高レイノルズ数乱流内の渦管構造に関する実験的研究

気象研究所 毛利英明¹ (Hideaki Mouri) Meteorological Research Institute

1 はじめに

乱流の最も要素的な構造として渦管がある [1]. その存在は, 液体中で気泡を用い低圧部を 可視化することにより, 乱流レイノルズ数 $Re_{\lambda} \leq 2000$ の範囲で確認されている [2]. また各 種パラメータの値が直接数値計算を用い $Re_{\lambda} \leq 200$ の範囲で得られている [1, 3, 4]. 半径は Kolmogorov 長 η 程度. 全長は相関長 L 程度. 旋回速度は Kolmogorov 速度 u_{K} もしくは流速 揺らぎ $\langle u^{2} \rangle^{1/2}$ 程度. 寿命はエネルギー保有渦の旋回時間 $L/\langle u^{2} \rangle^{1/2}$ 程度である.

渦管パラメータは乱流の基礎的研究のみならず応用的研究においても重要である.しかし 高レイノルズ数での挙動が不明であるため,これら渦管パラメータが普遍的なものかどうか, わかっていない.そこで高レイノルズ数乱流の速度場を実験的に調べることにする.乱流速 度場は,渦管が存在する場所で速度変動が大きくなるため,小スケールにおいて間欠的であ る [4,5,6,7,8]. 乱流速度場の1次元断面上での変動から,渦管の典型的な旋回速度プロファ イルを抽出し,渦管半径や旋回速度の大きさを評価する.また1次元断面上での渦管の間隔 の統計から,渦管の空間分布を調べる.

2 風洞実験

気象研究所風洞において噴流と粗面境界層の実験を行った.風洞測定部の寸法は流れ方向 に18m,スパン方向に3m,高さ方向に2m.流れ方向速度U+uとスパン方向速度vをX型 熱線流速計を用い測定した.熱線の有効長は1.25mm,熱線の間隔は1.4mm.乱流速度場の 平均流に沿った1次元断面を得た.データ長は(1-4)×10⁸.

噴流の実験では,風洞測定部の風上端から2m上流に,ダクトを設置した.ダクト開口部の寸法はスパン方向に1.3m,高さ方向に1.4m.ダクト開口部での平均流速は11-55ms⁻¹. ダクト開口部から17.5m下流で測定を行い,乱流レイノルズ数*Re*_λ = 719-1934を得た.

粗面境界層の実験では、風洞測定部の床面全体に粗度として煉瓦を置いた. 煉瓦の間隔は 0.5 m. 風洞測定部の風上端での平均流速は 2-20 m s⁻¹. 風上端から 12.5 m 下流の対数則層 内で測定を行い、乱流レイノルズ数 $Re_{\lambda} = 332-1304$ を得た.

いずれの場合も、測定点において、乱流は充分に発達していた. 流れ方向の流速揺らぎ $\langle u^2 \rangle^{1/2}$ とスパン方向の流速揺らぎ $\langle v^2 \rangle^{1/2}$ の比は、噴流で 1.0–1.1、粗面境界層で 1.2–1.3 程度 であり、ほぼ等方な乱流であったことがわかる (表 1 参照).

¹〒 305-0052 つくば市長峰 気象研究所 (hmouri@mri-jma.go.jp)

表 1: ダクト開口部あるいは風洞測定部風上端での平均流速 U_* . 測定位置での平均流速 U. サ ンプリング周波数 f_s . 動粘性係数 ν . 平均エネルギー散逸率 $\langle \varepsilon \rangle = 15\nu \langle (\partial_x v)^2 \rangle / 2$. 流速揺らぎ $\langle u^2 \rangle^{1/2}, \langle v^2 \rangle^{1/2}$. Kolmogorov 速度 $u_K = (\nu \langle \varepsilon \rangle)^{1/4}$. 相関長 $L_u = \int_0^\infty \langle u(x+x')u(x) \rangle / \langle u^2 \rangle dx',$ $L_v = \int_0^\infty \langle v(x+x')v(x) \rangle / \langle v^2 \rangle dx'$. Taylor 長 $\lambda = [2\langle v^2 \rangle / \langle (\partial_x v)^2 \rangle]^{1/2}$. Kolmogorov 長 $\eta = (\nu^3 / \langle \varepsilon \rangle)^{1/4}$. 乱流レイノルズ数 $Re_{\lambda} = \langle v^2 \rangle^{1/2} \lambda / \nu$. データ長は $f_s \leq 50$ kHz で $10^8, f_s > 50$ kHz で 4×10^8 . 後者はスパン方向速度のみの測定で,流れ方向速度に関する物理量は $f_s = 50$ kHz でのデータ長 4×10^7 の流れ方向・スパン方向同時測定から得た. 速度微分は $\partial_x v = [8v(x+\delta x) - 8v(x-\delta x) - v(x+2\delta x) + v(x-2\delta x)]/12\delta x$ と評価した. 但し $\delta x = U/f_s$ (第 2 章参照).

	Units	Duct flow					Boundary layer						
		1	2	3	4	5	6	7	8	9	10	11	
U_*	m s ⁻¹	11	23	34	45	55	2	4	8	12	16	20	
U	$m s^{-1}$	4.26	8.66	13.0	17.3	21.2	1.51	3.12	5.84	8.75	10.8	13.6	
f_s	kHz	12	34	60	80	100	4	10	22	38	60	74	
ν	${ m cm^2~s^{-1}}$	0.141	0.141	0.142	0.142	0.142	0.141	0.142	0.142	0.142	0.142	0.143	
$\langle \varepsilon \rangle$	$m^2 s^{-3}$	0.405	2.87	9.13	19.2	34.4	0.033	0.226	1.85	5.37	13.8	24.6	
$\langle u^2 \rangle^{1/2}$	${\rm m~s^{-1}}$	0.694	1.38	2.11	2.84	3.46	0.283	0.582	1.18	1.80	2.46	3.14	
$\langle v^2 \rangle^{1/2}$	$m s^{-1}$	0.666	1.34	2.04	2.69	3.32	0.242	0.475	0.973	1.46	1.98	2.51	
u_K	${\rm m~s^{-1}}$	0.049	0.080	0.107	0.128	0.149	0.026	0.042	0.072	0.093	0.118	0.137	
L_u	cm	55.4	55.8	51.9	46.3	42.2	43.9	48.5	41.5	43.4	47.3	44.0	
L_v	cm	14.9	14.5	14.7	14.2	14.2	6.67	6.87	6.33	5.83	5.71	6.11	
λ	cm	1.52	1.15	0.986	0.895	0.826	1.93	1.46	1.04	0.919	0.776	0.742	
η	cm	0.029	0.018	0.013	0.011	0.010	0.054	0.034	0.020	0.015	0.012	0.010	
Re_{λ}		719	1098	1416	1693	1934	332	488	716	945	1080	1304	

表 2: 渦管半径 R_0 . 渦管の最大旋回速度 V_0 . 渦管レイノルズ数 $Re_0 = V_0 R_0 / \nu$. 小スケール 分布の冪指数 μ (第 3, 4, 5 章参照).

[Units		I	Duct flow	v		Boundary layer						
		1	2	3	4	5	6	7	8	9	10	11	
Vortex tubes for the 0.1% threshold													
R_0	η	5.21	5.64	5.47	5.87	6.20	5.18	5.24	5.56	5.97	5.66	6.15	
V_0	$\langle v^2 angle^{1/2}$	0.637	0.595	0.593	0.610	0.629	0.822	0.745	0.701	0.677	0.700	0.700	
V_0	u _K	8.67	10.0	11.3	12.8	14.0	7.60	8.37	9.53	10.6	11.7	12.8	
Re ₀	·.	45.2	56.4	61.8	75.1	86.8	39.4	43.9	53.0	63.3	66.2	78.7	
μ		0.867	0.879	0.896	0.919	0.907	0.840	0.855	0.921	0.924	0.995	0.992	
Vortex tubes for the 1% threshold													
R_0	η	6.50	6.61	6.92	6.76	7.03	6.53	6.44	6.92	7.38	7.14	7.19	
V_0	$\langle v^2 angle^{1/2}$	0.449	0.406	0.395	0.401	0.411	0.607	0.533	0.489	0.466	0.468	0.465	
V_0	u_K	6.11	6.83	7.53	8.41	9.17	5.61	5.98	6.65	7.28	7.83	8.53	
Reo		39.7	45.2	52.1	56.9	64.5	36.6	38.5	46.0	53.7	55.9	61.3	
μ		1.02	1.06	1.07	1.09	1.07	0.884	0.953	0.998	1.03	1.08	1.09	

3 渦管の模型

乱流速度場の1次元断面から渦管についてどのような情報が得られるのか, 渦管の標準的 な模型である Burgers 渦を用い考察しよう. Burgers 渦は定常な伸長流の中に置かれた軸対 称な流れである. 旋回流と伸長流は, 円筒座標において

$$u_{\Theta} \propto \frac{\nu}{aR} \left[1 - \exp\left(-\frac{aR^2}{4\nu}\right) \right], \quad (u_R, u_{\Theta}, u_Z) = \left(-\frac{1}{2}aR, 0, aZ\right). \tag{1}$$

ここでaは正の定数. 旋回流は $R = R_0 = 2.24(\nu/a)^{1/2}$ において最大となる. よって R_0 を渦管の半径と看做すことができる.

渦管の軸が(x, y)平面を点 $(0, \Delta)$ で通っている状況を考えよう.ここでx軸とy軸は流れ 方向とスパン方向にあるとする.渦管の軸の傾きが球面座標において (θ, ϕ) であるなら,旋 回流 u_{Θ} の流れ方向成分uとスパン方向成分vはx軸に沿って

$$u(x) = \frac{\Delta \cos \theta}{R} u_{\Theta}(R), \quad v(x) = \frac{x \cos \theta}{R} u_{\Theta}(R).$$
(2)

但し

$$R^{2} = x^{2}(1 - \sin^{2}\theta\cos^{2}\varphi) + \Delta^{2}(1 - \sin^{2}\theta\sin^{2}\varphi) + 2x\Delta\sin^{2}\theta\sin\varphi\cos\varphi.$$
(3)

伸長流の動径成分 u_R の流れ方向成分uとスパン方向成分vは

$$u(x) = \frac{x(1 - \sin^2\theta\cos^2\varphi) + \Delta\sin^2\theta\sin\varphi\cos\varphi}{R} u_R(R),$$
(4)

$$v(x) = -\frac{x\sin^2\theta\sin\varphi\cos\varphi + \Delta(1-\sin^2\theta\sin^2\varphi)}{R}u_R(R).$$
 (5)

渦管がx軸に近く傾きが小さいなら ($\Delta \leq R_0$ かつ $\theta \simeq 0$), スパン方向速度vでは小スケー ルの旋回流が卓越する [式 (2)]. 流れ方向速度uでは大スケールの伸長流が卓越する [式 (4)]. もしも $\Delta \gg R_0$ あるいは $\theta \gg 0$ なら, 少なくともスパン方向速度の小スケールにおいて, 渦 管の信号は弱い.

様々な強さの渦管が乱雑に分布しているような乱流速度場の1次元断面を考えよう. 渦管 が存在する場所でスパン方向速度は変動する. 充分に高い閾値を超える変動のみを考慮する なら,変動の典型的なスケール・強さは, $\Delta \leq R_0$ かつ $\theta \simeq 0$ であるような強い渦管の典型的 な半径・旋回速度に対応すると期待できる.

4 渦管の速度プロファイル

強い渦管の典型的な速度プロファイルを条件付き平均を用い抽出しよう. 検出条件はサン プリング間隔 δx に対するスパン方向速度差の絶対値 $|v(x + \delta x) - v(x)|$ が或る閾値を超える こと [5, 7, 8]. 絶対値が上位 0.1%もしくは 1%にある速度差が含まれるよう閾値を設定する. スパン方向速度を平均する際は, スパン方向速度差が負である場合に速度信号の正負を入れ 替える. 結果の一部を図1に示す (実線).

図 1: 渦管の速度プロファイル (実線): ス パン方向成分 (v) と流れ方向成分 (u⁺ と u⁻). 点線は Burgers 渦の旋回流のスパン 方向速度プロファイル.

図 2: スパン方向速度差の絶対値 |v(x + δx) – v(x)| の確率密度分布 (実線). 矢印 は上位 0.1%もしくは 1%の範囲. 点線は 同じ標準偏差を持つガウス分布.

採用した閾値は恣意的なものだが,強い渦管を良く検出すると期待できる. 図2にスパン 方向速度差の絶対値 $|v(x + \delta x) - v(x)|$ の確率密度分布を示す (実線). 上位 0.1%, 1%に含ま れるもの (矢印) は確率密度分布の裾を構成し,この裾は同じ標準偏差を持つガウス分布 (点 線)の裾に比べ大きな振幅を持っている.

比較のため $\Delta = 0$ かつ $\theta = 0$ である Burgers 渦の旋回流のスパン方向成分プロファイル [式 (2)] を図1に点線で示す. 半径 R_0 と最大旋回速度 V_0 は, プロファイルのピーク近傍にお いて, Burgers 渦が条件付き平均を再現するよう決めた. Kolmogorov 長 η が熱線プローブの 流れ方向長 $r_p = 1 \text{ mm}$ より小さいから, 測定された速度 v_m は実際の速度 v_t をプローブ長で 平均したものと考えた:

$$v_m(x) = \frac{1}{r_p} \int_{-r_p/2}^{r_p/2} v_t(x+x') dx'.$$
 (6)

半径 R_0 と最大旋回速度 V_0 の値を表 2 に示す. 半径 R_0 は Kolmogorov 長 η の数倍. 最大旋回 速度 V_0 は流速揺らぎ $\langle v^2 \rangle^{1/2}$ の数分の 1 もしくは Kolmogorov 速度の数倍である [1, 3, 4, 7, 8].

実験から得られたスパン方向速度プロファイルは Burgers 渦の速度プロファイルに近い [4, 7, 8]. レイノルズ数 $Re_{\lambda} \leq 2000$ の乱流に渦管はたしかに存在し間欠性に寄与している. 実験から得られたスパン方向速度プロファイルは Burgers 渦の速度プロファイルに比べ裾を 引いているが, これは $\Delta \gg R_0$ あるいは $\theta \gg 0$ であるような渦管の寄与である. 渦管の旋回 流が Burgers 渦の旋回流と厳密には同じでない可能性もある.

流れ方向速度プロファイルは, x = 0 において $\partial_x u > 0$ である信号の平均 (u^+) と $\partial_x u \leq 0$ である信号の平均 (u^-) に分けて示す. $\Delta > 0$ であるような渦管の旋回流の寄与が卓越して いる [式 (2)]. 伸長流の寄与は, u^- プロファイルの振幅が u^+ プロファイルの振幅より大きい ことを除き, 顕著でない. Burgers 渦の場合と異なり, 実際の渦管の軸は必ずしも伸長流の方 向を向いていないことがわかる [3, 7, 8].

Hege 1934 duct flow 1% threshold 10¹ 10² 10³ <u>interval</u> Kolmogorov length

図 3: 渦管間隔の確率密度分布 (実線). 横軸は線形目盛. 点線は確率密度分布の裾を指数関数でフィットしたもの. 矢印はスパン方向速度の相関長 L_v.

図 4: 渦管間隔の確率密度分布 (実線). 横軸は対数目盛. 点線は間隔が 30η から 300η までの範囲で確率密度分布を冪関数 でフィットした際の傾き. 矢印はスパン方 向速度の相関長 L_n.

5 渦管の空間分布

渦管の空間分布を、乱流速度場の1次元断面上での渦管の間隔r, つまりスパン方向速度差の絶対値 $|v(x + \delta x) - v(x)|$ が或る閾値を超える場所の間隔r, の確率密度分布から調べよう [5, 7, 8, 9]. 前章と同じ閾値を用いる. 結果の一部を図3および図4に示す (実線).

図3に明らかなように, 確率密度分布は指数関数的な裾を持つ [2, 7, 8, 10]. 指数関数的な 間隔分布は, 個々の事象が乱雑かつ独立な Poisson 過程に従うことを意味する. つまり渦管 は大スケールで乱雑かつ独立に分布している.

相関長 L,より小さい間隔において,確率密度分布は指数分布に比べ大きい [8]. つまり渦 管は小スケールで集団化している. 一様等方乱流の直接数値計算で強い渦管がエネルギー保 有渦の外縁に集中して分布することが見出されている [3]. 類似の現象が噴流や粗面境界層 でも起きていると考えられる.

図4に明らかなように、非常に小さい間隔において、確率密度分布は冪則に従う [5, 9, 10]:

$$P(r) \propto r^{-\mu}.\tag{7}$$

つまり小スケールにおける渦管の分布は特徴的長さを持たず自己相似的である. 表2に間隔 rが 30η から 300η までの範囲で得られた指数 μ の値を示すが1に近い. 指数 μ は1次元断面 上でのフラクタル次元と看做すことができるから, 渦管が狭い範囲に集中して分布している ことがわかる [9].

図 5: 渦管パラメータの乱流レイノルズ数 Re_{λ} への依存性. (a) R_0/η . (b) $V_0/\langle v^2 \rangle^{1/2}$. (c) V_0/u_K . (d) Re_0 . (e) $Re_0/Re_{\lambda}^{1/2}$. (f) μ . 白丸は 0.1%閾値の噴流. 黒丸は 1%閾値の噴流. 上 向き三角は 0.1%閾値の粗面境界層. 下向き三角は 1%閾値の粗面境界層. 渦管パラメータは 0.1%閾値・1%閾値各々に対し乱流レイノルズ数 $Re_{\lambda} = 1934$ における値で規格化.

6 渦管パラメータのスケーリング則

渦管パラメータが, 乱流レイノルズ数および噴流・粗面境界層の違いに, どのように依存 するか調べよう [8]. 結果を図 5 に示す. 各パラメータの値は乱流レイノルズ数 $Re_{\lambda} = 1934$ の噴流における値で規格化してある.

渦管半径 R_0 は, 乱流レイノルズ数や噴流・粗面境界層の違いに関わらず, Kolmogorov 長 η に比例する: $R_0 \propto \eta$ [図 5(a)].

最大旋回速度 V_0 は流速揺らぎ $\langle v^2 \rangle^{1/2}$ に比例する: $V_0 \propto \langle v^2 \rangle^{1/2}$ [図 5(b)]. 流速揺らぎ $\langle v^2 \rangle^{1/2}$ は大スケールに関わる物理量だが, 渦管はエネルギー保有渦の外縁で生成されている 可能性があり [3], このような領域では渦管半径 R_0 程度の小スケールにおける速度変動が流 速揺らぎ $\langle v^2 \rangle^{1/2}$ 程度の大きさになり得る. スケーリング則 $V_0 \propto \langle v^2 \rangle^{1/2}$ は乱流レイノルズ数 $Re_\lambda \gtrsim 500$ で顕著だから [8], このスケーリング則は高レイノルズ数で漸近的に達成されると いうことになる. 一方, Kolmogorov 速度 u_K との間に $V_0 \propto u_K$ なるようなスケーリング則は 見出されない [図 5(c)].

渦管半径 R_0 および最大旋回速度 V_0 に関するスケーリング則から, 渦管の旋回流を特徴づける渦管レイノルズ数 $Re_0 = R_0 V_0 / \nu$ に関するスケーリング則が得られる [3]:

$$\operatorname{Re}_{0} \propto \operatorname{Re}_{\lambda}^{1/2} \quad \text{for} \quad R_{0} \propto \eta \quad \text{and} \quad V_{0} \propto \langle v^{2} \rangle^{1/2},$$
(8)

$$\operatorname{Re}_0 = \operatorname{constant} \quad \text{for} \quad R_0 \propto \eta \quad \text{and} \quad V_0 \propto u_K.$$
 (9)

前者のスケーリング則 [図 5(e)] は後者のスケーリング則 [図 5(d)] より顕著である. 乱流レイ ノルズ数が上昇すると渦管レイノルズ数も上昇し渦管は不安定になる [3]. しかし一般に高 レイノルズ数の乱流ほど間欠的という観測事実から, このような渦管は観測されるのに充分 な寿命を持つと期待できる.

渦管間隔の小スケールにおける冪則 [式 (7)] に関する指数 μ は, 乱流レイノルズ数や噴流・ 粗面境界層の違いに関わらず, 一定値をとる [図 5(f)]. つまり渦管の小スケールにおける自 己相似的な分布は高レイノルズ数乱流において普遍的である [9].

7 まとめ

噴流 ($Re_{\lambda} = 719-1934$) と粗面境界層 ($Re_{\lambda} = 332-1304$) における速度場から, 乱流の要素 的構造である渦管の高レイノルズ数における振舞を調べた. 速度場の1次元断面を用いたが, 渦管が乱流中に存在する限り, 間欠性に重要であるような強い渦管の, 典型的な半径・旋回 速度・空間分布を調べることができる.

条件付き平均を用い渦管の典型的な旋回速度プロファイルを抽出した.速度プロファイル は Burgers 渦で良く近似できた. 乱流レイノルズ数や噴流・粗面境界層の違いに関わらず, 渦管半径 R_0 は Kolmogorov 長 η に比例, 最大旋回速度 V_0 は流速揺らぎ $\langle v^2 \rangle^{1/2}$ に比例, そし て渦管レイノルズ数 $Re_{\lambda} = R_0 V_0 / \nu$ は乱流レイノルズ数の平方根 $Re_{\lambda}^{1/2}$ に比例した.

さらに渦管間隔の分布を用い渦管の空間分布を調べた.積分長 L_vより大きいスケールに おいて渦管は乱雑かつ独立に分布していた.小さいスケールにおいて渦管は自己相似的に分 布していた. 自己相似性を特徴づける指数μは, 乱流レイノルズ数や噴流・粗面境界層の違いに関わらず, 一定値をとった.

乱流レイノルズ数は大気境界層などにおいて非常に高い値を持つ ($Re_{\lambda} \gtrsim 10^{4}$). 非常にレイノルズ数が高い乱流にも渦管は存在するであろう. 乱流はレイノルズ数が高いほど間欠的であり, 間欠性は渦管に因るからである. これらの渦管も本研究で得られたスケーリング則に従うと期待できる.

謝辞

研究会で有益な議論・コメントをしていただいた皆様に感謝いたします.

参考文献

- H. Miura and S. Kida, J. Phys. Soc. Jpn. 66, 1331 (1997); S. Kida and H. Miura, *ibid.* 69, 3466 (2000); T. Makihara, S. Kida, and H. Miura, *ibid.* 71, 1622 (2002).
- [2] A. La Porta, G. A. Voth, F. Moisy, and E. Bodenschatz, Phys. Fluids 12, 1485 (2000).
- [3] J. Jiménez, A. A. Wray, P. G. Saffman, and R. S. Rogallo, J. Fluid Mech. 255, 65 (1993); J. Jiménez and A. A. Wray, *ibid.* 373, 255 (1998).
- [4] M. Tanahashi, T. Miyauchi, and J. Ikeda, in *IUTAM Symposium on Simulation and Identification of Organized Structures in Flows*, edited by J. N. Sørensen, E. J. Hopfinger, and N. Aubry (Kluwer, 1999), p. 131.
- [5] R. Camussi and G. Guj, Phys. Fluids 11, 423 (1999).
- [6] H. Mouri, H. Kubotani, T. Fujitani, H. Niino, and M. Takaoka, J. Fluid Mech. 389, 229 (1999).
- [7] H. Mouri, A. Hori, and Y. Kawashima, Phys. Rev. E 67, 016305 (2003).
- [8] H. Mouri, A. Hori, and Y. Kawashima, Phys. Rev. E 70, 066305 (2004).
- [9] F. Moisy and J. Jiménez, in IUTAM Symposium on Elementary Vortices and Coherent Structures: Significance in Turbulence Dynamics, edited by S. Kida (Springer, 2006), p. 3.
- [10] P. Abry, S. Fauve, P. Flandrin, and C. Laroche, J. Phys. (Paris) II 4, 725 (1994).