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Abstract

In this paper, we investigate a condition for semi-hyperbolicity of
(transcendental) entire functions (Theorem A). As an application of the
main theorem, we show a result on a measure theoretical property for
the dynamics of entire functions (Theorem B). In particular, we give a
sufficient condition which guarantees that {oo} is a metric global attractor
(Corollary C).

1 Preliminaries

Let f be an entire function and f™ denote the n-th iterate of f. Recall
that the Fatou set Fy and the Julia set Jy of f are defined as follows:

Fr = {2z€C| {f"}>, is a normal family in a neighborhood of 2z},
Jf = C \ Ff.

By definition, Fy is open and J; is closed in C. Also Jy is compact if f is
a polynomial, while it is non-compact if f is transcendental. This is due to
the fact that oo is an essential singularity of f. A connected component U
of Fy is called a Fatou component of f. U is called a wandering domain if
f™U) N f(U) = 0 for every m,n € N (m # n). If there exists an nyg € N
with f(U) C U, U is called a periodic component of period ny and it is
well known that there are four possibilities, namely, an attracting basin, a
parabolic basin, a Siegel disk and a Baker domain.
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A critical value is a point p := f(c) for a point ¢ with f'(c) = 0. This is a
singularity of f~!. For polynomials we have only to consider this type of sin-
gularities but there can be another type of singularities called an asymptotic
value for transcendental entire functions. A point p is called an asymptotic
value if there exists a continuous curve L(t) (0 <t < 1) (which is called an
asymptotic path) with

%1_1)111 L(t) =00 and %1_{)1} f(L(t)) =p.
A point p is called a singular value if it is either a critical or an asymptotic

value and we denote the set of all singular values by sing(f~!). Also we
define

P(f) := | ] fo(sing(f1))

and call it the post-singular set of f.

The following are some basic concepts from dynamical system theory:

Definition 1.1. Let f : C — C be an entire function and z € C.
(1) The forward orbit of a point z is the set

0% (2) :=={z, f(2), -+, f"(2),"-}.
(2) We define
wl2) =] w=lim (), m <mp <o)

and call it the w-limit set of z.

(3) A point 2 is called recurrent if z € w(z), that is, the forward orbit
of z passes through an arbitrary small neighborhood of z infinitely often.
Otherwise, it is called non-recurrent.

(4) f is called ergodic if any measurable set A satisfying f~}(4) = A has
zero or full measure in C. '

2 The Mané’s Theorem —Semi-hyperbolicity—

The following is a part of the Mafié’s theorem, which was proved in 1993.



Theorem 2.1 (Maiié, [M]). Let f be a rational function and z € J;.
Suppose that

(i) x is not a parabolic periodic point and

(ii) z ¢ UCEReCan LU(C),

where
Rec = {recurrent critical points of f}.

Then for every € > 0, there ezists a neighborhood U of x which satisfies the
following:

(1) For every n € N and every connected component V of f~™(U),
holds, where diamg,, denotes the spherical diameter on C.

(2) There ezists an N € N such that for any connected component V of
F(U) ("n), f*lv : V = U satisfies

deg(f"lv: V= U) < N.

Taking this result into account, we define the semi-hyperbolicity of f at a
point zy € Jy as follows:

Definition 2.2. f is semi-hyperbolic at x € J; if there exists a neighbor-
hood U of z such that the condition (2) in Theorem 2.1 holds. In the case
that f is transcendental, we add the following property:

f*|lv : V = U is proper for every V.

Recall that f : X — Y is called properif f~1(K) C X is compact for every
compact subset K C Y. Note that this property is automatically satisfied
when f is a polynomial or rational. We say f is semi-hyperbolic if f is
semi-hyperbolic at any point zg € Jt.

The converse of Theorem 2.1 is also true. That is, if z is a parabolic periodic
point or T & Ucpecns, w(c), then f is not semi-hyperbolic at & € J;. In this
paper we investigate a condition for semi-hyperbolicity for transcendental
entire functions. In transcendental case, a new phenomena can occur. For
example, Bergweiler and Morosawa ([BM]) constructed an example of f
with no parabolic periodic point and no recurrent critical point, but has a
point zg € J; at which f is not semi-hyperbolic.
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3 Main Result

Define the sets Rec, Non-Rec and AV as follows:

Rec := {c| cis a recurrent critical point of f}
Non-Rec := {c | c is a non-recurrent critical point of f}
AV = {c| cis an asymptotic value of f}.

Then the main result of this paper is the following:

Theorem A (Mainé’s Theorem for entire functions). Let f be a
(transcendental) entire function and 20 € Js. Then f is semi-hyperbolic
at 2y if and only if 29 ¢ Z, where the set Z is defined as follows:

7-(Ux)U(Ux).

where
X1 = {p| pis a parabolic periodic point of f},
X2 = derived set of {p | p is a attracting periodic point of f},

X3 = {p| f"lw — p (n; = o) for some wandering domain W},

= | we, va=Jmavnd,

c€RecNJy n=0
Y; = {plp= lim f™(¢:), ci € Non-Rec N Jy (i € N) are mutually

different and order of ¢; — oo (i — 00)},

Y, = {p | p= Em f™(ci), ¢; € Non-Recn Jy (i € N) are mutually
different with sup (order of ¢;) < 0o and for any € > 0
let N;(e) :=*{c | c: critical point, 0" (c;) N Uc(c) # 0}
then sup Ni(e) = oo},

;) = {p | p= _llm f™(ci), ci € Non-Rec N Jy (i € N) are mutually

1—00
different with sup (order of ¢;) < oo and let
i

8i(n) := sup{d [*{O*(c:) N (Us(e:) \ {e:})} < n}
then iIilf di(n) =0 for Vn}. '



4 Outline of the proof of Theorem A

Suppose 2 € J;, 20  Z, then take a neighborhood U of 2 with UNZ=0.

Definition 4.1. For z € U let S(2,¢) be a square centered at z with side
length 2¢ and with sides parallel to coordinate axes. We say S(z,¢) is
admissible if S(z,3¢) C U.

Lemma 4.2. For a given ¢ > 0 and an N € N, there exists a 6 > 0
which satisfies the following: If S(z,6) is an admissible square and S, is a
connected component of f™(S(z,6)) such that deg(f™|s,) < N, then

diam(f(S(z, 3))) < ¢
holds for the same branch of f~".

(Proof of Lemma 4.2) : Suppose not, then there exist a 2z, € U and
admissible squares S' := S(z,27") such that for some component V; of
F~"(8(z, 2~ D) it holds that diamV; > € > 0 and deg(f™|s(;,2-) < N.

Now suppose there exist a subsequence l; / oo and a disk D;, C V;, with
(spherical) radius » > 0 which is independent of l;. Taking subsequence, if

necessary, we have
le — 3.D (k — OO)

Then {f™|p}, is bounded, since f™(D) C U. Hence {f™|p}i,; is
normal. So we have D C Fy and let Dr, O D be the Fatou component
containing D. On the other hand, taking subsequence, if necessary, we have

S 532U (k- 00).
Then
_ f™|p = 2.
Such a z., is either one of the following;:
(i) attracting periodic point,
(ii) parabolic periodic point,
(iii) finite constant limit function on a wandering domain.

In other words, Dy, is not a Siegel disk or a Baker domain. This is a
contradiction by the assumption. Hence let D; be the maximal disk in V,
then it follows that diam(D;) — 0. This again contradicts the following
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Lemma 4.3 (cf. Carleson-Jones-Yoccoz, [CJY]). Let W C C be a
simply connected domain and let g : W — D, g(OW) C 0D be degree N.
Then there exists a constant C' > 0 depending only on N such that

Bp(g(2),Cr) C g(Bw(z,7)) C Bp(g(2),7)-

Now since 2y ¢ Z, there is a neighborhood U of z, satisfying

(0) U does not contain attracting periodic points, parabolic periodic points,
wandering domains, points in orbits of recurrent critical points or asymp-
totic values.

Moreover, U satisfies either one of the following:

(1) The number of critical points with O*(c)NU # 0 is finite (let us denote
them by c1, ¢, -+, cn,) and all of them are non-recurrent. Then for some
€o > 0 we have

(0% () \ {e:}) NUg(ci) = 0.

(2) The number of critical points with O*(c) N U # 0 is infinite (let us
denote them by ¢;, ¢, --+) and all of them are non-recurrent. There exists
an My > 0 such that

order of ¢; < M, for Vi € N.
Also there exists an £; > 0 and an Ny € N such that
#{c | c: critical point, O*(c;) N Uy, (c) # 0} < Ny < o0

holds for every ¢ € N. Furthermore there exists a ; > 0 and an n; € N
such that

#{0*(e) N (Us(c:) \ {e})} <m, Vi €N
In this case, we put &g := min(ey, d;)

Now let N := (Mp + 1)Me(m+1) and take € > 0 with £ < £9/36N. Then
there is a > 0 which is determined by the previous Lemma 4.2.

Lemma 4.4. For any n with 0 < n < ¢ andn € N, we have

diam(f~"(S (20, %n))) <e.



That is, the conclusion of Lemma 4.2 holds without the assumption on de-
gree. O

Hence for any € > 0 with € < £9/36N by taking o > 0 sufficiently small, we
have
diam(f™(S(z,0))) <&, "n.

With a little more argument, we can conclude

deg(f"|s(z0)) < N = (Mo + 1)Mom+1),

For the opposite implication, it is rather easy to check that zy € Z implies
that f is not semi-hyperbolic at z;. |

Remark. (1) Comparing Theorem A with the original Maiié’s Theorem,
in the case that f is rational, we have

Z=X;UY;
ie. Xq, Xj, Y, Vi, Y,, Ys are all empty.
(2) Theorem A includes the following result:

Theorem 4.5 (Bergweiler-Morosawa (2002)). Let f be entire. If f is
semi-hyperbolic at a € C, then a is not a limit function of {f"}52, in any
component of Fy.

(3) Consider the following question:

Question : For each X; (i=1~3) and Y; (j = 1 ~ 5), is there an f with
X,' #QOI‘Y} #(b ?

First, there are a lot of f with X; # 0. But I do not know whether parabolic
periodic points can accumulate to a finite point in C. It is somehow sur-
prising that there is an f with X5 # (). We can construct such an example
by using the similar method in [KS]. We omit the details. For X3, Ere-
menko and Lyubich ([EL]) constructed an f with X3 # 0, that is, f has a
wandering domain with (infinitely many) finite constant limit functions.

There are a lot of f with Y; # @ or Y3 # 0. It is not difficult to construct
an f with Y3 # 0. For Y;, Bergweiler and Morosawa ([BM]) showed the
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following example: Consider

Z 1 .
f(z) = 5 ~ g sinmz+ c(cosmz — 1),
where ¢ = 0.467763 - - - is a solution of
T+ 2cos 2cm — 4ermsin 2em = 0.

Then, f has no asymptotic values, no parabolic periodic point and no re-
current critical point, but f is not semi-hyperbolic at 1 € Jy. This f has a
sequence of critical points {c;}$2; with

f(ci)zci"'l (7::2’ 3,"')’ f(cl)=1

and f(1) is a repelling fixed point of f so 1 € J;. Hence 1 € Y} in this case.
Finally we do not know an example of f with Y5 # 0.

5 Some applications of the main theorem

As an application of Theorem A, we can show the following result on a
measure theoretical property for the dynamics of entire functions. This is a
refinement of the result by Bock ([B]).

Theorem B. Either one of the following (ATZ) or (ERG) holds for an
entire function f:

(ATi) Almost every point z € Jy is attracted to the set 7, that is,
lim disten(f"(2),2) =0, (ie. w(2) C 2)
holds for a.e. z € Jy, where Z := Z U {oo}.
(ERG) J;=C and f is ergodic.
Furthermore, (ERG) can be replaced by the following (IR) or (FOD):

(IR) Jr = C and f is infinitely recurrent, i.e. for every X C C with
Leb(X) > 0 and every z € C,

#{neN| f"(z) € X} =0
holds, where Leb(-) denotes the Lebesgue measure on C.

(FOD) J; =C and for a.e. z € C, the forward orbit O*(2) C C is dense.
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Corollary C. Let f be an entire function with the following properties:
(i) Ewery critical point c of f is either preperiodic or satisfies f*(c) —
o0 (n — 00).
(i) Every asymptotic value is eventually periodic.
(iii) The post-singular set P(f) is discrete in C.
Then either one of the following holds:

(MGA) {oo} is a metric global attractor, that is, f*(z) — oo (n — 00)
for a.e. z € C (i.e. w(z) = {o0}).

(FOD) J; =C and O*(z) C C is dense for a.e. z € C (i.e. w(z) = C).

In particular, if f satisfies the conditions (i) ~ (iil) and Jy # C, then {oo}
is a metric global attractor for f.

(Proof): It follows from the assumptions (i) ~ (iii) that every singular
value p satisfies either f™*(p) — oo or eventually lands on a repelling periodic
point. If Fy # 0, then only possible Fatou components are either Baker
domains (or their preimages) or wandering domains. If there is a wandering
domain U, then we have f*|y — 00, because in general a finite limit function
on a wandering domain is a constant which belongs to the derived set of
P(f) (see [BHKMT]), which is empty by (iii) in our case.

Then either (ATZ) or (FOD) holds by Theorem A. In the case of (ATZ),
it follows that

w(z) C Z =Y, U {oo}, for ae. z € J;.

On the other hand, Y5 consists of repelling periodic points only and hence
O*(z) cannot accumulate on Y2. Therefore
w(z) = Z = {o0}, ie. f(z) = oo for ae. z € Jj,

which implies that {co} is a metric global attractor.

In the case of (FOD), it follows that J; = C and O*(2) C C is dense
for a.e. z € C, which means that w(z) = C. This completes the proof of
Corollary C. O

Corollary D. Let f be a semi-hyperbolic (transcendental) entire function
with Jg # C. Then,
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(1) Leb(Jf) =0 <= Leb(JfNIf) =0, where I :={z | f*(z) = oo}.
(2) Leb(Jf) >0 = f*(2) & o0 (n = ) for a.e. z € Jg

(Proof): Since f is semi-hyperbolic, we have Z = () by Theorem A. Also
(ATZ) holds from Theorem B, because we assume that J¢ # C. This means
that f*(z) — oo for a.e. z € J;. Now it is obvious to see that (1) and (2)
hold. !
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