
Virtual turning points
and

isomonodromic deformations
–On the observation of S. Sasaki for the creation
of new Stokes curves of Noumi-Yamada systems –

近畿大学理工学部 青木貴史 (AOKI, T拙 ashi)
Department of Mathematics, Kinki University

京都大学数理解析研究所 河合隆裕 (KAWAI, Takahiro)
RIMS, Kyoto University

京都大学理学研究科 小池達也 (KOIKE, Tatsuya)
Department of Mathematics, Kyoto University

京都大学数理解析研究所 佐々木俊介 1 (SASAKI, Shunsuke)
RIMS, Kyoto University

京都大学数理解析研究所 竹井義次 (TAKEI, Yoshitsugu)
RIMS, Kyoto University

1 Introduction

数理解析研究所講究録
1493巻 2006年 191-211 191



turning points and Stokes curves but also virtual turning points and new Stokes
curves of the underlying linear equations should be relevant to the WKB analysis
of Noumi-Yamada systems.

As a matter of fact, Sasaki has discovered in his master thesis and its successive
paper that virtual turning points of the underlying linear equations play a crucially
important role in the creation of new Stokes curves of Noumi-Yamada systems (cf.
[Sl, S2] $)$ . The purpose of this report is to explain the role of virtual turning points
in the (isomonodromic) deformation theory of linear differential equations and to
discuss Sasaki’s observation for the creation of new Stokes curves of Noumi-Yamada
systems.

The plan of this report is as follows: We first recall the explicit form of Noumi-
Yamada systems and their underlying linear equations in Section 2. Then in Section
3 we review the definition of virtual turning points of higher order linear ordinary
differential equations. Finally in Section 4 we explain the importance of virtual turn-
ing points in the deformation theory of higher order equations and discuss Sasaki’s
observation for the relevance of virtual turning points to the creation of new Stokes
curves of Noumi-Yamada systems.

2 Noumi-Yamada systems of type $A_{l}^{(1)}$

The Noumi-Yamada system, denoted by $(N\mathrm{Y})_{l}(l=2,3,4, \ldots)$ in what follows, is
a higher order Painlev\’e equation with affine Weyl group symmetry of type $A_{l}^{(1)}$ (cf.
[NY] $)$ . It may be considered as higher order analogue of the fourth Painlev\’e equation
when $l$ is even and that of the fifth Painlev\’e equation when $l$ is odd, respectively.
As we discuss the case where $l$ is even in this report, let us give the explicit form of
$(N\mathrm{Y})_{l}$ only for $l=2m$ here:

$(N\mathrm{Y})_{2m}$ $\eta^{-1}\frac{du_{j}}{dt}=[u_{j}(u_{j+1}-u_{j+2}+\cdots-u_{j+2m})+\alpha_{j}]$ $(j=0,1, \ldots, 2m)$ ,

where $\eta>0$ denotes a large parameter, $\alpha_{j}$ are complex parameters satisfying

(1) $\alpha_{0}+\cdots+\alpha_{2m}=\eta^{-1}$ ,

and the independent variable $t$ and the unknown functions $u_{j}$ are normalized so that

(2) $u_{0}+\cdots+u_{2m}=t$

may be satisfied. (It is also assumed that $\alpha_{j}$ and $u_{j}$ are cyclic with respect to the
index $j$ with the cycle $N=l+1.$ ) In view of (2) we find that $(N\mathrm{Y})_{2m}$ contains
$2m$ independent unknown functions and is equivalent to a $(2m)$-th order nonlinear
ordinary differential equation with one unknown function, say, $u_{0}$ . (For example,
$(NY)_{2}$ is equivalent to the traditional fourth Painlev\’e equation.)
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The system $(NY)_{l}$ with $l=2m$ describes the compatibility condition of the
following system of linear equations (“Lax pair”) of the size $N\cross N(N=l+1=$
$2m+1)$ :

(3) $\eta^{-1}\frac{\partial}{\partial x}\psi$

(4) $\eta^{-1}\frac{\partial}{\partial t}\psi$

where

(5) $A=- \frac{1}{x}$ $.u_{1}x.$

.

and

(6) $B=$

$=$ A $\psi$ ,

$=$ $B\psi$ ,

$\epsilon_{N-2}.1.$.
$u_{\dot{N}-2}\epsilon_{N-1}..u_{N-1}\epsilon_{N}1)$

$.-.1$

.
$q_{\dot{N}-1}.$

. $-1q_{N})$ .

Here $\epsilon_{j}$ are parameters determined by the relations

(7) $\alpha_{j}=\epsilon_{j}-\epsilon_{j+1}+\eta^{-1}\delta_{j,0}$, $\epsilon_{1}+\cdots+\epsilon_{N}=0$

( $\delta_{j,k}$ denotes Kronecker’s symbol), and $q_{j}=q_{j}(t)$ are functions of $t$ satisfying

(8) $q_{j+2}-q_{j}=u_{j}-u_{j+1}$ , $q_{1}+\cdots+q_{N}=-t/2$ .
The aim of this report is to analyze the Noumi-Yamada system $(NY)_{2m}$ from the

viewpoint of the exact WKB analysis, making full use of the exact WKB analysis of
the underlying Lax pair (3) and (4). Note that we have introduced the large param-
eter $\eta$ into $(NY)_{2m}$ and its underlying Lax pair (3) and (4) through an appropriate
scaling of the variables so that we may discuss the exact WKB analysis for them;
the original Noumi-Yamada system is obtained by putting $\eta=1$ .

3 Virtual turning points of higher order linear or-
dinary differential equations

Before discussing the exact WKB analysis of the Lax pair (3) and (4), we review
the definition of an (ordinary) turning point, a Stoks curve and a virtual turning
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point for a system of first order linear ordinary differential equations with size $m$

$(m\geq 3)$ . (In this report, since we are discussing the Noumi-Yamada system and
its underlying Lax pair, we deal with a system of differential equations instead
of a higher order single differential equation. Note that fundamental notions and
interesting phenomena for a higher order single differential equation discussed in
[BNR], [AKTI], [AKSST] etc. can be easily translated into those for a system of
differential equations, as we will see below.)

Let us consider the following system of linear ordinary differential equations:

(9) $\eta^{-1}\frac{d}{dx}\psi=A(x, \eta)\psi$ ,

where $A$ is an $m\mathrm{x}m$ matrix $(m\geq 3)$ of the form

(10) $A_{0}(x)+\eta^{-1}A_{1}(x)+\eta^{-2}A_{2}(x)+\cdots$

and $\eta>0$ denotes a large parameter. For such a system (9) a polynomial (in $\lambda$ )

(11) $P(x, \lambda)^{\mathrm{d}}=^{\mathrm{e}\mathrm{f}}\det(\lambda-A_{0}(x))=0$

of degree $m$ is called the characteristic equation of (9) and a solution $\lambda_{j}(x)(j=$

$1,$ $\ldots,m)$ of (11) is called a characteristic root of (9). For each characteristic root
$\lambda_{j}(x)$ there exists a (formal) solution $\psi_{\mathrm{j}}(x,\eta)$ of (9) of the following form:

(12) $\psi_{\mathrm{j}}(x,\eta)=(\exp\eta\int_{x\mathrm{o}}^{x}\lambda_{\mathrm{j}}(x)dx)\sum_{l=0}^{\infty}\psi_{j,1}(x)\eta^{-(l+1/2)}$,

where $x_{0}$ is a fixed point and vector-valued functions $\psi_{j,\mathfrak{l}}(x)(l=0,1, \ldots)$ are re-
cursively determined (up to constants of integration). The solution (12) is called a
WKB solution of (9).

Now let us first recall the definition of an ordinary turning point and a Stoks
curve.
Definition 1. (i) When two characteristic roots $\lambda_{j}(x)$ and $\lambda_{j’}(x)$ coalesce at $x=a$,
the point $a$ is called an ordinary turning point (of type $(j,j’)$ ). In particular, when
$x=a$ is a simple (resp., double) zero of the discriminant of $P(x, \lambda),$ $a$ is called
a simple (resp., double) ordinary turning point. (In what $\mathrm{f}\mathrm{o}\mathrm{U}\mathrm{o}\mathrm{w}\mathrm{s}$ the adjective
“ordinary” is often omitted if there is no fear of confusions.)

(ii) An integral curve of the direction field

(13) $\Im[(\lambda_{j}(x)-\lambda_{j’}(x))dx]=0$

that emanates from an $\mathrm{o}\mathrm{r}\mathrm{d}\dot{\mathrm{u}}$lary turning point $a$ of type $(j,j’)$ is called a Stokes curve
of type $(j,j’)$ . That is, a Stokes curve is a real one-dimensional curve determined
by the equation

(14) $\Im\int_{a}^{x}(\lambda_{i}(x)-\lambda_{j’}(x))dx=0$ .
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Furthermore, a portion of a Stokes curve is labeled as $(j>j’)$ , or simply $j>j’$ , if

(15) $\Re\int_{a}^{x}(\lambda_{j}(x)-\lambda_{j’}(x))dx>0$

holds there.

In the exact WKB analysis an ordinary turning point and a Stokes curve are
important to the effect that the so-called Stokes phenomenon for WKB solutions
(to be more precise, for their Borel sums) is in general observed on a Stokes curve.
In the case where $m\geq 3$ , however, we need to take into account a virtual turning
point and a new Stokes curve, which are defined as follows, in addition to ordinary
turning points and Stokes curves.

Let $(x(s), y(s),$ $\xi(s),$ $\eta(s))$ be a bicharacteristic strip (to be more precise, a “null-
bicharacteristic strip”) of the Borel transform of (9), that is, a solution of the fol-
lowing Hamiltonian system determined by the principal symbol $P=P(x, \eta^{-1}\xi)$ of
the Borel transform of (9):

(16) $\{$

$\frac{dx}{ds}=\frac{\partial P}{\partial\xi}$ , $\frac{dy}{ds}=\frac{\partial P}{\partial\eta}$ ,

$\frac{d\xi}{ds}=-\frac{\partial P}{\partial x}$ , $\frac{d\eta}{ds}=-\frac{\partial P}{\partial y}(=0)$ ,

with the constraint

(17) $P(x(s), \eta(s)^{-1}\xi(s))=0$ .

Note that, since $P=P(x, \eta^{-1}\xi)$ can be factorized as

(18) $P(x, \eta^{-1}\xi)=(\eta^{-1}\xi-\lambda_{1}(x))\cdots(\eta^{-1}\xi-\lambda_{m}(x))$

except at a turning point, the characteristic set $\{P=0\}$ (and hence a bicharacter-
istic strip itself also) has $m$ branches locally. Now, a bicharacteristic strip is a curve
in the cotangent bundle $T^{*}\mathbb{C}_{(x,y)}^{2}$ . We call its projection to the base manifold $\mathbb{C}^{2}$

a bicharacteristic curve. The notion of a virtual turning point is then defined $\mathrm{i}\mathrm{n}$

)

terms of a bicharacteristic curve as follows:

Definition 2. (i) When a bicharacteristic curve of the Borel transform of (9) crosses
itself at a point $(x_{0}, y_{0})$ , the point $x_{0}$ is called a virtual turning point of (9) (cf.
[AKTI], [AKSST] $)$ . When the crossing point is determined by a pair of Hamiltonians
$(\eta^{-1}\xi-\lambda_{j}(x))$ and $(\eta^{-1}\xi-\lambda_{i’}(x))$ , we say that the virtual turning point is of type
$(j,j^{j})$ .

(ii) An integral curve of the direction field

(19) $\Im[(\lambda_{j}(x)-\lambda_{j’}(x))dx]=0$
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that emanates from a virtual turning point $x=v$ of type $(j,j’)$ is called a new
Stokes curve of type $(j,j’)$ . Just like an ordinary Stokes curve a portion of a new
Stokes curve is labeled as $(j>j’)$ or $J’>j’$ if

(20) ee $\int_{v}^{x}(\lambda_{j}(x)-\lambda_{j’}(x))dx>0$

holds there. (If there is no fear of confusions the adjective “virtual” or “new” is
sometimes omitted.)

As first observed by Berk et al $([\mathrm{B}\mathrm{N}\mathrm{R}])$ , Stokes phenomena for WKB solutions are
observed also on some portions of new Stokes curves for a higher order linear ordinary
differential equation or, equivalently, a system of linear differential equations with
size $m\geq 3$ .

Now, not only an ordinary turning point and a Stokes curve but also a virtual
turning point and a new Stokes curve of the underlying Lax pair (3) (and (4)) play
an important role for the description of turning points and Stokes curves of the
Noumi-Yamada system $(NY)_{2m}$ , as we will see in the next section.

4 Sasaki’s observation–The relevance of virtual
turning points to the creation of new Stokes
curves of Noumi-Yamada systems

In this section we discuss the Stokes geometry, i.e. the collection of turning points
and Stokes curves, of the Noumi-Yamada system $(NY)_{2m}$ and its relationship with
that of the underlying Lax pair (3) (and (4)).

4.1 Turning points and Stokes curves of $(N\mathrm{Y})_{2m}$

We first recall the definition of turning points and Stokes curves of $(NY)_{2m}$ (cf.
[T2] $)$ .

Using the fact that $(N\mathrm{Y})_{2m}$ discussed here contains a large parameter $\eta$ , we can
construct a formal power series (in $\eta^{-1}$ ) solution of $(NY)_{2m}$ of the following form:

(21) $u_{j}=u_{j,0}(\wedge t)+\eta^{-1}u_{j,1}(t)+\eta^{-2}u_{j,2}(t)+\cdots$ $(j=0, \ldots, 2m)$ ,

where $\{u_{j,0}(t)\}_{0\leq j\leq 2m}$ satisfy a system of algebraic equations and, once $\{u_{j,0}(t)\}$

are fixed, the coefficients $\{u_{j,l}(t)\}_{0\leq j\geq 2m,\downarrow\leq 1}$ of lower order terms are determined
recursively. Such a formal solution is called a $0$-parameter solution of $(NY)_{2m}$ .

Let $(\triangle N\mathrm{Y})_{2m}$ denote the Fr\’echet derivative (i.e. the linearized equation) of
$(N\mathrm{Y})_{2m}$ at the $0$-parameter solution $u_{j}^{\wedge}$ . A turning point and a Stokes curve of
$(NY)_{2m}$ are then defined in terms of $(\Delta NY)_{2m}$ in the following manner:

196



Definition 3. An (ordinary) turning point (resp., a Stokes curve) of $(NY)_{2m}$ is, by
definition, an (ordinary) turning point (resp., a Stokes curve) of $(\Delta NY)_{2m}$ .

Since the Fr\’echet derivative $(\Delta NY)_{2m}$ is a system of linear differential equations of
the form

(22) $\eta^{-1}\frac{d}{dt}\Delta u=(C_{0}(t)+\eta^{-1}C_{1}(t)+\cdots)\Delta u$,

where $\Delta u={}^{t}(\Delta u_{0}, \ldots, \Delta u_{2m})$ denotes an unknown vector-valued function and $C_{l}(t)$

$(l=0,1, \ldots)$ are $(2m+1)\cross(2m+1)$ matrices, the definition of its (ordinary) turning
points and Stokes curves is given by Definition 1. In the case of $(\Delta N\mathrm{Y})_{2m}$ , as is
shown in [T2], the characteristic equation $\det(\nu-C_{0}(t))=0$ becomes a polynomial
of $\nu^{2}$ of degree $m$ (except for some trivial factor). Thus $(\Delta N\mathrm{Y})_{2m}$ has essentially
$(2m)$ characteristic roots, which are labeled as $\iota \text{ノ_{}1,\pm},$

$\ldots,$ $\nu_{m,\pm}$ so that they may satisfy
$\nu_{j,+}+\nu_{j,-}=0$ in what follows. Note that, thanks to this peculiar property of the
characteristic equation, there are two kinds of (ordinary) turning points for the
Noumi-Yamada system $(NY)_{2m}$ ; one is a turning point where $\nu_{j,+}=-\nu_{j,-}=0$

holds for some $j$ (“a turning point of the first kind”), and the other is a turning
point where $\nu_{j,+}=\nu_{j’,+}$ or $\nu_{j,+}=\nu_{j’,-}$ holds for some $j\neq j’$ (“$\mathrm{a}$ turning point of
the second kind”).

Now, let us substitute a O-parameter solution $u_{j}\wedge$ of $(NY)_{2m}$ into the coefficients
of the underlying Lax pair (3) and (4) to obtain

$(LNY)_{2m}$ $\{$

$\eta^{-1}\frac{\partial}{\partial x}\psi=$ $(A_{0}(x, t)+\eta^{-1}A_{1}(x, t)+\cdots)\psi$,

$\eta^{-1}\frac{\partial}{\partial t}\psi$ $=$ $(B_{0}(x, t)+\eta^{-1}B_{1}(x, t)+\cdots)\psi$ .

The main results of [T2] claim that the Stokes geometry of $(NY)_{2m}$ is closely related
to that of (the first equation of) $(LNY)_{2m}$ . To state the relationship between the
two Stokes geometries in a specific manner, we prepare some notation here. It is
shown in [T2] that the first equation of $(LNY)_{2m}$ has, in general, several simple
ordinary turning points and $m$ double ordinary turning points; the former will be
denoted by $a_{1}(t),$

$\ldots,$
$a_{n}(t)$ , where $n$ designates the number of simple turning points,

and the latter by $b_{1}(t),$
$\ldots,$

$b_{m}(t)$ in what follows. Then the main results of [T2] can
be stated as follows:

Proposition 1. Let $t=\tau^{\mathrm{I}}$ be a tuming point of the first kind of $(NY)_{2m}$ , that
$lS,$ $\nu_{j,\pm}(\tau^{\mathrm{I}})=0$ holds for some $j$ . Then there exist a simple tuming point $a_{1}(t)$ ofthe first equation of $(LNY)_{2m}$ , a double tuming point $b_{j}(t)$ of the first equation of
$(LN\mathrm{Y})_{2m}$ , and two eigenvalues $\lambda_{k}$ and $\lambda_{k’}$ of $A_{0}$ that merge both at $x=a_{l}(t)$ and
$x=b_{j}(t)$ , such that the following relations hold:

(23) $a_{\mathrm{I}}(\tau^{\mathrm{I}})=b_{j}(\tau^{\mathrm{I}})$ ,
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(24) $\frac{1}{2}\int_{\tau^{\mathrm{I}}}^{t}(\nu_{j,+}-\nu_{j,-})dt=\int_{a_{l}(t)}^{b_{J}(t)}(\lambda_{k}-\lambda_{k’})dx$.

In particular, if $t$ lies on a Stokes curve of $(NY)_{2m}$ emanating from $\tau^{\mathrm{I}}$ and is suffi-
ciently close to $\tau^{\mathrm{I}}$ , the simple tumin9 point $x=a_{k}(t)$ and the double tuming point
$x=b_{j}(t)$ are connected by a Stokes curve of the first equation of $(LN\mathrm{Y})_{2m}$ .

Proposition 2. Let $t=\tau^{\mathrm{I}\mathrm{I}}$ be a tuming point of the second kind of $(N\mathrm{Y})_{2m}$ , that
is, $\nu_{j,+}(\tau^{\mathrm{I}\mathrm{I}})=\nu_{j’,+}(\tau^{\mathrm{I}\mathrm{I}})$ holds for some $j$ and $j’$ . Then theoe exist two double tuming
points $b_{j}(t)$ and $b_{j’}(t)$ of the first equation of $(LNY)_{2m}$ and two eigenvalues $\lambda_{k}$ and
$\lambda_{k’}ofA_{0}$ that merge both at $x=b_{j}(t)$ and $x=b_{j’}(t)$ , such that the following relations
hold:

(25) $b_{j}(\tau^{\mathrm{I}\mathrm{I}})=b_{j’}(\tau^{\mathrm{I}\mathrm{I}})$ ,

(26) $\int_{\tau^{\mathrm{I}\mathrm{I}}}^{t}(\nu_{j,+}-\nu_{j’,+})dt=\int_{b_{f},(t)}^{b_{\mathrm{j}}(t)}(\lambda_{k}-\lambda_{k’})dx$.

In particular, if $t$ lies on a Stokes curve of $(N\mathrm{Y})_{2m}$ emanating from $\tau^{\mathrm{I}\mathrm{I}}$ and is
sufficiently close to $\tau^{\mathrm{I}\mathrm{I}}f$ the two double tuming points $x=b_{j}(t)$ and $x=b_{j’}(t)$ are
connected by a Stokes curve of the first equation of $(LNY)_{2m}$ .

Thus, as in the case of traditional (i.e. second order) Painlev\’e equations (cf.
[KT1], [AKT2] $)$ and hierarchies of the first and second Painlev\’e equations of higher
order (cf. [KKNTI]), (ordinary) turning points and Stokes curves of the Noumi-
Yamada system $(NY)_{2m}$ can be characterized near a turning point by the degeneracy
of the configuration of ordinary turning points and Stokes curves of the underlying
Lax pair $(LN\mathrm{Y})_{2m}$ . Note that such degeneracy of the Stokes geometry of $(LN\mathrm{Y})_{2m}$

induces the Stokes phenomenon for $(NY)_{2m}$ (cf. [T1], where the Stokes phenomena
for the traditional first Painlev\’e equation are explicitly computed by using the de-
generacy of the Stokes geometry of its underlying Lax pair). However, in order to
describe the Stokes geometry of $(NY)_{2m}$ globally, virtual turning points and new
Stokes curves of $(LN\mathrm{Y})_{2m}$ become also relevant.

4.2 Bifurcation of Stokes curves –an important role of
virtual turning points in the theory of isomonodromic
deformations

In the precedent subsection we have reviewed the fact that two ordinary turning
points of the Lax pair $(LN\mathrm{Y})_{2m}$ are connected by a Stokes curve when the parameter
$t$ lies on a Stokes curve of $(NY)_{2m}$ near an (ordinary) turning point. However as
is observed in [AKSST] and [S1], “bifurcation of Stokes curves” often occurs for the
deformation of a higher order equation (i.e. a higher order equation containing a
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parameter) or the deformation of a system of first order equations with size $m\geq 3$ .
After such a bifurcation phenomenon occurs, the role of an ordinary Stokes curve and
that of a new Stokes curve are interchanged, and consequently we may observe that
an ordinary turning point and a virtual turning point of $(LN\mathrm{Y})_{2m}$ are connected by
a Stokes curve when the parameter $t$ lies in some portion, which is rather distant
from a turning point, of a Stokes curve of $(NY)_{2m}$ . In this subsection we discuss
this phenomenon more concretely by making use of the following example.

Example 1. $([\mathrm{S}1])$ Let us consider the following Noumi-Yamada system $(N\mathrm{Y})_{2m}$

with $m=1$ :

$(N\mathrm{Y})_{2}$ $\{$

$-1du_{0}$
$\eta$

$\overline{dt}$

$=u_{0}(u_{1}-u_{2})+\alpha_{0}$ ,

$\eta^{-1_{\frac{du_{1}}{dt}}}$ $=u_{1}(u_{2}-u_{0})+\alpha_{1}$ ,

$-1du_{2}$
$\eta$

$\overline{dt}$

$=u_{2}(u_{0}-u_{1})+\alpha_{2}$ ,

where $\alpha_{0}+\alpha_{1}+\alpha_{2}=\eta^{-1}$ and $u_{0}+u_{1}+u_{2}=t$ are satisfied. Here, to do concrete
numerical computations, we take the following particular value of parameters: $\alpha_{0}=$

$1+0.6\sqrt{-1}$ and $\alpha_{1}=0.2-0.1\sqrt{-1}$.
This system has an ordinary turning point of the first kind at, for example,

$\tau=-1.6276-0.0986\sqrt{-1}$ . Hereafter we investigate the change of the Stokes
geometry of (the first equation of) the underlying Lax pair $(LNY)_{2}$ along a Stokes
curve $\Gamma$ of $(N\mathrm{Y})_{2}$ emanating from this turning point $\tau$ , as is shown in Figure 1.

$\lrcorner t$

Fig. 1 : Stokes curve $\Gamma$ of $(NY)_{2}$ emanating from $\tau=-1.6276-0.0986\sqrt{-1}$ .

Figure 2 (i) and (iii) indicate the configuration of Stokes curves of $(LN\mathrm{Y})_{\mathit{2}}$

for $t=t_{1}=-1.6104-0.2268\sqrt{-1}$ and $t=t_{3}=-1.5783-0.4130\sqrt{-1}$ on the
Stokes curve $\Gamma$ , respectively. In Figure 2 (i) a simple ordinary turning point $s_{1}$

and a double ordinary turning point $d$ are connected by a Stokes curve $\gamma 0$ ; this is
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(i) (iii)

Fig. 2 : Configuration of Stokes curves of $(LNY)_{2}$ for
(i) $t_{1}=-1.6104-0.2268\sqrt{-1}$ and (iii) $t_{3}=-1.5783-0.4130\sqrt{-1}$ .

consistent with the claim of Proposition 1. (Here, instead of $a_{l}$ and $b_{j}$ , we use the
symbol $s_{k}$ and $d$ respectively to denote a simple turning point and a double one for
the sake of simplicity.) In Figure 2 (iii), however, these two turning points are no
longer connected by a Stokes curve. This is an effect of the following bifurcation
phenomenon of Stokes curves: It is readily surmised that a simple ordinary turning
point $s_{2}$ should cross the Stokes curve $\gamma_{0}$ connecting $d$ and $s_{1}$ as $t$ moves from $t_{1}$

to $t_{3}$ , say at $t=t_{2}$ . This actually occurs. As a matter of fact, if we add relevant
virtual turning points and new Stokes curves to Figure 2, we obtain Figure 3 which
indicates the Stokes geometry of $(LNY)_{2}$ for $t=t_{j}(j=1,2,3)$ . As is visualized in
Figure 3 (ii), at $t=t_{2}$ the double turning point $d$ is connected both with the simple
turning point $s_{1}$ and with a virtual turning point $v_{1}$ . (Similarly $s_{1}$ is connected both
with $d$ and with another virtual turning point $v_{2}.$ ) This is a typical “bifurcation of
Stokes curves” discussed in [AKSST] and [S1]; at $t=t_{2}$ the relative location of an
ordinary Stokes curve emanating from $d$ and that of a new Stokes curve emanating
from $v_{2}$ are interchanged on the right of their crossing point and consequently, when
$t$ reaches $t=t_{3}$ , the target of the Stokes curve emanating from $d$ is switched from $s_{1}$

to $v_{1}$ . Thus at $t=t_{3}$ the double turning point $d$ is connected with the virtual turning
point $v_{1}$ and simultaneously the simple turning point $s_{1}$ is connected with $v_{2}$ . In
this way in some portion of the Stokes curve $\Gamma$ of $(N\mathrm{Y})_{2}$ a new kind of degeneracy of
the Stokes geometry of $(LN\mathrm{Y})_{2}$ is observed; an ordinary turning point and a virtual
turning point are connected by a Stokes curve there.

We also note that, as is shown in Figure 3 (i), the two virtual turning points $v_{1}$

and $v_{\mathit{2}}$ are connected by a (new) Stokes curve at $t=t_{1}$ , i.e. in a portion of $\Gamma$ near
the turning point $t=\tau$ of $(N\mathrm{Y})_{2}$ , in addition to the already-mentioned degeneracy
that $d$ and $s_{1}$ are connected by the Stokes curve $\gamma_{0}$ .

Bifurcation of Stokes curves is a commonly observed phenomenon for the de-
formation of a higher order equation or a system of first order equations with size
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(i) (iii)

$\lrcorner x$

(ii)

Fig. 3: Stokes geometry of $(LNY)_{2}$ with virtual turning points added.
(Figure (i) is for $t=t_{1},$ $(\mathrm{i}\mathrm{i})$ for $t=t_{2}$ and (iii) for $t=t_{3}.$ )

$m\geq 3$ . In Particular, in the case of $(LNY)_{2m}$ that underlies the Noumi-Yamada
system $(NY)_{2m}$ , as an effect of these phenomena degenerate configurations of Stokes
curves of $(LN\mathrm{Y})_{2m}$ , i.e. two ordinary $\mathrm{a}\mathrm{n}\mathrm{d}/\mathrm{o}\mathrm{r}$ virtual turning points being connected
by a Stokes curve, can be found simultaneously at several places when the parameter
$t$ lies on a Stokes curve of $(N\mathrm{Y})_{2m}$ , as is exemplified by Example 1. This shows an
important role of virtual turning points in the theory of isomonodromic deforma-
tions of higher order linear equations or systems of first order linear equations with
size $m\geq 3$ ; virtual turning points are indispensable for the complete description of
such degeneracy of the Stokes geometry.

4.3 Sasaki’s observation for the creation of new Stokes curves
of $(N\mathrm{Y})_{2m}$

In his master thesis and its successive paper (cf. [Sl, S2]) Sasaki has made an in-
triguing observation for the creation of new Stokes curves of Noumi-Yamada systems
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$(NY)_{2m}$ . Virtual turning points of the underlying Lax pair $(LNY)_{2m}$ play an im-
portant role also there (in a complicated and somewhat mysterious way). In the
final section of this report we discuss Sasaki’s observation by using $(NY)_{4}$ and its
underlying Lax pair $(LN\mathrm{Y})_{4}$ .

Example 2. $([\mathrm{S}2])$ Let us consider the following Noumi-Yamada system $(NY)_{4}$ :

$(NY)_{4}$ $\{$

$-1du_{0}$
$\eta$

$\overline{dt}$

$=$ $u_{0}(u_{1}-u_{2}+u_{3}-u_{4})+\alpha_{0}$ ,

$-1du_{4}$
$\eta$

$\overline{dt}$

$=$ $u_{4}(u_{0}-u_{1}+u_{2}-u_{3})+\alpha_{4}$ .

Here $\alpha_{0}+\cdot.$ . $+\alpha_{4}=\eta^{-1}$ and $u_{0}+\cdot.$ . $+u_{4}=t$ are satisPed and we take the
following particular value of Parameters: $\alpha_{0}=1-0.35\sqrt{-1},$ $\alpha_{1}=0.45-0.7\sqrt{-1}$,
$\alpha_{2}=-0.5-0.2\sqrt{-1}$ and $\alpha_{3}=-1.05+0.25\sqrt{-1}$ .

Since the system $(N\mathrm{Y})_{4}$ is equivalent to a nonlinear differential equation of fourth
order, the so-called Nishikawa phenomenon ([N], [KKNTI]) is expected to occur.
That is, two Stokes curves of $(NY)_{4}$ may cross and a new Stokes curve may appear
from such a crossing point of Stokes curves. As a matter of fact, in our case we
observe, for example, that a Stokes curve $\Gamma^{(1)}$ of $(N\mathrm{Y})_{4}$ emanating from a turning
point of the first kind $\tau^{(1)}=-0.0347+0.1545\sqrt{-1}$ crosses with a Stokes curve $\Gamma^{(2)}$

emanating from another turning point of the first kind $\tau^{(2)}=0.3094+0.4662\sqrt{-1}$

at a point $T=0.3101+0.2789\sqrt{-1}$ , as is shown in Figure 4.

Fig. 4 : Crossing of two Stokes curves $\Gamma^{(1)}$ and $\Gamma^{(2)}$ of $(NY)_{4}$ emanating
respectively from $\tau^{(1)}=-0.0347+0.1545\sqrt{-1}$ and $\tau^{(\mathit{2})}=0.3094+0.4662\sqrt{-1}$.

To examine if a new Stokes curve of $(NY)_{4}$ appears from this crossing point $T$ , we
investigate the change of the Stokes geometry of (the first equation of) the underlying
Lax pair $(LNY)_{4}$ around the crossing point. First of all, the Stokes geometry of
$(LNY)_{4}$ at $t=T$ is provided in Figure 5. Although it is a quite complicated figure,
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Fig. 5: Stokes geometry of $(LNY)_{4}$ at the crossing point $t=T$.

we can recognize that there exist several triplets of (ordinary $\mathrm{a}\mathrm{n}\mathrm{d}/\mathrm{o}\mathrm{r}$ virtual) turning
points that are connected by a Stokes curve of $(LNY)_{4}$ . This is actually effected
by the fact that $t=T$ is a crossing point of the two Stokes curves $\Gamma^{(1)}$ and $\Gamma^{(2)}$ of
$(NY)_{4}$ . For example, as $t=T$ lies in $\Gamma^{(1)}$ an ordinary simple turning point $s_{1}^{(0)}$ is
connected with a virtual turning point $v_{1}^{(1)}$ by a Stokes curve, and simultaneously
$s_{1}^{(0)}$ is connected with another virtual turning point $v_{1}^{(\mathit{2})}$ as $t=T$ lies in $\Gamma^{(2)}$ . That
is, $\{s_{1}^{(0)}, v_{1}^{(1)}, v_{1}^{(2)}\}$ forn$1\mathrm{S}$ such a triplet of turning points. Similarly, a virtual turning
point $v_{2}^{(0)}$ is connected both with an ordinary simple turning point $s_{\mathit{2}}^{(1\rangle}$ and with a
virtual turning point $v_{2}^{(2)}$ ; $\{v_{2}^{(0)}, s_{2}^{(1)}, v_{2}^{(2)}\}$ gives another triplet. In Figure 5 we may
find at least five such triplets of turning points connected by a Stokes curve. On
$\Gamma^{(1)}$ (resp., $\Gamma^{(2)}$ ) a turning point designated by the symbol 2 (resp., $\blacksquare$) is connected
with a turning point designated by $\star$ . A turning point designated by $\star$ hinges
two degeneracies of the Stokes geometry of $(LNY)_{4}$ and it is call$e\mathrm{d}$ a “hinging (or,
shared) turning point” in what follows. Of course, the existence of (not one, but)
several triplets of such turning points is an effect of the bifurcation phenomena of
Stokes curves discussed in the precedent subsection.

Next, let us trace the change of the Stokes geometry of $(LNY)_{4}$ around the

203



crossing point $t=T$. To avoid presenting complicated figures, we see the change of
configurations of Stokes curves relevant to each triplet of turning points separately.
Let us start with a triplet $\{s_{1}^{(0)}, v_{1}^{(1)}, v_{1}^{(2)}\}$ . Figure 6 indicates the change of config-
urations for this triplet $\{s_{1}^{(0)}, v_{1}^{(1)}, v_{1}^{(2)}\}$ . As is clearly visualized there, the relative
location of a Stokes curve passing through $v_{1}^{(1)}$ and that passing through $s_{1}^{(0)}$ are
interchanged both between Figures (ii) and (iii) and between Figures (v) and (vi).
This is due to the fact that these two turning points $v_{1}^{(1)}$ and $s_{1}^{(0)}$ are connected by a
Stokes curve when the parameter $t$ lies in $\Gamma^{(1)}$ . Similarly, the topological configura-
tions are different both between Figures (iii) and (iv) and between Figures (vi) and
(i) since on $\Gamma^{(2)}$ the two turning points $v_{1}^{(2)}$ and $s_{1}^{(0)}$ are connected by a Stokes curve.
However, in addition to these differences, we can also observe another difference;
the relative locations of Stokes curves passing through $v_{1}^{(1)}$ and $v_{1}^{(2)}$ are interchanged
between Figures (i) and (ii). This difference means that between the two points
$t_{1}$ and $t_{\mathit{2}}$ there should pass a new Stokes curve $\tilde{\Gamma}$ of $(NY)_{4}$ where the two virtual
turning points $v_{1}^{(1)}$ and $v_{1}^{(2)}$ are connected by a Stokes curve of $(LN\mathrm{Y})_{4}$ . Note that
on the other side of this new Stokes curve, that is, between the two Figures (iv) and
(v) we cannot observe any difference of topological configurations; the new Stokes
curve $\tilde{\Gamma}$ of $(NY)_{4}$ is inactive there. The change of configurations described in Fig-
ure 6 is exactly the same as that in the case of a higher order member of the $(P_{J})$

hierarchy ( $J=\mathrm{I}$ , II-1, II-2) which we discussed in [KKNTI] (see also [N]). Thus we
may conclude that the Nishikawa phenomenon is occurring at this crossing point $T$

of Stokes curves of the Noumi-Yamada system $(N\mathrm{Y})_{4}$ .
The situation, however, is not so simple as in the cas$e$ of the $(P_{J})$ hierarchy

( $J=\mathrm{I}$ , II-1, II-2). In fact, if we were to guess simple-mindedly the change of config-
urations of Stokes curves relevant to another triplet $\{v_{2}^{(0)}, s_{2}^{(1)}, v_{\mathit{2}}^{(2)}\}$ in parallel with
Figure 6, we should obtain Figure 7. In Figure 7 we readily find that the topological
configurations are also different between Figures (iv) and (v). This does not seem
consistent with Figure 6. What is a problem? Where does this inconsistency come
from?

If we trace the change of configurations for the triplet $\{v_{\mathit{2}}^{(0)}, s_{2}^{(1)}, v_{2}^{(2)}\}$ more pre-
cisely and carefully with taking the global structure of the Stokes geometry of
$(LNY)_{4}$ into account, we obtain Figure 8. According to Figure 8, we can say the
answer to the above question is that the virtual turning point $v_{2}^{(2)}$ should “disap-
pear” in the left half plane of $t$-space (i.e. in the left side of the Stokes curve $\Gamma^{(2)}$

of $(NY)_{4})$ and this disappearance of $v_{2}^{(\mathit{2})}$ recovers the consistency with Figure 6,
i.e. the change of configurations for the other triplet $\{s_{1}^{(0)}, v_{1}^{(1)}, v_{1}^{(\mathit{2})}\}$ . As a matter
of fact, in Figure 8 no difference is observed between the topological configurations
of Figures (iv) and (v) since the virtual turning point $v_{2}^{(2)}$ and a new Stokes curve
emanating from it disappear there. Consequently Figure 8 becomes completely con-
sistent with Figure 6.
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$(\mathrm{i}\mathrm{v}\mathrm{l}$ (iii)

(v)

(vi) (il

Fig. 6 : Change of configurations for $s_{1}^{(0)},$ $v_{1}^{(1)}$ , and $v_{1}^{(\mathit{2})}$ .
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(iv)
$\lrcorner x$

(iii)
$\lrcorner x$

(v)
$\lrcorner x$

(vi) (i)
$\lrcorner x$

$\lrcorner x$

Fig. 7: Change of configurations for $v_{2}^{(0)},$ $s_{2}^{(1)}$ , and $v_{2}^{(2)}$ –Simpl -minded guess.
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(iv) (iiil

(vi

$l\mathrm{v}\mathrm{i})$ (i)

Fig. 8 : Change of configurations for $v_{2}^{(0)},$ $s_{2}^{(1)}$ , and $v_{2}^{(2)}$ –Correct figure.
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In [S2] such a virtual turning point as $v_{2}^{(2)}$ is called a “napping virtual turning
point” ; it appears only in a half plane of $t$-space (“$\mathrm{w}\mathrm{a}\mathrm{k}\mathrm{i}\mathrm{n}\mathrm{g}$ region”, the right side
of $\Gamma^{(2)}$ in the case of $v_{2}^{(2)}$ ), while it disappears in the opposite half plane of t-space
(“sleeping region”, the left side of $\Gamma^{(2)}$ in this case). The existence of a napping
virtual turning point saves us from the inconsistency mentioned above and confirms
the appearance of a new Stokes curve $\tilde{\Gamma}$ of $(NY)_{4}$ at the crossing point $t=T$.

Here let us briefly explain the reason why the change of the state (i.e. “waking”
or “sleeping”) of $v_{2}^{(\mathit{2})}$ occurs. Figure 9 (i) shows the configuration of all the relevant
Stokes curves at a point (say, $t_{1}$ ) in the waking region of $v_{2}^{(\mathit{2}\rangle}$ . Figure 9 (i) tells us
that a new Stokes curve $\gamma_{2}$ emanating from the virtual turning point $v_{\mathit{2}}^{(2)}$ in question
appears in conjunction with the crossing of a new Stokes curve $\gamma_{1}$ emanating from a
virtual turning point $v_{1}^{(2)}$ and a new Stokes curve $\gamma_{3}$ emanating from another virtual
turning point $v_{3}^{(1)}$ . On the other hand, the configuration at a point (say, $t_{11}$ ) in
the sleeping region of $v_{2}^{(2)}$ becomes as is described in Figure 9 (ii). In Figur$e9(\mathrm{i}\mathrm{i})$

the relative location of the new Stokes curve $\gamma_{1}$ emanating from $v_{1}^{(2\rangle}$ and that of a
Stokes curve emanating from an ordinary turning point $s_{1}^{(0)}$ are interchanged so that
$\gamma_{1}$ goes downward to the right. As its consequence $\gamma_{1}$ no longer crosses with $\gamma_{3}$ in
Figure 9 (ii). Hence the new Stokes curve $\gamma_{2}$ and its starting point $v_{2}^{(2)}$ disappear
there. This is the mechanism that induces the change of the status of the napping
virtual turning point $v_{2}^{(2)}$ . Such a subtle mechanism related to the global structure
of the Stokes geometry produces a napping virtual turning point.

We finally note that in the case of $\{v_{2}^{(0)}, s_{\mathit{2}}^{(1)}, v_{2}^{(2)}\}$ a hinging (or, shared) turning
point is a virtual turning point $v_{2}^{(0)}$ . This caused the above apparent inconsistency
between the change of configurations for $\{v_{2}^{(0)}, s_{2}^{(1)}, v_{2}^{(2)}\}$ and that for the other triplet
$\{s_{1}^{(0)}, v_{1}^{(1)}, v_{1}^{(2)}\}$ whose hinging turning point is an ordinary turning point $s_{1}^{(0)}$ . In case
a hinging (or, shared) turning point of a triplet in question is a virtual turning point,
we believe that a napping virtual turning point should be contained in this triplet
to avoid such apparent inconsistency.

In conclusion, at a crossing point of two Stokes curves of the Noumi-Yamada
system $(NY)_{2m}(m\geq 2)$ we can $\exp e\mathrm{c}\mathrm{t}$ the following:

Assume that two Stokes curves $\Gamma^{(1)}$ and $\Gamma^{(2)}$ of $(NY)_{2m}$ cross at $t=T$.
In this situation, as is discussed in the precedent subsection, for each
Stokes curve $\Gamma^{(k)}(k=1,2)$ there should exist several pairs of (ordinary
$\mathrm{a}\mathrm{n}\mathrm{d}/\mathrm{o}\mathrm{r}$ virtual) turning points $\{x_{j}^{(k)}(t),\tilde{x}_{j}^{(k)}(t)\}_{j=1,2},\ldots$ of the underlying
Lax pair $(LNY)_{2m}$ that are connected by a Stokes curve simultaneously.
Then, if every pair $\{x_{j}^{(1)}(t),\tilde{x}_{j}^{(1)}(t)\}$ for $\Gamma^{(1)}$ and the corresponding pair
$\{x_{j}^{(2)}(t),\tilde{x}_{j}^{(2)}(t)\}$ for $\Gamma^{(2)}$ share one turning point and “Lax-adjacency”
(cf. [KKNTI], see also Probelm 3 below) holds there, a new Stokes curve
of $(N\mathrm{Y})_{2m}$ emanates from the crossing point $t=T$ .

Furthermore, if a shared turning point is a virtual turning point, a
napping virtual turning point should be contained in these pairs.
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Fig. 9 : Configuration of Stokes curves of $(LN\mathrm{Y})_{4}$ for (i) $t_{1}$ , i.e. in the waking
region of $v_{2}^{(2)}$ , and (ii) $t_{11}$ , i.e. in the sleeping region of $v_{2}^{(2)}$ .
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In this manner virtual turning points of $(LNY)_{\mathit{2}m}$ play an important role also for
the creation of new Stokes curves of Noumi-Yamada systems $(N\mathrm{Y})_{2m}$ .

However, there still remain many things to be studied. In ending this report,
we list up some problems concerning the creation of new Stokes curves of Noumi-
Yamada systems $(N\mathrm{Y})_{2m}$ .

Problem 1. To study analytic properties (e.g. the connection formulas) for Stokes
phenomena on both ordinary and new Stokes curves of $(NY)_{2m}$ .

This is the most important problem for the global study of solutions of Noumi-
Yamada systems. To discuss Problem 1 we need deeper understanding for the Stokes
geometry of the underlying Lax pair $(LN\mathrm{Y})_{2m}$ discussed in this report. For example,
the following points should be clarified.

Problem 2. On each Stokes curve of $(N\mathrm{Y})_{2m}$ there exist several pairs of (ordinary
$\mathrm{a}\mathrm{n}\mathrm{d}/\mathrm{o}\mathrm{r}$ virtual) turning points of $(LN\mathrm{Y})_{\mathit{2}m}$ that are connected by a Stokes curve
simultaneously, and at a crossing point of two Stokes curves of $(NY)_{2m}$ from which
a new Stokes curve starts there exist several triplets of turning points of $(LNY)_{2m}$

connected by a Stokes curve simultaneously. Then, are all triplets of turning points
equally important for the study of Stokes phenomena on the new Stokes curve, or
only a part of them relevant to Stokes phenomena? If only a small number of triplets
are concerned with Stokes phenomena, how should we choose them?

Problem 3. The “Lax-adjacency”, i.e. the key property that determines whether a
new Stokes curve does really appear or not at a crossing point of two Stokes curves of
a higher order Painlev\’e equation, is defined in [KKNTI] for the Painlev\’e hierarchies
$(P_{J})$ ( $J=\mathrm{I}$ , II-1, II-2) where the size of the underlying Lax pair is $2\cross 2$ . Then,
what is the precise definition of the “Lax-adjacency” for Noumi-Yamada systems
$(N\mathrm{Y})_{2m}$ ?

To answer these problems we need to develop more systematic study of the Stokes
geometry of $(LNY)_{2m}$ . Recently Honda has been undertaking such systematization.
The details of his study will be reported in [H].
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