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1 Introduction
We consider the Cauchy problem for the semilinear damped wave equation

Ut — AU+Ut = f(u), (t,.'E) € R+ X RN
(D) { (u, ) (0, ) = (ug,u1)(z), = € RV,

corresponding to the semilincar heat equation

6~ Ab= F(6), (L) SR, xRY
) b0 vy ALY

Many mathematicians have recognized that the damped wave cquation approaches to

the heat equation in some sense as t — oco. Therefore, in the first part we treat

(I) the linear damped wave equation and heat equation, that is, f(u) =0,

and show precisely how the solutions to those equations bchave as t — oco. Based
on these results we consider the Cauchy problem (D) for the semilincar damped wave
equation related to (H). The semilincar term f(u) is typically *|u|’~'u, £|ul® etc. with
the exponent p > 1. When f(u) = |u|? u or £|u|?, it works as a sourcing term. On the
other hand, when f(u) = —|ul?~!u, it does as an absorbing term. So, in the second and
third parts we respectively treat

(II) the semilincar problem (D) with a sourcing term, that is, f(u) = |ul’~u or £|ul?,
(IIT) the semilincar problem (D) with an absorbing term, that is, f(u) = —|ulP 1y,
with relation to (H).

Original motivation to investigate (D) with (H) is coming from the results in the model
system of 1-dimensional compressible flow through porous media

vy — Uz =0, . v [ v V4 .
{u¢+p(v)z=—au, with (u>(0’x)"(uo)(z)q<ui)’ z — 00,

with vy > 0, where v(> 0), u and p arc, respectively, the specific volume, the velocity and
the pressure with p'(v) < 0(v > 0), and « is a positive constant. The system was first
considered by Nishida [24]. In Hsiao and Liu [14] they reformulated the problem to the
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second order wave cquation with damping and asscrted that the solution (v,u) behaves
as (¥, @) which is a solution to the parabolic system

Uy — Uy = 07
p(¥)e = —ad,
due to the Darcy law. This, roughly speaking, implies that the damped wave equation is
near to the corresponding parabolic equation, in other words, the damped wave cquation

has the diffusive structure as ¢ — oco. So, we want to obtain the details how near as
t — 0.

2 Linear damped wave equation and heat equation

By Sn(t)g and Py(t)¢y, we respectively denote the solution v(t, z) to

vy — AV + %0, t,z) € R. x RV,
(2'1) { tt VTl (33) +

(’U,’Ut)((), .’E) = (0’ g)(x)v TE RNa

and the solution ¢(t, z) to

{ ¢ —Ap=0, (t,z)€R, xR,
(2.2)
¢(0’ .'II) = ¢0($), z € RV,

Then the solution u to

uy — Au+u, =0, (t,z) € R, xRV,
(2.3) {“ ' (o) € Ry

(u, 1) (0, 2) = (ug,u1)(z), z€RN
is given by
(24) u(t, ) = SN(t)(U() + ul) + 8t(SN'(t)uo).

Our aim in this section is to show the precise LP-L4 estimatc on the difference of Sn(t)g
and Py(t)g, and so, the difference of solutions u(t, z) and ¢(t, z) to (2.3) and (2.2). We
treat the cases N = 1,2,3, mainly N = 3.

The solution Sy(t)g has the explicit formula, which is found in Courant and Hilbert
[3]. We decompose the formula to the following form:

(2.5) Sn(t)g = e *Wi(t)g + In(t)g,

i

where Wy (t)g is a solution to the lincar wave cquation without dissipation

wy— Aw=0, (t,z) e Ry xRV,
" (e tm=n v

(w,w)(0,2) = (0,9)(z), z€RY.



Hence, when N = 1,2, 3, we have the following form

—i/2 —t/2 J12 — |z[2
Si(t)g =~ g(z+2)dz + ° <t (IO(——-U—) - 1) g9(z + 2) dz,

2 Jizi<t 2 2
= e ?Wi(t)g + Ji(t)g

et/2

cosh(@) -1

g(a: + 2) e t/2 / 5
g(z + 2) dz,
/|z|<t [42 |z|2 2m Jizl<t \/tz — |2)? ( )

= 6"/2Wz( t)g + Ja(t)g

/2 t e t? Eﬂ lz“)
Sa(t)g = e —f tw) d ——/
_ s(t)g = 4m Js? gla+tw)dw + lzl<t 2 /t2 |z|2

=: e"2W,(t)g + Ja(t)g,

by the D’Alembert, Poisson and Kirchhoff formulas for the wave eqnation in each dimen-
sion. Then we have the following estimates.

Proposition 2.1 (cf. [21, 16, 25]) For1 < ¢ <p < oo and 1 < N <3, it holds that
I(n(t) = Pu())glize < CE 20 glle, ¢ 280 >0,
16:(In(B)g)llzr < C(1+ )3 gllza, £ > 0.
Since it is well-known that
(2.7) 18(Pn(£)9)llze < Ct 3G 0| gllza, ¢ 20> 0,

Proposition 2.1 mcans that Jy(t)g behave as Py(t)g as t — oo. By (2.5) and (2.4) the
solution u(t, z) to (2.3) is given by

(28) u(t, ) = JN(t) (uo + ul) + Bt(JN(t)uo) + e—t/2W(t; Ug, Y1),
where
e W (tug,u1) = e P Wi(t)(uo +w) + 8i(e/* W (t)uo)

(2.9) = e t? {WN(t)(%uo +u1) + 3t(WN(t)u0)} -

Hence we have the following LP-L? estimate.

Theorem 2.1 (cf. [21, 16, 25]) Let u(t,z) be a solution to (2.8) and ¢(t,z) be a solu-
tion to (2.2) with ¢o = ug +uy. Then, for 1 < q < p < oo, it holds that

llu(t, ) — o(t,-) — e"/zwg(t; up, Uy)||r < C’t’%(%‘%)_luuo,ulllu, t>ty>0.
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For this kind of cstimate, scc also Hosono and Ogawa [13] in casc of N = 2, Narazaki
[23] in case of general dimension, Ikehata and Nishihara [15], Chill and Haraux [2] in the
abstract setting.

By Proposition 2.1 Jy(t)g bchaves as Py(t)g as t — oo, and hence we call Jy(t)g,
B,(Jn(t)g) "the parabolic part” of Sy(t)g, while we call e™*/?W(t; up, u;) " the wave part”.
Therefore, the solution u(t, ) to the damped wave equation decomposed to the sum of
"the wave part” and ”the parabolic part”. Since we assume ugy,u; € L? only, the wave
part may include the singularity in casc of N > 2. Thus, by Theorem 2.1 we can say that

o if we remove the singularity, though its strength decays exponentially, then the solution
to the damped wave equation behaves as that to the heat equation,

in other words,

e if we resolve the regularity problem from the solution to the damped wave equation,
then we may show that the solution behaves as that to the heat equation.

Basic LP-LY estimate was given by Matsumura [22] as

N

Nl o
I1Sw (gl < CQ+1)725 7 g]la + Ce™ gl g

for some constant o > 0, which is also interpreted on the same line.

Thus, when we consider the semilinear problems (D) in the next two sections, it
becomes important to resolve the regularity problem. The parabolic problem (H) has a
smoothing effect and a maximum principle and hence the nonnegativity of the solution
for the nonnegative data, roughly speaking. Our aim is to investigate the damped wave
equation, which generally has not the nonnegativity of the solution nor the smoothing
effect. These raise up the difficultics in (D).

3 Semilinear problem with a sourcing term

In this section we consider (D)

(3.1) Uy — Au+u, = f(u), (t,z) € Ry xRV
' (u,)(0,2) = (uo,u1)(z), z€RV,
related to ‘
(3.2) { 6.~ Ap=f(¢), (t,z) Ry xRN

‘ $(0,z) = ¢o(z), =€ RY,
where
(3.3) fw) = [ulfu or =+ |ul’

For (3.2) with f(¢) = |¢|*~*¢ therc arc long litcratures. Sumiming these up, we know that,
if p > po(N) := 1+ 2, then the solution ¢(t, z) globally exists for small data, and that
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the positive solution ¢(t, z) blows up within a finite time if p < p.(NN). For these results
refer Fujita [8], Hayakawa [11], Weisscler [29] etc. and the servey papers Levine [19], Deng
and Levine [4]. The critical exponent p.(NN) is called the Fujita exponent named after his
work [8].

From the discussion in the preceding scction we expect that the solution u(t, ) to
(3.1) behaves as ¢ to (3.2). In fact, Todorova and Yordanov [28] have shown that, if
pe(N) < p < £*2, then the solution u to (3.1) with f(u) = |u|? globally exists for small
data ug, u; with compact support, and that, if p < p.(V), then the local solution u blows
up within a finite time for suitable data. In the critical case p = p.(N) Zhang [30] has
shown the solution to blow up. Note that the small data global existence of solutions
is available for f(u) = £|ul’~'u, £lul’. But, for the blow-up result they have treated
f(u) = |ulP to get positivity.

For the related topics, when N = 1, Gallay and Raugel [10] has shown the asymptotic
profile in the supercritical case, applying the scaling variables. When N = 1,2, Li and
Zhou [20] obtained the estimate of the blow-up time in the critical and subcritical case,
using the explicit formula of solutions.

We present two theorems in case of N = 3, based on the preceding discussions. The
weak solution u(t, z) to (3.1) is defined by the solution to

u(t,) = Sw(t)(uo +w) + B(Su(tua) + [ Sn(t =)/ (w)(r)dr
(3.4) = Sn(t)(uo +wr) + G(Sw (t)u())

+ [ FWalt - dr+ [ dnle - dr

Also, denoting the Sobolev space by W™P = W'"”’(RN y={f;0.feP(i=0,1,---,m)}
for 1 < p < oo, we have the followings.

Theorem 3.1 ([25]) Let N =3 and (up, u1) € (WH*NWh)x (L®NLY) =: Z, be small.
Then, when p > p.(3) = 5/3, there ezists a unique weak solution u € C([0, 00); L' N L)
to (3.1) satisfying

lut, Miwe < C+ )30 |lug, wallz0, (1< p < 0).

Remark 3.1. Since we assume suitable regularity, i.e. up,u; € Zy, only smallness of the
data yields the global existence theorem even for the exponent bigger than the Sobolev
critical exponent 1 + 35.

Theorem 3.2 ([26]) Let f(u) = |ul? (resp. f(u) = |[ul?~'u) and (up,u,) be replaced by
(eug,eu1) € Zp, 0 < € € 1 with [gs(ug +uy)(z)dz > 0 (resp. (0,eu;) € Zp, 0<e K1
with uy(z) > 0, fgsui(z)dz > 0). Then, when p < p(3), the time local solution u to
(3.1) blows up within a finite time, and the blow-up time T, of u is estimated as

. exp (Ce™®) p=:1+a=p(N), _
(3‘)) T < { C€2a/(2 Nu) p= l+ac< pc(N), (N - 3)
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Remark 8.2. When the data is (0,eu;) with wi(z) > 0, fgsui(z)dz > 0, the local
solution u to (3.1) with f(u) = |u|’~*u becomes positive by the solution formula

t
ult,) = Sty + [ Sn(t - m)lululr, ) dr.
Jo
For f(u) = —|u|” we don’t know the blow-up result.

The estimate (3.5) of T, is available even in N = 1,2, which was given by Li and
Zhou [20]. In fact, to prove Theorem 3.2 we use the explicit formula (3.4) and apply the
following lemma given in [20].

Lemma 3.1 If I(t) satisfies

- ! Il+a(t)
{ IO+ 10 2 @l O

10)>e>0, I'(0)>0.

t>0

witha >0, 0 < B <1, then I(t) blows up in a finite time. More precisely, the life span
T, is estimated from above as

cxp(Ce™®) pB=1
TES{ Ce ™ 0<B<L

4 Semilinear problem with an absorbing term

In this section we consider

(4.1) Uy — Au+ug + [ulflu =0, (¢, $13 € R, xRV
(U, ut)((), x) = (Uo,ul)(ll), zeR y

related to

(4.2) { ¢ — Ad+ 4P ¢ =0, (tz)€ Ry xRN

#(0,z) = ¢o(z), € RV,
Again we remind the results on (4.2). For big data ¢y, in the supercritical case the solution

(t, z) approaches to 6,G(t, z) as t — oo, where G(t,z) = (4mt)~N/2 exp (—|z|?/4t) is the
Gauss kernel and the constant 6y is given by

0= [ do@)da— [ [ 1olro(t,2)dr

In the critical case @(t, z) approaches to 6pG(t, z)(log t)~/2 for some constant 6y. In the
subcritical casc there is a unique positive similarity solution wy(t, z) = ¢t~V f(|z|/ V)
to (4.2), where f(r), r = |z}, is a positive solution to |
(T N1y p1p_ 1

f1= Gt S P = o

(4.3) )
f(0)=0, Jim r*Tf(r) =0,



Then the positive solution ¢(t,z) to (4.2) with ¢o € L', limjg| oo |22/ P~V py(z) = 0,
éo(z) > 0 tends to the similarity solution wo(t, z) in the sense that

(4.4) lim t77||p(t, z) — wo(t, )|z = O.

If we impose ity oo 771 f (r) = b > 0 instead of lim,_ ricif (r) = 0 in (4.3), then
we still have a solution f and a similarity solution wy(t,z) = t~¥/(#=b f(|z|/v/). Then
for the data ¢ € L!, not necessarily positive, satisfying limg) . |z|?/ Y y(z) = b, the
solution ¢(t, ) tends to wy(t,z) as t — oo, in the same scnse in (4.4). However, if we
do not impose the positivity in (4.3), then we have at least 4 non-trivial solutions when
1< p<142/(N+1), so that we don’t know until now how the solution é(t, z) to (4.2),
which may change its sign, bechaves as t — oco. For these results, refer Brezis, Peletier and
Terman [1], Escobedo and Kavian [5, 6], Escobedo, Kavian and Matano [7], Galaktionov,
Kurdyumov and Samarskii [9] and the references therein.

We now go back to (4.1) and remember some known results. First, Kawashima,
Nakao and Ono [18] showed the existence of a unique and global solution u(t, z) to (4.1)
in C([0, 00); HYNC([0, 00); L?) for any big data (ug,u;) € H'xL*if 1 < p < 1+4/(N-2)
(1 < p < oo when N = 1,2). Morcover, the decay property

1

(45) lu@)llz2 < C1L+1)7 7D
was proved provided that (ug,u;) € (H2NLY) x (H'NLY)(1<g<2)and 1+ 4§ <p<
1+ 335 (N < 4). The decay rate (4.5) scems to be best possible, because we cxpect the

Gauss kernel to be an asymptotic profile. Based on [18], Karch {17] showced that, when
N=1,23,

(4.6) lu(t, ) = G (8, Nlze = 0(t™¥47P) s ¢ = oo
<o N=1
for2<pqy <o N=2 and
<A N=3
oo
— _ p—1
(4.7) 90—/RN(uo+u1)(m) dz /; /RN lul?~ u(t, z) dz dt.

" Recently, Hayashi, Kaikina and Naumkin [12] have shown that, when N = 1, the solution
u(t, z) behaves as t — oo

wo(t, 7) pe(1) — € < p < pe(1)
u(t,z) ~ { 6oG(¢, z)(logt)~/ p = pc(1)
oG (¢, z) p > pe(1),

for suitably small € > 0.

In these situations we, roughly speaking, show the decay propertics in the subcritical
case and the asymptotic profile in the supercritical case. In the critical casc we cannot
have any sharp estimate. First theorem is the following.
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Theorem 4.1 ([16]) Let 1 < p < 1+ #(< 1+ 55). Suppose that
(48) (1 + lxl)m(u(), V'LL[),'LLL, "U,()I([H—l)/z) S L2,
where for any small fized constant 6 > 0

{ m= -2 — 820 yhen p< p(N)

C
(4.9) m > N/2 when p > p.(N).

Then the solution u(t,x) to (4.1) satisfies the decay properties

: L N <oo N=1
(4.10) u(t, Ml <CA+t)"71"% for 1<p{ <oco N=2
<2 N>

We give some remarks. In the subcritical case the similarity solution wo(t, ) satisfies
for1<p< o

1 | l/p 1 N
foolt Moo =7 ([ 1 (Spps) = o
Hence the decay rate (4.10) is best possible, though there are restrictions on p. Our final
goal is to obtain the asymptotic profile. As we stated above, even in the parabolic problem
(4.2) the asymptotic profile is not known for the solution ¢(t,z) which may change its
sign. In our problem (4.1) the solution u(t,z) generally changes its sign. Therefore, to
get our goal seems to be difficult in the subcritical casc.

While in the supercritical casc we cannot have L!-boundedness from (4.10) since
—-;i—l + % > 0. We cxpect that the asymptotic profile is the Gauss kernel and hence
the rate (4.10) is less sharp. However, standing on this less sharp rate we will improve to
get the asymptotic profile in Theorem 4.2 below.

The rates of the weight in (4.8)-(4.9) secm to be reasonable. In fact, in the subcritical
case we imposed lim)—.oc |x|v~il f(Jz]) = 0 in (4.3), which corresponds to (4.9) in the L*
framework. In the supercritical case the solution should be in L' to get the asymptotic
profle G(t,z). Clearly (4.8)-(4.9) mean o, u;, etc. € L*.

Theorem 4.2 ([16, 27]) Let

(4.11) pe(N) <p{ fii;’%_ E%Zi’),z’m

Suppose that (ug,u;) € H? x H' (N < 3) [resp. H®* x H? (N = 4)] and
(4.12) (L + |&])™ (o, Vug, Aug, |uo| F, ua, Vauy) € L*(RY)

with m > N/2. Then it holds that

(4.13) llu(t, ) — BG(t, )||Le = o(t"%“‘%)) as t 00, 1<p<

with 0y in (4.7).
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Theorem 4.2 covers the gap remained open in the supercritical case. For the proof of

Theorem 4.1 we employ the weighted energy method, originally developed by Todorova
and Yordanov [28]. By applying the Gagliardo-Nirenberg inequality to the L?-decay re-
sults obtained, LP-decay rate (4.10) is derived. For Theorem 4.2 we combine the weighted
encrgy method with the explicit formula

u(t, )= Sn(t)(uo +u1) + O:(Sn(t)uo)

4.14 t
(4.14) _/ T Wy(t — 7)|ulf " u(r ")dT-/o In(t — 7)|ulp~Yu(r, ) dr

(cf. (3.4)) developed in Section 2. It is a key point how to treat the wave part.
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