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1 Introduction
We study the existence and the asymptotic stability of a stationary solution to
the initial boundary value problem for a one-dimensional hydrodynamic model of
semiconductors. In the previous researches [1] and [2], this problem is considered
under the assumption that a doping profile is flat. However, this assumption is too
narrow, from the physical point of view. In the present paper we briefly discuss
the asymptotic stability of the stationary solution without this assumption on the
doping profile. For the detailed discussion on this research, please see the paper [9].

The motion of electrons in semiconductors is governed by the system of equations

$\rho_{l}+(\rho u)_{x}=0$ , (l.la)
$(\rho u)_{t}+(\rho u^{2}+p(\rho))_{x}=\rho\phi_{x}-pu$ , (l.lb)

$\phi_{xx}=\rho-D$ . (l.lc)

We study this system over the bounded domain $\Omega:=(0,1)$ for the spatial variable $x$ .
Here, the unknown functions $\rho,$ $u$ and $\phi$ stand for the electron density, the electron
velocity and the electrostatic potential, respectively. Thus, a product $j:=\rho u$ means
the current density. The pressure $p$ is assumed to be a function of the electron density
$\rho$ given by

$p=p(\rho)=K\rho^{\gamma}$ , (1.2)

where the constants $K$ and $\gamma$ are supposed to satisfy $K>0$ and $\gamma\geq 1$ . In the
physical point of view, the case $\gamma=1$ is important. The doping profile $D\in B^{0}(\overline{\Omega})$

is a function of the spatial variable $x$ and satisfy

$\inf_{x\in\Omega}D(x)>0$ . (1.3)

We prescribe the initial and the boundary data as
$(\rho, u)(0, x)=(\rho_{0}, u_{0})(x)$ , (1.4)

$\rho(t,\mathrm{O})=\rho_{l}>0$ , $\rho(t, 1)=\rho_{r}>0$ , (1.5)
$\phi(t, 0)=0$ , $\phi(t, 1)=\phi_{r}>0$ , (1.6)
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where $\rho_{1},$ $\rho_{r}$ and $\phi_{r}$ are constants. In addition, we assume that the compatibility
conditions on $\rho(t, x)$ with orders $0$ and 1 hold at $(t,x)=(0,0)$ and $(t,x)=(0,1)$ .
Namely,

$\rho(0,0)=p_{l}$ , $\rho(0,1)=\rho_{\mathrm{r}}$ , $(\rho u)_{x}(0,0)=0$ , $(\rho u)_{x}(0,1)=0$ . (1.7)

This initial boundary value problem is studied in the region where the subsonic
condition (1.8a) and positivity of the density (1.8b) hold

$\inf_{x\in\Omega}(p’(\rho)-u^{2})>0$ , (1.8a)

$\inf_{x\in\Omega}\rho>0$ . $(1.8\mathrm{b})$

Thus, the initial data is supposed to satisfy these conditions:

$\inf_{x\in\Omega}(p’(\rho_{0}(x))-u_{0}^{2}(x))>0$ , $\inf_{x\in\Omega}\rho_{0}(x)>0$ . (1.9)

Here, note that the subsonic condition is equivalent to that one characteristic speed
$\lambda_{1}$ of the hyperbolic equations (l.lb), (l.lc) is negative and another characteristic
$\lambda_{2}$ is positive, that is,

$\lambda_{1}:=u-\sqrt{p’(\rho)}<0$ , $\lambda_{2}:=u+\sqrt{p’(\rho)}>0$ . (1.10)

The subsonic condition means that two boundary conditions (1.5), (1.6) are sufficient
for the well-posedness of this initial boundary value problem, since $\lambda_{1}$ is negative
and $\lambda_{2}$ is positive.

The stationary solution is a solution to (1.1) independent of time variable $t$ ,
satisfying the same boundary conditions (1.5) and (1.6). Hence, the stationary
solution $(\tilde{\rho},\tilde{u},\tilde{\phi})$ satisfies the system of equations

$(\tilde{p}\tilde{u})_{x}=0$ , (l.lla)
$(\tilde{p}\tilde{u}^{2}+p(\tilde{\rho}))_{x}=\tilde{\rho}\tilde{\phi}_{x}-\tilde{\rho}\tilde{u}$ , (l.llb)

$\tilde{\phi}_{xx}=\tilde{p}-D$ , (l.llc)

and boundary conditions

$\tilde{\rho}(0)=\rho\iota>0$ , $\tilde{\rho}(1)=\rho_{\mathrm{r}}>0$ , (1.12)
$\tilde{\phi}(0)=0$ , $\tilde{\phi}(1)=\phi_{r}>0$ . (1.13)

The strength of the boundary data

$\delta_{b}:=|\rho_{t}-p_{\iota}|+|\phi,|$ (1.14)

plays a crucial role in showimg the unique existence and the asymptotic stability of
the stationary solution. The unique existence of the stationary solution $(p, u, \phi)$ ,
satisfying (1.11), (1.12) and (1.13), is summarized in the next lemma.
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Lemma 1.1. Suppose that the doping profile $D(x)$ and the boundary data satisfy
(1.3), (1.5) and (1.6). Then, for an arbitrary $\rho\iota$ , there exists a positive constant $\delta_{1}$

such that if $\delta_{b}\leq\delta_{1}$ , the stationary problem (1.11), (1.12) and (1.13) has a unique
solution $(\tilde{p},\tilde{u},\tilde{\phi})(x)\in B^{2}(\overline{\Omega})$ satisfying the condition (1.8).

The proof of the existence of the stationary solution is given by the Schauder
fixed-point theorem. On the other hand, the uniqueness is shown by the maximum
principle.

In order to discuss the asymptotic stability of the stationary solution, we intro-
duce function spaces

$X_{i}^{j}([0, T]):= \bigcap_{k=0}^{i}C^{k}([0, T];H^{j+i-k}(\Omega))$ for $i,$ $j=0,1,2$ ,

$X_{i}([0, T]):=X_{i}^{0}([0, T])$ .

The stability of the stationary solution is given by the following theorem.

Theorem 1.2. Let $(\tilde{\rho},\tilde{u},\tilde{\phi})$ be the stationary solution of (1.11), (1.12) and (1.13).
Suppose that the initial data $(\rho_{0}, u_{0})$ belongs to the function space $H^{2}(\Omega)$ and the
boundary data $\rho\iota,$ $\rho_{\Gamma}$ and $\phi_{f}$ satisfy conditions (1.5), (1.6), (1.7) and (1.9). Then
there exists a positive constant $\delta_{2}su\mathrm{c}h$ that if $\delta_{b}+||(\rho_{0}-\tilde{p}, u_{0}-\tilde{u})||_{2}\leq\delta_{2}$ , the
initial boundary value problem (1.1), (1.4), (1.5) and (1.6) has a unique solution
$(\rho, u, \phi)(t, x)$ in the function space $X_{2}([0, \infty))$ . Moreover, the solution $(\rho, u, \phi)(t, x)$

verifies the additional regularity $\phi-\tilde{\emptyset}\in \mathfrak{X}_{2}^{2}([0, \infty))$ and a decay estimate

$||(\rho-\tilde{\rho}, u-\tilde{u})(t)||_{2}+||(\phi-\tilde{\phi})(t)||_{4}\leq C||(\rho_{0}-\tilde{\rho}, u_{0}-\tilde{u})||_{2}e^{-\alpha t}$ , (1.15)

where $C$ and $a$ are certain positive constants, independent of time $t$ .

Related results. The hydrodynamic model of semiconductors was introduced by
$\mathrm{B}\iota_{\emptyset}\mathrm{t}\mathrm{e}\mathrm{k}\mathrm{j}\mathrm{a}\mathrm{e}\mathrm{r}[8]$ . Recently, many engineers and mathematicians study this model. For
the derivation of this model, the book [6] is a good reference.

From physical and engineering point of view, it is very interesting to consider
the hydrodynamic model of semiconductors with the Dirichlet boundary condition.
Degond and Markowich [1] investigated the stationary solution to the hydrodynamic
model with the Dirichlet boundary condition. They proved the existence of the
stationary solution satisfying the subsonic condition. Li, Markowich and Mei [2]
also considered the existence and the asymptotic stability of the stationary solution.
However, they assumed that the doping profile is flat, that is, $|D-p_{l}|\ll 1$ . This
assumption is too narrow to cover actual semiconductor-devices. For instance the
typical example of the doping profile, drawn in [7], does not satisfies this assumption.
Matsumura and Murakami removed this assumption in the paper [3]. Precisely, they
proved the asymptotic stability of the stationary solution without the assumption

73



that the doping profile is flat. However, their boundary condition is periodic in space
variable. Therefore, the asymptotic stability of the stationary solution under the
Dirichlet boundary condition for the non-flat doping profile had not been proved.
Recently, the problem is solved by the authors in [9]. This short note is devoted to
discussion on the outline of this paper.

Notation. For a nonnegative integer $l\geq 0,$ $H^{l}(\Omega)$ denotes the l-th order Sobolev
space in the $L^{2}$ sense, equipped with the norm $||\cdot||\iota$ . We note $H^{0}=L^{2}$ and
$||\cdot||:=||\cdot||_{0}$ . $C^{k}([0, T];H^{\mathrm{I}}(\Omega))$ denotes the space of the $k$-times continuously
differentiable functions on the interval $[0, T]$ with values in $H^{\iota}$ (St). For a nonnegative
integer $k\geq 0,$ $B^{k}(\overline{\Omega})$ denotes the space of the functions whose derivatives up to k-th
order are continuous and bounded over $\overline{\Omega}$, equipped with the norm $|\cdot|_{i}$ .

Acknowledgments. The authors would like to express their sincere gratitude to
Professor Akitaka Matsumura and Professor Shinji Odanaka for stimulus discussions
and helpful comments.

2 The outline of the proof of Theorem 1.2
This section is devoted to the brief discussion on the proof of Theorem 1.2. The
existence of the time local solution is proved by the similar method as in [4] and
[5].

Lemma 2.1. Suppose the initial data $(p_{0}, u_{0})\in H^{2}(\Omega)$ and the boundary data
$\rho_{l},$ $\rho_{\mathrm{r}}$ and $\phi_{r}$ satisfy (1.9), (1.5),(1.6) and (1.7). Then there exists a constant
$T_{1}(||p_{0}||_{2}, ||u_{0}||_{2})>0$, such that the initial boundary value problem (1.1), (1.4),
(1.5) and (1.6) has a solution $(\rho, u, \phi)(t, x)\in \mathfrak{X}_{2}([0, T_{1}])$ . Moreover, the solution
$(\rho, u)(t, x)$ satisfies the condition (1.8) for an arbitrary $t\in[0,T_{1}]$ .

In order to complete the proof of Theorem 1.2, we have to derive an a-priori
uniform estimate with respect to the time variable $t$ . For this purpose, it is conve-
nient to regard the solution $(\rho, u, \phi)$ as a perturbation from the stationary solution
$(\tilde{p},\tilde{u},\tilde{\phi})$ . Hence, we introduce new unknown functions as

$\psi(t, x):=\rho(t,x)-\tilde{\rho}(x)$ , $\eta(t,x):=u(t,x)-\tilde{u}(x)$ , $\omega(t, x):=\phi(t,x)-\tilde{\phi}(x)$ . $(2.1)$

Multiplying $1/p$ by (l.lb), we have

$u_{t}+uu_{x}+(h(\rho))_{x}=\phi_{x}-u$, $h(\xi)$ $:= \int_{1}^{\xi}\frac{p’(\zeta)}{\zeta}d\zeta$ . (2.2)

Similarly, we have from (2.2) that

$\tilde{u}\tilde{u}_{x}+(h(\tilde{\rho}))_{x}=\tilde{\phi}_{x}-\tilde{u}$ . (2.3)
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Subtracting (l.lla) from (l.la), (2.3) from (2.2) and (l.llc) from (l.lc), respec-
tively, we obtain the equations for the perturbation $(\psi, \eta, \omega)$

$\psi_{t}+((\tilde{\rho}+\psi)(\tilde{u}+\eta)-\tilde{\rho}\tilde{u})_{x}=0$ , (2.4a)

$\eta_{t}+\frac{1}{2}((\tilde{u}+\eta)^{2}-\tilde{u}^{2})_{x}+(h(\tilde{\rho}+\psi)-h(\tilde{\rho}))_{x}-\omega_{x}+\eta=0$, (2.4b)

$\omega_{xx}=\psi$ . (2.4c)

The initial and the boundary data to the system (2.4) are derived from (1.4), (1.5),
(1.6), (1.12) and (1.13) as

$\psi(x, \mathrm{O})=\psi_{0}(x):=\rho_{0}(x)-\tilde{\rho}(x)$ , $\eta(x, \mathrm{O})=\eta_{0}(x):=u_{0}(x)-\tilde{u}(x)$ , (2.5)
$\psi(t, \mathrm{O})=\psi(t, 1)=0$ , $t\geq 0$ , (2.6)
$\omega(t, \mathrm{O})=\omega(t, 1)=0$ , $t\geq 0$ . (2.7)

Since $(\tilde{\rho},\tilde{u},\tilde{\phi})\in X_{2}([0, T])$ and cv satisfies (2.4c), the local existence of the solution
$(\psi, \eta,\omega)$ to the initial boundary value problem (2.4), (2.5), (2.6) and (2.7) follows
from Lemmas 1.1 and 2.1.

Corollary 2.2. Suppose that the initial data $(\psi_{0}, \eta_{0})$ belongs to $H^{2}(\Omega)$ and $(\tilde{\rho}+$

$\psi_{0},\tilde{u}+\eta 0)$ satisfy (1.9). Then there exists a constant $T_{2}(||\psi_{0}||_{2}, ||\eta_{0}||_{2})>0$ such that
the initial boundary value problem (2.4), (2.5), (2.6) and (2.7) has a unique solution
(th, $\eta,\omega$) $\in \mathfrak{X}_{2}([0, T_{2}])\mathrm{x}\mathfrak{X}_{2}([0, T_{2}])\mathrm{x}\mathfrak{X}_{2}^{2}([0, T_{2}])$ .

Owing to the above Corollary 2.2, it suffices to derive the a-priori uniform esti-
mate (2.8) in order to complete the proof of the existence of the solution globally in
time.

Proposition 2.3. Let $(\psi, \eta, \omega)(t, x)\in X_{2}([0, T])\cross X_{2}([0, T])\cross X_{2}^{2}([0, T])$ be a so-
lution to (2.4), (2.5), (2.6) and (2.7). Then there exists a positive constant $\epsilon_{0}$ such
that if $N(T)+\delta_{b}\leq\epsilon_{0}$ , the following estimate holds for an arbitrary $t\in[0, T]$ .

$||$ $( \psi, \eta)(t)||_{2}^{2}+||\omega(t)||_{4}^{2}+\int_{0}^{t}||(\psi, \eta)(\tau)||_{2}^{2}+||\omega(\tau)||_{4}^{2}d\tau\leq C||(\psi, \eta)(0)||_{2}^{2}$ , (2.8)

where $C$ is a positive constant independent of $T$ .

To show the estimate (2.8), it is convenient to use notations

$N(t):= \sup_{0\leq\tau\leq t}||(\psi, \eta)(\tau)||_{2}$ , $M^{2}(t):= \int_{0}^{t}||\psi_{x}(\tau)||^{2}+||\eta_{x}(\tau)||^{2}d\tau$.

First, we derive the basic estimate to obtain the a-priori estimate (2.8). To this
end, we define the energy form $\mathcal{E}$ as

$\mathcal{E}:=\frac{1}{2}p(u-\tilde{u})^{2}+\Psi(\rho,\tilde{\rho})+\frac{1}{2}(\phi-\tilde{\phi})_{x}^{2}$, $\Psi(\rho,\tilde{\rho}):=\int_{\rho}^{\rho}h(\xi)-h(\tilde{p})d\xi$ . (2.9)
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Notice that 8 is equivalent to $|(\psi, \eta, \omega_{x})|^{2}\mathrm{i}\mathrm{f}|(\psi, \eta, \omega_{x})|<c$, since $G(\rho,\tilde{p})$ is equivalent
to $|\psi|^{2}$ . Namely, there exist positive constants $c_{1}$ and $C_{1}$ such that

$c_{1}|(\psi, \eta, \omega)|^{2}\leq \mathcal{E}\leq C_{1}|(\psi, \eta,\omega)|^{2}$ (2.10)

for $|(\psi, \eta, \omega)|\leq c$ . Multiply the equation (2.4b) by $(pu-\tilde{\rho}\tilde{u})$ and then apply the
integration by parts, to see the energy form $\mathcal{E}$ satisfies the following equation

$\mathcal{E}_{t}+\tilde{\rho}\eta^{2}=R_{1x}+R_{2}$ , (2.11a)
$R_{1}:=\omega\omega_{xt}+\omega(p\phi-\tilde{p}\tilde{\phi})-(h(p)-h(\tilde{\rho}))(pu-\tilde{p}\tilde{u})+(h(\rho)-h(\tilde{\rho}))(\psi\tilde{u})$, (2.11b)

$R_{2}:=- \{\frac{1}{2}(u^{2}-\tilde{u}^{2})(\rho u-\tilde{\rho}\tilde{u})\}_{x}-u\psi\eta+(pu-\tilde{p}\tilde{u})_{x}\eta\tilde{u}$

$+ \{\frac{1}{2}(u^{2}-\tilde{u}^{2})_{x}-\omega_{x}+\eta\}\psi\tilde{u}-(h(\rho)-h(\tilde{\rho}))(\psi\tilde{u})_{x}$ . (2.11c)

Applying the Sobolev inequality and using the equation (2.4c), we have the following
estimate

$|R_{2}|\leq C(N(T)+\delta_{b})|(\psi, \psi_{x}, \eta, \eta_{x})|^{2}$ (2.12)

On the other hand, we have
$\int_{0}^{1}R_{x}dx=0$

thanks to the boundary conditions (2.6) and (2.7). Therefore, the integration of the
equation (2.9) over the domain $\Omega \mathrm{x}[0, t]$ shows the next lemma.

Lemma 2.4. Assume the same conditions as in Proposition 2.3 hold. Then there
exists a positive constant $\epsilon_{0}su\mathrm{c}h$ that if $N(T)+\delta_{b}\leq\epsilon_{0}$ , the following estimate holds
for an arbitrary $t\in[0, T]$

$||( \psi, \eta,\omega_{x})(t)||^{2}+\int_{0}^{t}||(\psi, \eta, \omega_{x})(\tau)||^{2}d\tau\leq C||(\psi, \eta,\omega_{x})(0)||^{2}+C(N(T)+\delta_{b})M^{2}(t)$ ,

(2.13)
where $C$ is a positive constant independent of $T$ .

The estimates of the higher order derivatives of $(\psi, \eta,\omega)$ , stated in the next
lemma, are obtained by an energy method. For details, see [9].

Lemma 2.5. Assume the same conditions as in Proposition 2.3 hold. Then there
exists a positive constant $\epsilon_{1}$ such that if $N(T)+\delta_{b}\leq\epsilon_{1}$ , the following estimate holds
for an arbitrary $t\in[0,T]$ and an integer $i=1,2$

$|1( \partial_{t}^{i}\psi, \partial_{t}^{i}\eta_{t}, \partial_{t}^{i}\omega_{x})(t)||^{2}+\int_{0}^{t}||(\partial_{t}^{i}\psi, \partial_{t}^{i}\eta, \partial_{t}^{i}\omega_{x})(\tau)||^{2}d\tau$

$\leq C(A_{i}^{2}(0)+A_{i-1}^{2}(t)+\int_{0}^{t}A_{i-1}^{2}(\tau)d\tau)$ , (2.14)

$A_{i}^{2}(t):= \sum_{j=0}^{:}||(\mathrm{f}\dot{\mathrm{f}}_{t}\psi,\dot{\theta}_{t}\eta)(t)||^{2}$ , for $i=1,2$ , (2.15)
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where $C$ is a positive constant independent of $T$ .

Notice that $c||(\psi, \eta)(t)||_{i}\leq A_{i}^{2}(t)\leq C||(\psi, \eta)(t)||_{i}(i=1,2)$ , which holds from
the equations (2.4a) and (2.4b) under the condition that $N(T)+\delta_{b}$ is sufficiently
small. In addition, the estimate $||\omega||_{4}\leq C||\psi||_{2}$ follows from (2.4c). Hence we obtain
the a-priori estimate (2.8) by using Lemma 2.4 and Lemma 2.5 for the small quantity
$N(T)+\delta_{b}$ . Consequently, we complete the proof of Proposition 2.3 and thus we see
that Theorem 1.2 holds.
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