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Julia sets of quartic polynomials and
polynomial semigroups
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Abstract

For a polynomial of degree two or more, the Julia set and the
filled-in Julia set are either connected or else have uncountably many
components. If the Julia set is totally disconnected, then the polyno-
mial is topologically conjugate to the shift map. In the case of neither
connected nor totally disconnected Julia set of a quartic polynomial,
there exists a homeomorphism between the set of all components of
the filled-in Julia set and some subset of the corresponding symbol
space. Furthermore the polynomial is topologically conjugate to the
shift map with respect to the homeomorphism. Moreover there exists
a homeomorphism between the Julia set of the polynomial and that
of a certain polynomial semigroup.

1 Preparations and the main results

Let C =Cu {00} be the Riemann sphere and let f : € — € be a polynomial
of degree d > 2. The filled-in Julia set K ¢ is defined as

Ky ={zeC: {f"(2)}>, is bounded}.

The topological boundary of K is called the Julia set J. t, and its complement
€\ Jy is called the Fatou set Fy. In this case, co is a superattracting fixed
point. We call Af(co) = C\ K the basin of attraction.

Definition 1.1. A rational semigroup G is a semigroup generated by a fam-
ily of non-constant rational functions {g;, g2, ...,0n,...} defined on €. We
denote this situation by

G= <glyg2’-°-,gm--'>-
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A rational semigroup G is called a polynomial semigroup if each g € G is a
polynomial.

Definition 1.2. Let G be a rational semigroup. The Fatou set Fg of G is
defined as

Fg ={z € € : G is normal in a neighborhood of z}.

Its complement ® \ Fg is called the Julia set Jg of G. Note that Figy = Fy
_ and J(g) = Jg.

Definition 1.3. Let Ny = {0} U N be the set of non-negative integers and
let £, = {1,2,...,¢}"° be the symbol space of g-symbols. For s = (s,) and
t = (t,) in Xy, a metric p on X, is defined as

S 6(Snytn) 1 if k#1,
p(s,t) = —= =2 where 4(k,l) = { )
go 2n 0 if k=1

Then X, is a compact metric space. We define the shift map o : £; = I, as

0’((30, 81,89,... )) = (81, 82,... )
The shift map o is continuous with respect to the metric p.

In the case of a polynomial of degree two or more, the connectivity of the
Julia set is affected by the behavior of finite critical points.

Theorem 1.4 ([1]). Let f be a polynomial of degree d > 2. If all finite
critical points of f are in As(00), then J; is totally disconnected and Jy = Kj.
Furthermore f|;, is topologically conjugate to the shift map ols,. On the
other hand, if all finite critical points of f are in Ky, then J; and Ky are
connected. ‘

Definition 1.5. The Green’s function associated with K is defined as
G(z) = lim = log*|f™ |
(2) = lim —=log™|f (z)lf

where logtz = max {logz,0}. G(2) is zero for z € Ky and G(z) is positive
for z € C\ K;. Note the identity G(f(2)) = dG(=2).

Definition 1.6. We call the triple (f,U,V) of bounded simply connected

domains U and V such that U C V and a holomorphic propermap f : U = V
of degree d a polynomial-like map of degree d. The filled-in Julia set K; of
a polynomial-like map (f,U, V) is defined as

Ki={2€U:{f*(2)}azo C U}
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Definition 1.7. Let (X, d) be a metric space. For a compact subset A C X
and § > 0, let A[d] be a é-neighborhood of A. For compact subsets A, B C X,
we define the Hausdorff metric dy as

dg(A, B) = inf{6 : A C B[6] and B C A[d]}.

Situation : Let f be a quartic polynomial and let c;, c; and c; be finite critical
points of f. G is the Green’s function associated with the filled-in Julia set
K;. Suppose that G(c;) = G(cz2) = 0 and G(c3) > 0, that is, c1,¢; € Ky and
cs € Ag(00). '

Let U be a bounded component of C\ G}(G(f(cs))). Suppose that
U4 and Up be bounded components of C \ G}(G(c3)) such that ¢; € Uy
and ¢; € Ug. Then U, and Up are proper subsets of U. Furthermore
(flua,Ua,U) and (f|v,, Us, U) are polynomial-like maps of degree 2. We set
fi=flv, and fo = flu,.

Under this situation, we define the A-B kneading sequence (ay)n>0 Of ¢
as

{A if f*(c;) € Ua,
a, =
B if f*(c) € Us.

We assume that the A-B kneading sequence of ¢; is (AAA---) and the A-B
kneading sequence of c, is (BBB---). Note that Ky, and K, are connected
(see [3]).

Let Comp(Ky) be the set of all components of K;. Since G(c3) > 0,
Comp(Ky) is an uncountable set. Comp(K) becomes a metric space with
the Hausdorff metric dy. We define a map F : Comp(K;) — Comp(K}) as
F(K) = f(K) for K € Comp(K;). This map F is continuous with respect
to the Hausdorff metric dy. '

Let X = {1,2,3,4, A, B} be the symbol space. We define a subset -

of Lg as follows: s = (s,) € I if and only if
1. sp =A=> 8,41 = A,

Sn = B = 8p41 = B,

Sp=Aand 8,1 # A= s,-1 =3 or 4,

8, = B and 8,y # B=s,-; =1 or 2,

A S A

if s € By = {1,2,3,4}", then there exist subsequences (s,x))$>; and
fsﬁ,(&?;’;l such that snx) = 1 or 2 for all k € N and s}, = 3 or 4 for all
cN.
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It is our goal to prove the following theorems.

Theorem 1.8. Let f be a quartic polynomial. S’dppose that its finite critical

points ¢;,c; € Ky and c3 € Ag(oo) differ mutually and suppose that J; is
disconnected but not totally disconnected. Moreover, suppose that the A-B
kneading sequence of ¢, is (AAA---) and the A-B kneading sequence of c; is
(BBB::-). Then there ezists a homeomorphism A : Comp(K;) — L such
that Ao F =0o0A.

Theorem 1.9. Under the assumption of Theorem 1.8, there exist quadratic
polynomials g1 and g and a homeomorphism h on K; such that

h(‘]f) = JG:

where G = (g1, 92) 18 a polynomial semigroup.

2 Proof of Theorem 1.8

A conformal map ¥ with the following properties exists (see [6, p.88]): there
exist 7 > 1 and W C C\ K; with c; € 8W and C\ W = U, U Up such that
¥ :C\ D, + W is conformal and ¥~ o f o U(z) = 2*, where D, = {z € C:
|z| < r}. Fort €[0,1), R(t) = ¥Y({z € C: |z| > r and arg(z) = 2nt}) is
called the ezternal ray with angle ¢ for K.

Remark 2.1. W is an unbounded component of C\G~*(G(c3)) and its bound-
ary W is G™1(G(cs)).

Let R be the intersection of the external ray passes through f(c;) and
C\U. Two of four rays f~*(R) have a limit point c3g. ¥~!(f~!(R)) is
four half-lines extended from 6D, with adjacent angles /2. There are three
invariant half-lines extended from the unit circle under z — 2* and their
angles are 0,1/3 and 2/3. At least two of three invariant half-lines do not
overlap with ¥~(f*(R)). Let R, be the intersection of one of these invariant
‘half-lines and C \ D,. Let R, be the image of R; under ¥. We extend R;
to become the invariant ray under f. Let Ry be a component of f~1(R;)
which satisfies R; N Ry # 0. Then R, C R and f maps Jy = Ry \ R, onto
Ji = Ry NU. Inductively, let R_, be a component of Y (R-(n-1)) which
satisfies R_(,—;) N R_p, # 0. Then R_(,_;) C R_, and f maps J_, onto
J—(n—1), where

I = R_n\R._(n_1) ifnZO,
" R1nU fn=-1..
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At this time, a ray
o0 o0
Roo = U R—n = R1 U (U J_n)
n=0 n=0
is invariant under f.

Lemma 2.2 ([8]). Let F be a rational map and let X denote the closure of

the union of the postcritical set and possible rotation domains of F. Suppose

that  : (—00,0] = €\ X is a curve with
F™(y(~00, —k]) = ¥(~00,0]

for all positive integers k. Then lim;,_o,Y(t) ezists and is a repelling or
parabolic periodic point of F' whose period divides n.

We can apply Lemma 2.2 to Ry \ R: = |J;o J-n, setting -y such that
¥(—(k + 1), —k] = J_j for all positive integers k. Therefore Ro lands at a
repelling or parabolic fixed point of f. If Ry lands at a point on Kj,, then
we describe R, with Ry4;. Similarly, if Ry lands at a point on Kj,, then we
describe Ry with Rp;. In fact, we can obtain both R4, and Rp; by choosing
R; well.

To the next, let R4 and Rp, be components of f~1(R,;) and f~!(Rp;)
which satisfy Ra; N Uy # 0 and Rpy NUp # @ and differ from Ry4; and Rp;
respectively. We set V4 = U\ (Ky, UR41) and Vg = U \ (Ky, U Rp;). Let
I, I, I and I, be branches of f~! such that

I1:VA—>U1, IQZVA—)Uz,
I3:VB—>U3, I4:VB—)U4,

where U, and U, are components of Uy \ K £ U Ra1 U Ry respectively. Sim-
ilarly, Us and U, are components of Up \ Ky, U Rp; U Rp; respectively.
We define a map A : Comp(Ky) — X as follows: for K € Comp(Kjy),
i if fM(K) U,
[A(K)]n =q4 if f"(K) = Ky,
B if f*(K)=Ky,
wheren € Ny and i =1, 2,3, 4.

Lemma 2.3. A : Comp(K;) — X is continuous.
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Proof. For any € > 0, there exists N € N such that 1/2V < . We take
K € Comp(Kjy) arbitrarily and set s = A(K) = (sg, $1,...,8Nn,...). We
consider the case of s € £ N Xy first. By continuity of f, there exist
61,.-.,0n > 0 such that f*(K[6]) c U,, for k = 1,2,...,N. Let é be
the minimum value of 6. Then f*(K[4]) C U,, for k = 1,2,...,N. Any
component K’ of Ky with dy(K, K') < § satisfies K’ C K[d] by the defi-
nition of the Hausdorff metric. Moreover any component K’ C K[4] of Ky

satisfies A(K’) = (S0, 81,-..,8N,tN+1,-..). Therefore if any component K’
of K; satisfies dy(K, K') < 4, then
[ o]
) Sk,tk)
PN D Lo S N T
k=N+1 k—N+1

If s, = A and sp,—1 # A or s, = B and s, # B, then s is an isolated point
in . Since corresponding K is also an isolated point in Comp(Kjy), A is
continuous at K. ‘ a

We define a map A : £ — Comp(K;) as follows: for s = (s,) € T, if
sp =Aand 8,1 # A,

K(S) = Iao ©:--0 Icn-1(Kf1)'
If s, = B and 8,1 # B,
X(S) = Iao O:--0 Ian—1(Kf2)'

If s € X4, there exists a subsequence (sn(,))',_1 such that s,y = 1 or 2 and
Sn)-1 = 3 0r 4. Weset K’ = I,j0- (U4). Then K,(’) > KM,

5 n(l)—-1
We define
A(s) = K9.
=1

Note that (2, Disa one-pomt set since each I decreases the Poincaré
distance on V4 or V.

Remark 2.4. We check that I}, decreases the Poincaré distance on V, or Vp.
For z and y in Vy, let v be the Poincaré geodesic from z to y in V4 . Then
there exists a constant ¢ < 1 such that

dSVA <c¢ dsy,,
Ii(7y) hiv) -
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where dsy, and dsy, are the Poincaré metrics on V4 and U; respectively. Let
7' be the Poincaré geodesic from I;(z) to I;(y) in V4. Then

distyy (h(@), @) = [ dsvi< [ do,
e Ii(y)
where disty, is the Poincaré distance. Since I; is conformal,
dsy, = / I (dsy,) = / dsy, = disty,(z,y).
Ii(v) ¥ ]

As mentioned above,

disty, (I1(z), I;(y)) < ¢ disty, (z,y).

Therefore I) decreases the Poincaré distance on V. It is similarly proved
about I, I3 and I,.

Lemma 2.5. A is the inverse map of A.

Proof. What is necessary is just to prove that AoA and AoA are the identity
maps. We take s = (s, s1,82,...) € ¥ arbitrarily. If s, = A and s,_, # A4,
A(s) =I,,0:++01, _,(Ky,). By definition, f*(A(s)) = I,, 0-+-0I, _ (Ky,) C
Us,- Then [A(A(s))]s = sx. Therefore A o A(s) = s. We can prove similarly
in the case of s, = B and s,,.; # B. If s € 3,

i) = £ { KO ) A (5O -
ﬁ@@)f(gm)cgf@vak

Then [A(A(s))]x = sk. Therefore A o A(s) = 8. As mentioned above, Ao
A is the identity map of ¥. It is clear that A o A is the identity map of
Comp(Kjy). |

Lemma 2.6. A™!: £ — Comp(Kj;) is continuous.

Proof. For any s = (s0,81,82,...) € &, weset K = A™Y(s). Ifs, = A
and 8,y # A, K = I,,0---01, _,(Ky). Since K is an isolated point in
Comp(K), A™! is continuous at s. Similarly, if s, = B and s,-; # B, then
A1 is continuous at s. We take £ > 0 arbitrarily. If s € &,

A7Y(s) =K.
=1
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Since K > K and A~1(s) is a one-point set, there exists [ € N such
that

A (s) ¢ K% ¢ A7 (s)[e].

We set § = 1/2"%)-1 We consider t € & with p(s,t) < 6. At this time, we
can describe

t= (307 81, - -+ 3 Sn(lo)—1s Sn(lo)s tn(lo)+1) oo )
If t € £\ &4, by definition of A~*(¢),
A~ t) c KW c A7 (s)fe].

When t € X4, for the definition
A ) = KO
=1

of A=1(t), it is clear that K© = K& for 1 =1,2,...,lr. Then
ATY(t) € K& A7Y(s)[e].
Since A~!(s) is a one-point set, for t € ¥ with p(s,t) < 4,
dg(A7Y(s), A71(t)) = inf{e' : A™}(t) C A™(s)[€]} <e.
Therefore A™! is continuous at s. ‘ ’ m
Lemma 2.7. Ao F=00A.

Proof. For K € Comp(K;), we set A(K) = (so, 51,82, --)- Then 0o A(K) =
(s1,82,.--). On the other hand, A o F(K) = A(f(K)) = (81, 82,...). There-
fore Ao F =0o0A.. O

We have completed the proof of Theorem 1.8.
Remark 2.8. Various cases of the cubic polynomial are shown by [2].

3 Similar Results of Theorem 1.8

For a quartic polynomial, the following two cases are also considered. Theo-
rem 3.1 and Theorem 3.2 are shown like the proof of Theorem 1.8. Suppose
that the Julia set is disconnected but not totally disconnected.
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Casel : Let f be a quartic polynomial and let ¢;, ¢, and c3 be finite critical
points of f. Suppose that G(c;) = 0 and G(c3) > G(c2) > 0, that is, ¢; € K5
and ¢;,c3 € Af(00).

Let U be a bounded component of C\ G~}(G(f(cz))). Suppose that Uy,
Up and Uc be bounded components of C\ G7}(G(c;)) such that ¢; € Ug.
Then Uy, Up and Ug are proper subsets of U. Furthermore (f|y,,Ua,U)
and (f|vg,Us, U) are polynomial-like maps of degree 1 and (f|y,, Ug,U) is
a polynomial-like map of degree 2.

Under this situation, we define the kneading sequence (o4 )a>0 of c; 88

A if f*(c)) € Uy,
an =< B if f*(¢,) € U,
C if f*(cy) € Ue.

“We assume that the kneading sequence of ¢; is (CCC -+ ).
Let £5 = {1,2,3,4,C}" be the symbol space. We define a subset ¥ of
X5 as follows: s = (s,) € X if and only if

1- 3n=0:3n+1=c’
2.8 =Cand 8,1 #FC => 8,1 =1or 2,

3. if s € B4 = {1,2,3,4}™, then there exists a subsequence (Sn(x))5;
such that sp) =1 or 2 forall k € N.

Theorem 3.1. Let f be a quartic polynomial. Suppose that its finite critical
points ¢1, ¢ and c3 satisfy G(c1) = 0 and G(c3) > G(cz2) > 0 and suppose that
J; is disconnected but not totally disconnected. Moreover, suppose that the
kneading sequence of ¢, is (CCC---). Then there exists a homeomorphism
A : Comp(Ky) =+ X such that Ao F =g o A.

Case2 : Let f be a quartic polynomial and let ¢;,c; and c; be finite critical
points of f such that ¢; = ¢; and ¢; # ¢3 . Suppose that G(e¢;) = 0 and
G(cs) > 0, that is, c; € Ky and c3 € Af(00).

Let U be a bounded component of C \ G~1(G(f(c3))). Suppose that
U4 and Up be bounded components of C\ G~}(G(c3)) such that ¢; € Usp.
Then Uy and Up are proper subsets of U. Furthermore (f|y,,Ua,U) is a
polynomial-like map of degree 1 and (f|y,,Us,U) is & polynomial-like map
of degree 3. We assume that the kneading sequence of ¢; is (BBB---).
- Let &5 = {1,2,3,4, B} be the symbol space. We define a subset = of
Y5 as follows: s = (s,) € X if and only if

1. 8 =B = 8,41 = B,
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2. s, =Band s,y #¥B=>8,_1=1,

3. if s € B4 = {1,2,8,4}N, then there exists a subsequence (sn)),
such that s, =1 forall k € N.

Theorem 3.2. Let f be a quartic polynomial. Suppose that its finite critical
points ¢y, c; and c3 satisfy c; = g, ¢; € Ky and c3 € Ag(0o) and suppose that
Jy is disconnected but not totally disconnected. Moreover, suppose that the
kneading sequence of ¢, is (BBB---). Then there exists a homeomorphism
A : Comp(Ky) = X such that Ao F =c o A.

4 Relevances with Polynomial Semigroups

In this section, we explore relevances of polynomials and polynomial semi-
groups. The following theorem about the polynomial-like map is important.

Theorem 4.1 ([3, 7]). Every polynomial-like map (f,U, V) of degree d > 2
is hybrid equivalent to a polynomial p of degree d. That is to say, there exist a
polynomial p of degree d, a neighborhood W of K¢ in U and a quasiconformal
map h: W — h(W) such that

1. W(Ky) = K,,
2. the complez dilatation u, of h is zero almost everywhere on K I3
8 hof=pohonWnfYW).

If Ky is connected, p is unique up to conjugation by affine map.

Under the assumption of Theorem 1.8, (f1,U,U) and (f;,Us,U) are
polynomial-like maps of degree 2. Furthermore Ky, and Ky, are connected.
By Theorem 4.1, there exist quadratic polynomials g; and g, with K, NK,, =
@, a neighborhood W, of Ky, in Uy, a neighborhood W, of Ky, in Ug and
quasiconformal maps h; on W, and hy on W, such that hy(Ky,) = K, and
ha(Ky,) = Kg,. . -

We define branches I; and I of g7*. Since K, is connected, there exists
a conformal map ¥; : C\ D — C\ K, such that ¥’ 0 g; o ¥y(z) = 2%
The external ray R, = ¥;({z € C: |2|] > 1 and arg(z) = 0}) lands at a
fixed point of g;. Let R] be the external ray which satisfies g; (R;) = R; and
differs from R;. At this time, we replace g, so that

RiNK, =0 and R|NK,, =0.
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Then we define branches ; and I, of ;! as
L:C\ (K UR) = U, and I, : C\ (K,, URy) = Uy,

where U, and U, are components of C\ Ky, U R; U R; respectively. Slmlla.rly,

we take external rays R; and R’2 Then we define branches I3 and I of g7t
as

Is :C\ (K URy) = Uy and I, : C\ (K, U Ry) — U,

where Us and U, are components of C \ K, U R; U R}, respectively.

For s € I, we set K, = A~!(s) and J, = 8K,. K, is a component of K;
and J, is a component of J;. For s = (8,81, 82,...) € T\ 4, we define a
quasiconformal map h, on a neighborhood of K,. Let n € Ny be the smallest
number with s, = A and s,-; # A or s, = B and s,-; # B. h is defined
onW,=1I,,0---01, (W) as

1 ifs,=Aands,_; #A,

h’=fs°o.--of,n_1°hi°fn’ where Z={2 ifsn=Band3n—1#B'

We set K, = he(K,), J, = 8K, and G = (g1, 92). If necessary, we replace ¢;
and g, so that each K, is disjoint. Since J, = 8K, = hs(0K,) = hy(J,) and
Je is backward invariant (see [4]), h, maps J, onto a component J, of Je.
By definition, we turn out that h(4 4.4,.) = by, and h(g s 5,.) = hs.

Next, we define & homeomorphism

U k- U &
8ET\XZ, s€X\Ey

as h|K‘ = h,.

Remark 4.2. For s € ¥NX4, a one-point component K, of K is characterized
using the Hausdorff topology. For s = (so, 81, 82,...) € XN X, we set

o (80,815 --,8n-1,4,4,...) ifs,_y=3or4,
(80,81y.--,80-1,B,B,...) ifs,;=1or2

Then the sequence {t}2, is in £\ £, and ¢ — s as n — co. Since A~!
is continuous,

K, =A"(s) = lim A™ (t<">) = lim K.
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Finally, we extend h homeomorphically on K¢ = | )¢5 K,. For s € ZNZy,
we define K, = h(K,) as

h(K,) = nl_l_}l{.lo h(Kt(n)).

Note that each I decreases the Poincaré distance on C \ (K, U R;) or
C\ (Kg, U Ry). As mentioned above, h is a homeomorphism between Ky =

UUGE K and UaeE K
a(U ff) o
S€EL ‘

Lemma 4.3.
Proof. Lemma 4.3 follows from the following lemma.
Lemma 4.4 ([4]). If z is in Jg \ Eg, then

o- (Z) = JG,

where 0~ (z) = {w € C : there exists g € G such that g(w) = z} is the
backward orbit of z and Eg = {z € C : O~(z) contains at most two points}
is the exceptional set of G.

By Lemma 4.4,
6(UK,) =Jok.=Jh= U T =1
8€ET 8€XL SEX 8€X\Xy

We have completed the proof of Theorem 1.9.
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