] for the derivation of (17). Using Theorems 1 and 2, we can show
that if

B # ____m(m2— D e N,
ie.,
& #0,1,3,6,10,15,..., (18)

then for the Hamiltonian (15) transverse homoclinic and heteroclinic orbits to whiskered
invariant tori near O exist, and Arnold diffusion type and chaotic motions occur. See [15]
for the details. Condition (18) becomes

i # 6,204, 6930, 235416, . . .

for the bucked beam case. Hence, in the infinite degree-freedom model of buckled beams
without the forcing and damping terms, such complicated behavior can occur. See [12]
for more details.

6. Numerical evidence of fast diffusion

We now give numerical simulation results for a three-degree-of-freedom system having
the Hamiltonian (15) with n = 2, w; = 1, wy = (V5 — 1)/2 (golden mean), g, = 0.5,
B2 = 1.5. The codc used in the numecrical simulations is based on an cxplicit Runge-Kutta
method of order 8 and a fifth order error estimator with third order correction is utilized.
It also has a dense output of order 7. See [4] for more details on the method. A tolerance
of 1078 was chosen in the computations so that very precise results could be obtained.
Actually the changes of the Hamiltonian energy for very long trajectories with ¢ ~ 108
were 107° % at most.

We take as a Poincaré section the five-dimensional hyperplanc {(z,y) € R? x R*|y, =
0,y4 > 0}. To obtain a point at which a computed trajectory intersect the Poincaré
section, an interval [t,,,, ¢,] of numerical integration such that y,(t,_;) < 0 and y, (t,) >0
was scarched and the method of bisection was used for the interval with a tolerance of
|y2| <1078,

Figure 4 shows orbits of the Poincaré map restricted on the invariant manifold .#, i.e.,
the y-hyperplanc. Only inside the outer circle there can exist orbits with the energy level.
As shown in this figure, all computed orbits seemed to construct invariant tori. Note
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Fig. 4. Numerically computed orbits of the Poincaré map restricted on the invariant manifold
A (the y-hyperplane) for H = 0.01.

1

0.5 f

Fig. 5. A numerically computed orbit of the Poincaré map for 3, = 0.5, f; = 1.5 and H = 0.01:

(a) Projection onto the z-plane; (b) projection onto the (y1,y3)-plane when it enters in a neigh-
borhood of ..

that orbits of the Poincaré map on .# can move on a two-dimensional manifold by the
persistence of the Hamiltonian energy.

Figure 5 shows a numerically computed orbit of the Poincaré map starting at (z, y) =
(0.001,0.001,0,0,0.099...,0.1). Its projection onto the z-plane is plotted with 20000
points in Fig. 5(a), and its projection onto the (y;,ys)-plane when it enters in a neigh-
borhood of #, {(z,y)|r: < 0.01} with r; = \/z? + 23, is plotted with 5000 points in
Fig. 5(b). From Fig. 5 we see that it does not only exhibit a chaotic motion but also drifts
in the center directions of the saddle-center, as stated in Section 5.

Figure 6 shows the second mode energy of the y-component on the Poincaré section .

(i.e., when y; = 0), ez = y2/2, and the distance r, from the invariant manifold .# for two
numerically computed orbits of the Poincaré map with slightly different initial conditions:
One of them, which is plotted as dots and solid lines in Fig. 6, started at the same point
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Fig. 6. The second mode energy e, of the y-component and the distance r, from the invariant
manifold ' (the y-hyperplane) for two trajectories with slightly different initial conditions for
$r=0.5, f = 1.5 and H = 0.01: (a) small ¢; (b) large ¢.

SRS — S 100
 (a) - ] ®)
01f ¥ de ’5-; 3 8 |
o s, ]
F .;."& + © ég: 60 J
- + 3
> O'QQA 5:‘“+‘Aﬁ+. ER
5’04& *eay 40
o b
af wLiSe¥ 1
2 o5
..... | TR TR FRTTUVTRTS PYT T 0 A N
01 0 0.1 0 0.05 0.1 0.15
N Ny +Y5

Fig. 7. Homogeneity of motions in the center directions for the orbit of Fig. 5 with 8, = 0.5,
B2 = 1.5 and H = 0.01: (a) Projection onto the (1, y3)-plane for first 300 visits in a neighbor-
hood of .4; (b) histogram of the density of points with intervals of 1 x 10~3 for the abscissa,
\/m, when the orbit enters the neighborhood of .#. In Fig. (a) x represents points for
1st-100th visits, e for 101st-200th, and A for 201st-300th. In Fig. (b) a uniform distribution is
also plotted as a broken line for comparison.

as in Fig. 5, and the other, plotted as crosses and broken lines in Fig. 6, started at a point
with the same coordinates except y; = 105. We see that both the results are almost
the same when ¢ is small (see Fig. 6(a)), but they are very distinct when ¢ is large (see
Fig. 6(b)). In particular, the second mode energy e, are very different even when the
values of r, are almost simultaneously small at ¢ ~ 10460. This means that they are
then close to distinct invariant tori far from each other. Thus, their drifts in the center
directions sensitively depend on initial conditions and hence they are chaotic, as stated
in Section 5.
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In Fig. 5(b) one may feel that motions in the center directions are very homogeneous.
Figure 7(a) shows projection of the orbit of Fig. 5 onto the (y,,ys)-plane for first 300
visits in the neighborhood {r, < 0.01} of .#, where different symbols are used for every
100 visits (see the caption of Fig. 7), and Figure 7(b) shows a histogram of the density
of points of Fig. 5(b) with intervals of 1 X 1073 for the distance from the origin in the
(y1,ys)-plane, m , where n represents the number of points included in the interval.
In Fig. 7(b) a uniform distribution, cy/y? + y%, where ¢ = 2 x 5000/(2 x 0.01), is also
plotted as a broken line for comparison. We see that the orbit visits at very random points
in the neighborhood and the distribution of points is close to the uniform one. See [13]

for more details.
7. Two-degree-of-freedom systems

In this section, we consider two-dimensional systems of the form

& =D, H(z,y),
(z,y) € R? x R? (19)
y. =J1 D‘.'IH(zv y)a

We assume that assumptions (A1)-(A3) and (A5) hold. Note that the non-resonance
condition (3) in (A3) has no meaning. Under the assumptions, it follows from the Poincaré
center theorem [7] that there exists a one-parameter family of periodic orbits near the
origin O. Define the Melnikov function as

M(LQ) = (I(Cl) - (I( B(,‘I)(wl,o)cl). (20)

We can prove that if M(ly) has a simple zero, then transverse homoclinic orbits to the
periodic orbits near O exist. See [11] for the details. Fast diffusion never occurs because
each PO has different Hamiltonian energy.

One of recent interesting topics on Hamiltonian systems is the differential Galois theory
for their integrability [8]. This theory says that if the normal variational equation along
the special solution is nonintegrable as a linear differential equation (roughly speaking,
its general solution cannot be represented by elementary functions), then a Hamiltonian
system is nonintegrable near a special solution in a meaning of complex functions. We
can show that the Galoisian obstructions to integrability along homoclinic orbits and
Melnikov criteria for chaos are equivalent. See [14] for the details.

8. Four-dimensional reversible systems
We consider four dimensional systems of the form
&= f(z,9), 9=9(zy), (z,9)eR*xR%. (21)

We make the following assumptions on (21).
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(R1) There cxists a lincar involution R : R? x R? — R? x R? such that

(f(R(z,y)),9(R(z,))) + R(f(z,y), g(z,y)) = 0.

Moreover, dim Fix(R) = 2, where Fix(R) = {(z,y) € R*|R(z,y) = (z,y)}.

Assumption (R1) means that the system (21) is reversible. A fundamental characteristic
of reversible systems is that if (z(t), y(t)) is a solution of (21), then R(x(—t),y(—t)) is so.
We call a solution (and the corresponding orbit) symmetric if z(t) = Rz(—t). An orbit is
symmetric if and only if it intersects the space Fix(R).

' (R2) The z-plane is invariant, i.e., g(z,0) = 0.
(R3) The origin O is a saddle-center and has a homoclinic orbit (z?(t), 0).

(R4) The restricted system on the z-plain
i = f(2,0) (22
is Hamiltonian,i.e., f(z,0) = J;DII(x).

It follows from (R1) and (R3) that there cxists a one-paramcter family of periodic orbits
near the saddle-center O [2]. Define the Melnikov function

M(to) = [~ DHEE) - pla(0), Y(OBB(te)er)at. (23)

Suppose that M(ty) has a simple zero. Then we can prove that there exist transverse
homoclinic orbits to the periodic orbits near O. Morcover, as in Theorcms 1 and 2, under
an additional condition, we can show that there exist transverse heteroclinic orbits to the
periodic orbits and fast diffusion occurs. See [16] for the details.

We apply the theory to

Iy =T, 2 =11 — (23 + 39i)z1 — 10y,

(24)
e . 2 2 1,2
h=y, th=-wy —oaolz+ gyl)yl - Bz,

where o, B and w are positive constants. Eq. (24) is Hamiltonian when a = % We
computc the Melnikov function as

M(to) = 11 COos 2(4)[,0 + 12 sin 2wl,0, (25)

where I; and I, can be numerically estimated.

Figure 8 shows a numerically computed orbit of the Poincaré map for (24) when a = 1.5,
B =0.5 and w = 1. Here the three dimensional space {(z1,Z2,¥1,¥2) |32 = 0,7 < 0} was
taken as the Poincaré section. We see that diffusion motion occurs in the center direction.
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Fig. 8. A numerically computed orbit of the Poincaré map for (24) when o = 1.5, 8 = 0.5 and
w=1.
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