Semi-hyperbolicity of entire functions

Masashi KISAKA (木坂 正史)

Department of Mathematical Sciences,
Graduate School of Human and Environmental Studies,
Kyoto University, Yoshida Nihonmatsu-Cho, Kyoto 606-8501, Japan
(京都大学大学院 人間・環境学研究科 数理科学講座)

e-mail: kisaka@math.h.kyoto-u.ac.jp

Abstract

In this paper, we investigate a condition for semi-hyperbolicity of (transcendental) entire functions (Theorem A). As an application of the main theorem, we show a result on a measure theoretical property for the dynamics of entire functions (Theorem B). In particular, we give a sufficient condition which guarantees that $\{\infty\}$ is a metric global attractor (Corollary C).

1 Preliminaries

Let f be an entire function and f^n denote the n-th iterate of f. Recall that the Fatou set F_f and the Julia set J_f of f are defined as follows:

$$F_f := \{z \in \mathbb{C} \mid \{f^n\}_{n=1}^{\infty} \text{ is a normal family in a neighborhood of } z\},$$

$$J_f := \mathbb{C} \setminus F_f.$$

By definition, F_f is open and J_f is closed in \mathbb{C} . Also J_f is compact if f is a polynomial, while it is non-compact if f is transcendental. This is due to the fact that ∞ is an essential singularity of f. A connected component U of F_f is called a Fatou component of f. U is called a wandering domain if $f^m(U) \cap f^n(U) = \emptyset$ for every $m, n \in \mathbb{N}$ $(m \neq n)$. If there exists an $n_0 \in \mathbb{N}$ with $f^{n_0}(U) \subseteq U$, U is called a periodic component of period n_0 and it is well known that there are four possibilities, namely, an attracting basin, a parabolic basin, a Siegel disk and a Baker domain.

A critical value is a point p := f(c) for a point c with f'(c) = 0. This is a singularity of f^{-1} . For polynomials we have only to consider this type of singularities but there can be another type of singularities called an asymptotic value for transcendental entire functions. A point p is called an asymptotic value if there exists a continuous curve L(t) $(0 \le t < 1)$ (which is called an asymptotic path) with

$$\lim_{t \to 1} L(t) = \infty \quad ext{and} \quad \lim_{t \to 1} f(L(t)) = p.$$

A point p is called a *singular value* if it is either a critical or an asymptotic value and we denote the set of all singular values by $sing(f^{-1})$. Also we define

$$P(f) := \overline{igcup_{n=0}^{\infty} f^n(ext{sing}(f^{-1}))}$$

and call it the post-singular set of f

The following are some basic concepts from dynamical system theory:

Definition 1.1. Let $f: \mathbb{C} \to \mathbb{C}$ be an entire function and $z \in \mathbb{C}$.

(1) The forward orbit of a point z is the set

$$O^+(z) := \{z, f(z), \cdots, f^n(z), \cdots\}.$$

(2) We define

$$\omega(z) := \{ w \mid w = \lim_{n_i \nearrow \infty} f^{n_i}(z), \ \exists n_1 < n_2 < \cdots \}$$

and call it the ω -limit set of z.

- (3) A point z is called recurrent if $z \in \omega(z)$, that is, the forward orbit of z passes through an arbitrary small neighborhood of z infinitely often. Otherwise, it is called non-recurrent.
- (4) f is called *ergodic* if any measurable set A satisfying $f^{-1}(A) = A$ has zero or full measure in \mathbb{C} .

2 The Mañé's Theorem —Semi-hyperbolicity—

The following is a part of the Mañé's theorem, which was proved in 1993.

Theorem 2.1 (Mañé, [M]). Let f be a rational function and $x \in J_f$. Suppose that

- (i) x is not a parabolic periodic point and
- (ii) $x \notin \bigcup_{c \in \text{Rec} \cap J_f} \omega(c)$,

where

$$Rec = \{recurrent \ critical \ points \ of \ f\}.$$

Then for every $\varepsilon > 0$, there exists a neighborhood U of x which satisfies the following:

(1) For every $n \in \mathbb{N}$ and every connected component V of $f^{-n}(U)$,

$$\operatorname{diam}_{\mathrm{sph}}(V) \leq \varepsilon$$

holds, where $diam_{sph}$ denotes the spherical diameter on $\widehat{\mathbb{C}}$.

(2) There exists an $N \in \mathbb{N}$ such that for any connected component V of $f^{-n}(U)$ $({}^{\forall}n)$, $f^n|_V: V \to U$ satisfies

$$\deg(f^n|_V:V\to U)\leq N.$$

Taking this result into account, we define the semi-hyperbolicity of f at a point $x_0 \in J_f$ as follows:

Definition 2.2. f is semi-hyperbolic at $x \in J_f$ if there exists a neighborhood U of x such that the condition (2) in Theorem 2.1 holds. In the case that f is transcendental, we add the following property:

$$f^n|_V:V\to U$$
 is proper for every V .

Recall that $f: X \to Y$ is called *proper* if $f^{-1}(K) \subset X$ is compact for every compact subset $K \subset Y$. Note that this property is automatically satisfied when f is a polynomial or rational. We say f is semi-hyperbolic if f is semi-hyperbolic at any point $x_0 \in J_f$.

The converse of Theorem 2.1 is also true. That is, if x is a parabolic periodic point or $x \notin \bigcup_{c \in \text{Rec} \cap J_f} \omega(c)$, then f is not semi-hyperbolic at $x \in J_f$. In this paper we investigate a condition for semi-hyperbolicity for transcendental entire functions. In transcendental case, a new phenomena can occur. For example, Bergweiler and Morosawa ([BM]) constructed an example of f with no parabolic periodic point and no recurrent critical point, but has a point $x_0 \in J_f$ at which f is not semi-hyperbolic.

3 Main Result

Define the sets Rec, Non-Rec and AV as follows:

Rec := $\{c \mid c \text{ is a recurrent critical point of } f\}$ Non-Rec := $\{c \mid c \text{ is a non-recurrent critical point of } f\}$ AV := $\{c \mid c \text{ is an asymptotic value of } f\}$.

Then the main result of this paper is the following:

Theorem A (Mañé's Theorem for entire functions). Let f be a (transcendental) entire function and $z_0 \in J_f$. Then f is semi-hyperbolic at z_0 if and only if $z_0 \notin Z$, where the set Z is defined as follows:

$$Z = \overline{\left(igcup_{i=1}^3 X_i
ight) igcup \left(igcup_{j=1}^5 Y_j
ight)},$$

where

 $X_1 = \{p \mid p \text{ is a parabolic periodic point of } f\},$

 X_2 = derived set of $\{p \mid p \text{ is a attracting periodic point of } f\}$,

 $X_3 = \{p \mid f^{n_i}|_W \to p \ (n_i \to \infty) \text{ for some wandering domain } W\},$

$$Y_1 \; = \; \overline{\bigcup_{c \in \mathrm{Rec} \cap J_f} \omega(c)}, \quad Y_2 = \overline{\bigcup_{n=0}^{\infty} f^n(\mathrm{AV})} \cap J_f,$$

 $Y_3 = \{p \mid p = \lim_{i \to \infty} f^{n_i}(c_i), \ c_i \in \text{Non-Rec} \cap J_f \ (i \in \mathbb{N}) \ \text{are mutually}$ different and order of $c_i \to \infty \ (i \to \infty)\},$

 $Y_4 = \Big\{ p \mid p = \lim_{i \to \infty} f^{n_i}(c_i), \ c_i \in ext{Non-Rec} \cap J_f \ (i \in \mathbb{N}) \ ext{are mutually}$ different with $\sup_i \ (ext{order of} \ c_i) < \infty \ ext{and for any} \ arepsilon > 0$ $\text{let} \ N_i(arepsilon) := {}^\# \{ c \mid c : ext{critical point}, O^+(c_i) \cap U_{arepsilon}(c) \neq \emptyset \}$ then $\sup_i N_i(arepsilon) = \infty \Big\},$

 $Y_5 = \left\{ p \mid p = \lim_{i \to \infty} f^{n_i}(c_i), \ c_i \in ext{Non-Rec} \cap J_f \ (i \in \mathbb{N}) \ ext{are mutually}
ight. \ ext{different with sup (order of } c_i) < \infty \ ext{and let} \ \delta_i(n) := \sup \{ \delta \mid^\# \{ O^+(c_i) \cap (U_\delta(c_i) \setminus \{c_i\}) \} \le n \} \ ext{then inf } \delta_i(n) = 0 \ ext{for } ^\forall n
ight\}.$

4 Outline of the proof of Theorem A

Suppose $z_0 \in J_f$, $z_0 \notin Z$, then take a neighborhood U of z_0 with $\overline{U} \cap Z = \emptyset$.

Definition 4.1. For $z \in U$ let $S(z,\varepsilon)$ be a square centered at z with side length 2ε and with sides parallel to coordinate axes. We say $S(z,\varepsilon)$ is admissible if $S(z,3\varepsilon) \subset U$.

Lemma 4.2. For a given $\varepsilon > 0$ and an $N \in \mathbb{N}$, there exists a $\delta > 0$ which satisfies the following: If $S(z,\delta)$ is an admissible square and S_n is a connected component of $f^{-n}(S(z,\delta))$ such that $\deg(f^n|_{S_n}) \leq N$, then

$$\operatorname{diam}(f^{-n}(S(z,\frac{\delta}{2}))) \leq \varepsilon$$

holds for the same branch of f^{-n} .

(Proof of Lemma 4.2): Suppose not, then there exist a $z_l \in U$ and admissible squares $S^l := S(z_l, 2^{-l})$ such that for some component V_l of $f^{-n_l}(S(z_l, 2^{-(l+1)}))$ it holds that $\operatorname{diam} V_l \geq \varepsilon > 0$ and $\operatorname{deg}(f^{n_l}|_{S(z_l, 2^{-l})}) \leq N$.

Now suppose there exist a subsequence $l_k \nearrow \infty$ and a disk $D_{l_k} \subset V_{l_k}$ with (spherical) radius r > 0 which is independent of l_k . Taking subsequence, if necessary, we have

$$D_{l_k} \to {}^{\exists} D \quad (k \to \infty).$$

Then $\{f^{n_{l_k}}|_D\}_{k=1}^{\infty}$ is bounded, since $f^{n_{l_k}}(D) \subset U$. Hence $\{f^{n_{l_k}}|_D\}_{k=1}^{\infty}$ is normal. So we have $D \subset F_f$ and let $D_{F_f} \supset D$ be the Fatou component containing D. On the other hand, taking subsequence, if necessary, we have

$$S^{l_k} \to {}^{\exists} z_{\infty} \in U \quad (k \to \infty).$$

Then

$$f^{n_{l_k}}|_D \to z_\infty.$$

Such a z_{∞} is either one of the following:

- (i) attracting periodic point,
- (ii) parabolic periodic point,
- (iii) finite constant limit function on a wandering domain.

In other words, D_{F_f} is not a Siegel disk or a Baker domain. This is a contradiction by the assumption. Hence let D_l be the maximal disk in V_l , then it follows that diam $(D_l) \to 0$. This again contradicts the following

Lemma 4.3 (cf. Carleson-Jones-Yoccoz, [CJY]). Let $W \subset \mathbb{C}$ be a simply connected domain and let $g: W \to \mathbb{D}$, $g(\partial W) \subset \partial \mathbb{D}$ be degree N. Then there exists a constant C > 0 depending only on N such that

$$B_{\mathbb{D}}(g(z), Cr) \subset g(B_W(z, r)) \subset B_{\mathbb{D}}(g(z), r).$$

Now since $z_0 \notin Z$, there is a neighborhood U of z_0 satisfying

(0) *U* does not contain attracting periodic points, parabolic periodic points, wandering domains, points in orbits of recurrent critical points or asymptotic values.

Moreover, U satisfies either one of the following:

(1) The number of critical points with $O^+(c) \cap U \neq \emptyset$ is finite (let us denote them by c_1, c_2, \dots, c_{N_0}) and all of them are non-recurrent. Then for some $\varepsilon_0 > 0$ we have

$$(O^+(c_i)\setminus\{c_i\})\cap U_{\varepsilon_0}(c_i)=\emptyset.$$

(2) The number of critical points with $O^+(c) \cap U \neq \emptyset$ is infinite (let us denote them by c_1, c_2, \cdots) and all of them are non-recurrent. There exists an $M_0 > 0$ such that

order of
$$c_i \leq M_0$$
, for $\forall i \in \mathbb{N}$.

Also there exists an $\varepsilon_1 > 0$ and an $N_0 \in \mathbb{N}$ such that

$$^{\#}\{c \mid c : \text{critical point}, \ O^{+}(c_{i}) \cap U_{\varepsilon_{1}}(c) \neq \emptyset\} \leq N_{0} < \infty$$

holds for every $i \in \mathbb{N}$. Furthermore there exists a $\delta_1 > 0$ and an $n_1 \in \mathbb{N}$ such that

$$^{\#}\{O^{+}(c_i)\cap (U_{\delta_1}(c_i)\setminus\{c_i\})\}\leq n_1,\ ^{orall}i\in\mathbb{N}.$$

In this case, we put $\varepsilon_0 := \min(\varepsilon_1, \delta_1)$

Now let $N := (M_0 + 1)^{N_0(n_1+1)}$ and take $\varepsilon > 0$ with $\varepsilon < \varepsilon_0/36N$. Then there is a $\delta > 0$ which is determined by the previous Lemma 4.2.

Lemma 4.4. For any η with $0 < \eta \le \delta$ and $n \in \mathbb{N}$, we have

$$\operatorname{diam}(f^{-n}(S(z_0,\frac{1}{2}\eta))) \leq \varepsilon.$$

That is, the conclusion of Lemma 4.2 holds without the assumption on degree. \Box

Hence for any $\varepsilon > 0$ with $\varepsilon < \varepsilon_0/36N$ by taking $\sigma > 0$ sufficiently small, we have

$$\operatorname{diam}(f^{-n}(S(z_0,\sigma))) \leq \varepsilon, \ ^{\forall}n.$$

With a little more argument, we can conclude

$$\deg(f^n|_{S(z_0,\sigma)}) < N = (M_0+1)^{N_0(n_1+1)}.$$

For the opposite implication, it is rather easy to check that $z_0 \in Z$ implies that f is not semi-hyperbolic at z_0 .

Remark. (1) Comparing Theorem A with the original Mañé's Theorem, in the case that f is rational, we have

$$Z = X_1 \cup Y_1$$

i.e. X_2 , X_3 , Y_2 , Y_3 , Y_4 , Y_5 are all empty.

(2) Theorem A includes the following result:

Theorem 4.5 (Bergweiler-Morosawa (2002)). Let f be entire. If f is semi-hyperbolic at $a \in \mathbb{C}$, then a is not a limit function of $\{f^n\}_{n=1}^{\infty}$ in any component of F_f .

(3) Consider the following question:

Question: For each X_i $(i = 1 \sim 3)$ and Y_j $(j = 1 \sim 5)$, is there an f with $X_i \neq \emptyset$ or $Y_j \neq \emptyset$?

First, there are a lot of f with $X_1 \neq \emptyset$. But I do not know whether parabolic periodic points can accumulate to a finite point in \mathbb{C} . It is somehow surprising that there is an f with $X_2 \neq \emptyset$. We can construct such an example by using the similar method in [KS]. We omit the details. For X_3 , Eremenko and Lyubich ([EL]) constructed an f with $X_3 \neq \emptyset$, that is, f has a wandering domain with (infinitely many) finite constant limit functions.

There are a lot of f with $Y_1 \neq \emptyset$ or $Y_2 \neq \emptyset$. It is not difficult to construct an f with $Y_3 \neq \emptyset$. For Y_4 , Bergweiler and Morosawa ([**BM**]) showed the

following example: Consider

$$f(z)=rac{z}{2}-rac{1}{2\pi}\sin\pi z+c(\cos\pi z-1),$$

where $c = 0.467763 \cdots$ is a solution of

$$\pi + 2\cos 2c\pi - 4c\pi\sin 2c\pi = 0.$$

Then, f has no asymptotic values, no parabolic periodic point and no recurrent critical point, but f is not semi-hyperbolic at $1 \in J_f$. This f has a sequence of critical points $\{c_i\}_{i=1}^{\infty}$ with

$$f(c_i) = c_{i-1}$$
 $(i = 2, 3, \cdots), f(c_1) = 1$

and f(1) is a repelling fixed point of f so $1 \in J_f$. Hence $1 \in Y_4$ in this case. Finally we do not know an example of f with $Y_5 \neq \emptyset$.

5 Some applications of the main theorem

As an application of Theorem A, we can show the following result on a measure theoretical property for the dynamics of entire functions. This is a refinement of the result by Bock ([B]).

Theorem B. Either one of the following $(AT\widehat{Z})$ or (ERG) holds for an entire function f:

(AT $\widehat{\mathbf{Z}}$) Almost every point $z \in J_f$ is attracted to the set \widehat{Z} , that is,

$$\lim_{n \to \infty} \operatorname{dist}_{\mathrm{sph}}(f^n(z), \widehat{Z}) = 0, \quad (\text{i.e. } \omega(z) \subset \widehat{Z})$$

holds for a.e. $z \in J_f$, where $\widehat{Z} := Z \cup \{\infty\}$.

(ERG) $J_f = \mathbb{C}$ and f is ergodic.

Furthermore, (ERG) can be replaced by the following (IR) or (FOD):

(IR) $J_f = \mathbb{C}$ and f is infinitely recurrent, i.e. for every $X \subset \mathbb{C}$ with Leb(X) > 0 and every $z \in \mathbb{C}$,

$$^{\#}\{n\in\mathbb{N}\mid f^{n}(z)\in X\}=\infty$$

holds, where $\text{Leb}(\cdot)$ denotes the Lebesgue measure on \mathbb{C} .

(FOD) $J_f = \mathbb{C}$ and for a.e. $z \in \mathbb{C}$, the forward orbit $O^+(z) \subset \mathbb{C}$ is dense.

Corollary C. Let f be an entire function with the following properties:

- (i) Every critical point c of f is either preperiodic or satisfies $f^n(c) \to \infty$ $(n \to \infty)$.
- (ii) Every asymptotic value is eventually periodic.
- (iii) The post-singular set P(f) is discrete in \mathbb{C} .

Then either one of the following holds:

(MGA) $\{\infty\}$ is a metric global attractor, that is, $f^n(z) \to \infty$ $(n \to \infty)$ for a.e. $z \in \mathbb{C}$ (i.e. $\omega(z) = \{\infty\}$).

$$\textbf{(FOD)} \hspace{0.5cm} J_f = \mathbb{C} \hspace{0.1cm} and \hspace{0.1cm} O^+(z) \subset \mathbb{C} \hspace{0.1cm} is \hspace{0.1cm} dense \hspace{0.1cm} for \hspace{0.1cm} a.e. \hspace{0.1cm} z \in \mathbb{C} \hspace{0.1cm} (i.e. \hspace{0.1cm} \omega(z) = \widehat{\mathbb{C}}).$$

In particular, if f satisfies the conditions (i) \sim (iii) and $J_f \neq \mathbb{C}$, then $\{\infty\}$ is a metric global attractor for f.

(**Proof**): It follows from the assumptions (i) \sim (iii) that every singular value p satisfies either $f^n(p) \to \infty$ or eventually lands on a repelling periodic point. If $F_f \neq \emptyset$, then only possible Fatou components are either Baker domains (or their preimages) or wandering domains. If there is a wandering domain U, then we have $f^n|_U \to \infty$, because in general a finite limit function on a wandering domain is a constant which belongs to the derived set of P(f) (see [BHKMT]), which is empty by (iii) in our case.

Then either $(AT\widehat{Z})$ or (FOD) holds by Theorem A. In the case of $(AT\widehat{Z})$, it follows that

$$\omega(z) \subset \widehat{Z} = Y_2 \cup \{\infty\}$$
, for a.e. $z \in J_f$.

On the other hand, Y_2 consists of repelling periodic points only and hence $O^+(z)$ cannot accumulate on Y_2 . Therefore

$$\omega(z) = \widehat{Z} = \{\infty\}, \text{ i.e. } f^n(z) \to \infty \text{ for a.e. } z \in J_f,$$

which implies that $\{\infty\}$ is a metric global attractor.

In the case of **(FOD)**, it follows that $J_f = \mathbb{C}$ and $O^+(z) \subset \mathbb{C}$ is dense for a.e. $z \in \mathbb{C}$, which means that $\omega(z) = \widehat{\mathbb{C}}$. This completes the proof of Corollary C.

Corollary D. Let f be a semi-hyperbolic (transcendental) entire function with $J_f \neq \mathbb{C}$. Then,

- (1) Leb $(J_f) = 0 \iff \text{Leb}(J_f \cap I_f) = 0$, where $I_f := \{z \mid f^n(z) \to \infty\}$.
- (2) Leb $(J_f) > 0 \Longrightarrow f^n(z) \to \infty \ (n \to \infty) \ for \ a.e. \ z \in J_f$

(**Proof**): Since f is semi-hyperbolic, we have $Z = \emptyset$ by Theorem A. Also (AT $\widehat{\mathbf{Z}}$) holds from Theorem B, because we assume that $J_f \neq \mathbb{C}$. This means that $f^n(z) \to \infty$ for a.e. $z \in J_f$. Now it is obvious to see that (1) and (2) hold.

References

- [B] H. Bock, On the dynamics of entire functions on the Julia set, Results Math. 30 No. 1-2 (1996), 16-20.
- [BHKMT] W. Bergweiler, M. Haruta, H. Kriete, H.-G. Meier and N. Terglane, On the limit functions of iterates in wandering domains, Ann. Acad. Sci. Fenn. Series A. I. Math. 18 (1993), 369–375.
- [BM] W. Bergweiler and S. Morosawa, Semihyperbolic entire functions, Nonlinearity 15 (2002), 1673–1684.
- [CJY] L. Carleson, P.W. Jones and J-C. Yoccoz, *Julia and John*. Bol. Soc. Brasil. Mat. (N.S.) 25 (1994), no. 1, 1–30.
- [EL] A. E. Eremenko and M. Ju. Lyubich, Examples of entire functions with pathological dynamics, J. London Math. Soc. (2) 36No. 3 (1987), 458–468.
- [KS] M. Kisaka and M. Shishikura, On multiply connected wandering domains of entire functions, to appear in "Transcendental Dynamics and Complex Analysis", Cambridge University Press, (2006).
- [M] R. Mañé, On a theorem of Fatou, Bol. Soc. Brasil. Mat. (N.S.) 24 No.1 (1993), 1-11.