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Branner-Hubbard-Lavaurs deformation of
parabolic cubic polynomials
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Since the wring deformation (or the Branner-Hubbard deformation) changes
nothing on the filled-in Julia set, it does not deform polynomials with connected Julia
sets. For polynomials with parabolic cycles, the Lavaurs maps enable us to deform
complex structures also in the parabolic basins. This deformation, the Branner-
Hubbard-Lavaurs deformation, can deform such polynomials. We will show that this
happens for real cubic polynomials with parabolic fixed points of multiplier one.
This is closely related to the non-landing of stretching rays. We will also show that
the real BHL-deformation set coincides with the accumulation set of a stretching
ray.

1 Stretching rays for real cubic polynomials

We consider a family of real cubic polynomials of the form :
Py = {Pap(2) = 22 — 342+ VB; A,B>0}.

For P € Ps, let pp be its Bottcher coordinate. For a positive number s > 0, put
£,(z) = z|2|>~! and we define a P-invariant Beltrami form p, by

. | (€&s0pp)"po in a nbd of 00,
fa : po on K(P).

Then, by the Measurable Riemann Mapping Theorem, u, is integrated by a qc-map
xs and P, := x, 0 Po x;! € P;. Thus we define a real analytic map Wp: Ry, = P3
by Wp(s) = P,. The Béttcher coordinate p, of P, is equal to £, 0 pp o x;*. Since
P, is hybrid equivalent to P, it holds P, = P for P € C3, the connectedness locus.
For P € &3, the escape locus, we define the stretching ray through P by

R(P)=Wp(Ry) = {P;s € Ry }.

On the shift locus, where both critical points ++/A are escaping, we define the
Bdttcher vector by ,

1 1
N(P) 1= 155 oglog [ep(—VA)| — = loglog lpp(VA)|.
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Lemma 1.1. (/KN]) The Bittcher vector is constant on each stretching ray in the
shift locus.

In the shift locus of our family P;, stretching rays are level curves of the Bottcher
vector map P — n(P).

2 Branner-Hubbard-Lavaurs deformation

Consider the locus Per (1) = {B = 4(A + 1/3)%;0 < A < 1/9} in Ps, where the
map @ has a parabolic fixed point Bg of multiplier one whose immediate basin Bg
contains both critical points. Let ¢g _ and ¢q 4 denote the attracting and repelling
Fatou coordinates respectively of the parabolic fixed point 8y for Q € Per(1).
The Lavaurs map 9o, : Bq — C with lifted phase o € R is defined by gq, =
b © Ty 0 ¢q,—, where T,(z) = z + 0. For Q € Pery(1) and ¢ € R, we define a
< @,9q,s >-invariant Beltrami form y,, by

Hs inC- K(Q)) .
foo =14 (98,0) s in BgN ga"f,(C - K(Q)),
Lo otherwise.

Then, as before, there exists a qc-map x,, such that p,, = Xs,oH0; Qa0 = Xs,0 ©
Qo x;,‘l, € Pery(1).

Lemma 2.1. The map X, © gg,s © x;}, is a Lavaurs map of Q, , with some lifted
phase o(s).

We call (Q,,5,0(s)) the Branner-Hubbard-Lavaurs deformation of (Q,0). We
also define the BHL-ray L(Q, o) through (Q, o) by

L(Q,0) = {(Qs0,0(s)) € Peri(1) x R;s e R, }

and the Bottcher-Lavaurs vector by

1 1
1(Q,0) = 35 loglog vq(9g..(—VA)) — og3 o8 o va(9e.s(VA)).

Note that this is well defined because pq(gg-(£VA)) > 1. It satisfies (Q, o +1) =
7(Q, ). By the same argument as in the proof of Lemma 1.1, we have the following.

Lemma 2.2. The Béttcher-Lavaurs vector 7(Q, o) i constant on each BHL-ray.
For Q € Pery(1), we define the Fatou vector by 7(Q) := ¢q,_(—VA)—¢q,(VA).

Lemma 2.3. The Fatou vector gives a real analytic parametrization of the locus
P 61‘1(1) .

It easily follows that Q,, = Q if 7(Q) € Z, that is, if Q has a critical orbit
relation. '



Theorem 2.1. (Non-trivial BHL-deformation)
If7(Q) ¢ Z, then the map s — Q,, is not constant for any o.

Such a map is first obtained in Willumsen [W] in the region A < 0. See also
Tan Lei [T]. Once we get such a non-trivial deformation, the following corollary is
essentially due to [W].

Corollary 2.1. (Discontinuily of wring operation)
Suppose 7(Q) ¢ Z. Then the map (P,s) — Wp(s) is discontinuous at (Q,s) if
Q0 # Q for some 0.

The region Ro := {B > 4(A + 1/3)} is contained in the shift locus. Stretching
rays in Rg are uniquely labelled by the Bottcher vector. Let R(n) denote the ray
with level 7.

Theorem 2.2. (/[KN], Non-landing of stretching rays)
Ifn € Z, then R(n) lands at Q € Pery(1) with 7(Q) =n. Ifn ¢ Z, then R(n) has a
non-trivial accumulation set on Pery(1).

The following theorem suggests that stretching rays are obtained from the rescal-
ing of BHL-rays and seems to explain the regular oscillation of stretching rays.

Theorem 2.3. Suppose 7(Q) ¢ Z. Then the BHL-deformation set {Q,,,;s > 0} of
Q coincides with the accumulation set of the stretching ray R(n), where n = 1(Q, o).
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